未验证 提交 51b7bbee 编写于 作者: L LielinJiang 提交者: GitHub

[cherry-pick] Update hapi predict interface (#28186)

* update hapi predict interface
上级 f27d1bee
...@@ -628,7 +628,7 @@ class ModuleApiTest(unittest.TestCase): ...@@ -628,7 +628,7 @@ class ModuleApiTest(unittest.TestCase):
model.prepare() model.prepare()
if self.param_states: if self.param_states:
model.load(self.param_states, optim_state=None) model.load(self.param_states, optim_state=None)
return model.test_batch(self.inputs) return model.predict_batch(self.inputs)
def check_output_with_place(self, place, mode="test"): def check_output_with_place(self, place, mode="test"):
dygraph_output = self._calc_output(place, mode, dygraph=True) dygraph_output = self._calc_output(place, mode, dygraph=True)
......
...@@ -261,7 +261,7 @@ class StaticGraphAdapter(object): ...@@ -261,7 +261,7 @@ class StaticGraphAdapter(object):
self.mode = 'eval' self.mode = 'eval'
return self._run(inputs, labels) return self._run(inputs, labels)
def test_batch(self, inputs): def predict_batch(self, inputs):
self.mode = 'test' self.mode = 'test'
return self._run(inputs, None) return self._run(inputs, None)
...@@ -723,7 +723,7 @@ class DynamicGraphAdapter(object): ...@@ -723,7 +723,7 @@ class DynamicGraphAdapter(object):
else: else:
return metrics return metrics
def test_batch(self, inputs): def predict_batch(self, inputs):
self.model.network.eval() self.model.network.eval()
self.mode = 'test' self.mode = 'test'
inputs = [to_variable(x) for x in to_list(inputs)] inputs = [to_variable(x) for x in to_list(inputs)]
...@@ -894,10 +894,13 @@ class Model(object): ...@@ -894,10 +894,13 @@ class Model(object):
Run one training step on a batch of data. Run one training step on a batch of data.
Args: Args:
inputs (list): A list of numpy.ndarray, each is a batch of inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
input data. be a numpy array or paddle.Tensor, or a list of arrays or
labels (list): A list of numpy.ndarray, each is a batch of tensors (in case the model has multiple inputs).
input label. If has no labels, set None. Default is None. labels (numpy.ndarray|Tensor|list): Batch of labels. It could be
a numpy array or paddle.Tensor, or a list of arrays or tensors
(in case the model has multiple labels). If has no labels,
set None. Default is None.
Returns: Returns:
A list of scalar training loss if the model has no metrics, A list of scalar training loss if the model has no metrics,
...@@ -941,10 +944,13 @@ class Model(object): ...@@ -941,10 +944,13 @@ class Model(object):
Run one evaluating step on a batch of data. Run one evaluating step on a batch of data.
Args: Args:
inputs (list): A list of numpy.ndarray, each is a batch of inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
input data. be a numpy array or paddle.Tensor, or a list of arrays or
labels (list): A list of numpy.ndarray, each is a batch of tensors (in case the model has multiple inputs).
input label. If has no labels, set None. Default is None. labels (numpy.ndarray|Tensor|list): Batch of labels. It could be
a numpy array or paddle.Tensor, or a list of arrays or tensors
(in case the model has multiple labels). If has no labels,
set None. Default is None.
Returns: Returns:
A list of scalar testing loss if the model has no metrics, A list of scalar testing loss if the model has no metrics,
...@@ -984,13 +990,14 @@ class Model(object): ...@@ -984,13 +990,14 @@ class Model(object):
self._update_inputs() self._update_inputs()
return loss return loss
def test_batch(self, inputs): def predict_batch(self, inputs):
""" """
Run one testing step on a batch of data. Run one predicting step on a batch of data.
Args: Args:
inputs (list): A list of numpy.ndarray, each is a batch of inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
input data. be a numpy array or paddle.Tensor, or a list of arrays or
tensors (in case the model has multiple inputs).
Returns: Returns:
A list of numpy.ndarray of predictions, that is the outputs A list of numpy.ndarray of predictions, that is the outputs
...@@ -1019,10 +1026,10 @@ class Model(object): ...@@ -1019,10 +1026,10 @@ class Model(object):
model = paddle.Model(net, input, label) model = paddle.Model(net, input, label)
model.prepare() model.prepare()
data = np.random.random(size=(4,784)).astype(np.float32) data = np.random.random(size=(4,784)).astype(np.float32)
out = model.test_batch([data]) out = model.predict_batch([data])
print(out) print(out)
""" """
loss = self._adapter.test_batch(inputs) loss = self._adapter.predict_batch(inputs)
if fluid.in_dygraph_mode() and self._input_shapes is None: if fluid.in_dygraph_mode() and self._input_shapes is None:
self._update_inputs() self._update_inputs()
return loss return loss
...@@ -1847,10 +1854,9 @@ class Model(object): ...@@ -1847,10 +1854,9 @@ class Model(object):
logs[k] = v logs[k] = v
else: else:
if self._inputs is not None: if self._inputs is not None:
outs = getattr(self, outs = self.predict_batch(data[:len(self._inputs)])
mode + '_batch')(data[:len(self._inputs)])
else: else:
outs = getattr(self, mode + '_batch')(data) outs = self.predict_batch(data)
outputs.append(outs) outputs.append(outs)
......
