<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – batch normalization input. Better be linear activation.
Because there is an activation inside batch_normalization.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – This layer’s input which is to be performed batch normalization on.</li>
<li><strong>batch_norm_type</strong> (<em>None | string</em><em>, </em><em>None</em><em> or </em><em>"batch_norm"</em><em> or </em><em>"cudnn_batch_norm"</em><em>
or </em><em>"mkldnn_batch_norm"</em>) – We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
requires cuDNN version greater or equal to v4 (>=v4).
But cudnn_batch_norm is faster and needs less
memory than batch_norm. mkldnn_batch_norm requires
enable use_mkldnn. By default (None), we will
automaticly select cudnn_batch_norm for GPU,
use_mkldnn is enabled. By default (None), we will
automatically select cudnn_batch_norm for GPU,
mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
Otherwise, select batch norm type based on the
specified type. If you use cudnn_batch_norm,
we suggested you use latest version, such as v5.1.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type. Better be relu. Because batch
normalization will normalize input near zero.</li>
<li><strong>num_channels</strong> (<em>int</em>) – num of image channels or previous layer’s number of
filters. None will automatically get from layer’s
input.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) –<spanclass="math">\(\beta\)</span>, better be zero when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) –<spanclass="math">\(\gamma\)</span>, better be one when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>use_global_stats</strong> (<em>bool | None.</em>) – whether use moving mean/variance statistics
during testing peroid. If None or True,
it will use moving mean/variance statistics during
testing. If False, it will use the mean
and variance of current batch of test data for
testing.</li>
<li><strong>moving_average_fraction</strong> (<em>float.</em>) – Factor used in the moving average
cudnn_batch_norm, we suggested you use latest version,
such as v5.1.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation type. paddle.v2.activation.Relu is the default activation.</li>
<li><strong>num_channels</strong> (<em>int</em>) – The number of input channels. If the parameter is not set or
set to None, its actual value will be automatically set to
the channels number of the input.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) –<spanclass="math">\(\beta\)</span>. The bias attribute. If the parameter is set to
False or an object whose type is not paddle.v2.attr.ParameterAttribute, no
bias is defined. If the parameter is set to True, the bias is
initialized to zero.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) –<spanclass="math">\(\gamma\)</span>. The parameter attribute. See paddle.v2.attr.ParameterAttribute
for details.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
<li><strong>use_global_stats</strong> (<em>bool | None.</em>) – Whether use moving mean/variance statistics during
testing peroid. If the parameter is set to None or
True, it will use moving mean/variance statistics
during testing. If the parameter is set to False, it
will use the mean and variance of the current batch
of test data.</li>
<li><strong>moving_average_fraction</strong> (<em>float.</em>) – Factor used in the moving average computation.
<li><strong>boot</strong> (<em>paddle.v2.config_base.Layer | None</em>) – This parameter specifies memory’s output at the first time
step and the output is boot’s output.</li>
<li><strong>boot_bias</strong> (<em>paddle.v2.attr.ParameterAttribute | None</em>) – The bias attribute of memory’s output at the first time step.
If the parameter is set to False or an object whose type is not
paddle.v2.attr.ParameterAttribute, no bias is defined. If the parameter is set
to True, the bias is initialized to zero.</li>
<li><strong>boot_bias_active_type</strong> (<em>paddle.v2.activation.Base</em>) – Activation type for memory’s bias at the first time
step. paddle.v2.activation.Linear is the default activation.</li>
<li><strong>boot_with_const_id</strong> (<em>int</em>) – This parameter specifies memory’s output at the first
time step and the output is an index.</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">Returns:</th><tdclass="field-body"><pclass="first">paddle.v2.config_base.Layer object which is a memory.</p>
<li><strong>a</strong> (<em>paddle.v2.config_base.Layer</em>) –The first input sequence layer</li>
<li><strong>b</strong> (<em>paddle.v2.config_base.Layer</em>) –The second input sequence layer</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation type. paddle.v2.activation.Identity is the default activation.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) – The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
...
...
@@ -2595,29 +2607,26 @@ and <span class="math">\(f\)</span> is activation function.</p>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple</em>) –Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple</em>) –The input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
paddle.v2.config_base.Layer.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type. paddle.v2.activation.Linear is the default activation.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) – The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer attribute.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – batch normalization input. Better be linear activation.
Because there is an activation inside batch_normalization.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – This layer’s input which is to be performed batch normalization on.</li>
<li><strong>batch_norm_type</strong> (<em>None | string</em><em>, </em><em>None</em><em> or </em><em>"batch_norm"</em><em> or </em><em>"cudnn_batch_norm"</em><em>
or </em><em>"mkldnn_batch_norm"</em>) – We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
requires cuDNN version greater or equal to v4 (>=v4).
But cudnn_batch_norm is faster and needs less
memory than batch_norm. mkldnn_batch_norm requires
enable use_mkldnn. By default (None), we will
automaticly select cudnn_batch_norm for GPU,
use_mkldnn is enabled. By default (None), we will
automatically select cudnn_batch_norm for GPU,
mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
Otherwise, select batch norm type based on the
specified type. If you use cudnn_batch_norm,
we suggested you use latest version, such as v5.1.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type. Better be relu. Because batch
normalization will normalize input near zero.</li>
<li><strong>num_channels</strong> (<em>int</em>) – num of image channels or previous layer’s number of
filters. None will automatically get from layer’s
input.