...@@ -284,6 +284,17 @@ class TestModel(unittest.TestCase): ...@@ -284,6 +284,17 @@ class TestModel(unittest.TestCase):
fluid.disable_dygraph() if dynamic else None fluid.disable_dygraph() if dynamic else None
def test_predict_without_inputs(self):
fluid.enable_dygraph(self.device)
model = Model(LeNet())
model.prepare()
model.load(self.weight_path)
model._inputs = None
output = model.predict(
self.test_dataset, batch_size=64, stack_outputs=True)
np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
fluid.disable_dygraph()
class MyModel(paddle.nn.Layer): class MyModel(paddle.nn.Layer):
def __init__(self): def __init__(self):
...@@ -370,7 +381,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -370,7 +381,7 @@ class TestModelFunction(unittest.TestCase):
inputs = [InputSpec([None, dim], 'float32', 'x')] inputs = [InputSpec([None, dim], 'float32', 'x')]
model = Model(net, inputs) model = Model(net, inputs)
model.prepare() model.prepare()
out, = model.test_batch([data]) out, = model.predict_batch([data])
np.testing.assert_allclose(out, ref, rtol=1e-6) np.testing.assert_allclose(out, ref, rtol=1e-6)
fluid.disable_dygraph() if dynamic else None fluid.disable_dygraph() if dynamic else None
...@@ -546,7 +557,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -546,7 +557,7 @@ class TestModelFunction(unittest.TestCase):
np.random.random((1, 1, 28, 28)), dtype=np.float32) np.random.random((1, 1, 28, 28)), dtype=np.float32)
model.save(save_dir, training=False) model.save(save_dir, training=False)
ori_results = model.test_batch(tensor_img) ori_results = model.predict_batch(tensor_img)
fluid.disable_dygraph() if dynamic else None fluid.disable_dygraph() if dynamic else None
place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda( place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
...@@ -569,7 +580,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -569,7 +580,7 @@ class TestModelFunction(unittest.TestCase):
mnist_data = MnistDataset(mode='train') mnist_data = MnistDataset(mode='train')
paddle.disable_static() paddle.disable_static()
# without inputs # without inputs
for initial in ["fit", "train_batch", "eval_batch", "test_batch"]: for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
save_dir = tempfile.mkdtemp() save_dir = tempfile.mkdtemp()
if not os.path.exists(save_dir): if not os.path.exists(save_dir):
os.makedirs(save_dir) os.makedirs(save_dir)
...@@ -590,7 +601,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -590,7 +601,7 @@ class TestModelFunction(unittest.TestCase):
elif initial == "eval_batch": elif initial == "eval_batch":
model.eval_batch([img], [label]) model.eval_batch([img], [label])
else: else:
model.test_batch([img]) model.predict_batch([img])
model.save(save_dir, training=False) model.save(save_dir, training=False)
shutil.rmtree(save_dir) shutil.rmtree(save_dir)
......
...@@ -40,10 +40,10 @@ class TestPretrainedModel(unittest.TestCase): ...@@ -40,10 +40,10 @@ class TestPretrainedModel(unittest.TestCase):
if dygraph: if dygraph:
model.save(path) model.save(path)
res['dygraph'] = model.test_batch(x) res['dygraph'] = model.predict_batch(x)
else: else:
model.load(path) model.load(path)
res['static'] = model.test_batch(x) res['static'] = model.predict_batch(x)
if not dygraph: if not dygraph:
paddle.disable_static() paddle.disable_static()
......
...@@ -205,6 +205,12 @@ class TestTransformsCV2(unittest.TestCase): ...@@ -205,6 +205,12 @@ class TestTransformsCV2(unittest.TestCase):
assert isinstance(tensor, paddle.Tensor) assert isinstance(tensor, paddle.Tensor)
np.testing.assert_equal(tensor.shape, (3, 50, 100)) np.testing.assert_equal(tensor.shape, (3, 50, 100))
def test_keys(self):
fake_img1 = self.create_image((200, 150, 3))
fake_img2 = self.create_image((200, 150, 3))
trans_pad = transforms.Pad(10, keys=("image", ))
fake_img_padded = trans_pad((fake_img1, fake_img2))
def test_exception(self): def test_exception(self):
trans = transforms.Compose([transforms.Resize(-1)]) trans = transforms.Compose([transforms.Resize(-1)])
......
...@@ -33,7 +33,7 @@ class TestVisonModels(unittest.TestCase): ...@@ -33,7 +33,7 @@ class TestVisonModels(unittest.TestCase):
model = paddle.Model(net, input) model = paddle.Model(net, input)
model.prepare() model.prepare()
model.test_batch(x) model.predict_batch(x)
def test_mobilenetv2_pretrained(self): def test_mobilenetv2_pretrained(self):
self.models_infer('mobilenet_v2', pretrained=False) self.models_infer('mobilenet_v2', pretrained=False)
...@@ -77,7 +77,7 @@ class TestVisonModels(unittest.TestCase): ...@@ -77,7 +77,7 @@ class TestVisonModels(unittest.TestCase):
lenet.prepare() lenet.prepare()
x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32) x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32)
lenet.test_batch(x) lenet.predict_batch(x)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -272,7 +272,7 @@ class BaseTransform(object): ...@@ -272,7 +272,7 @@ class BaseTransform(object):
else: else:
outputs.append(apply_func(inputs[i])) outputs.append(apply_func(inputs[i]))
if len(inputs) > len(self.keys): if len(inputs) > len(self.keys):
outputs.extend(input[len(self.keys):]) outputs.extend(inputs[len(self.keys):])
if len(outputs) == 1: if len(outputs) == 1:
outputs = outputs[0] outputs = outputs[0]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册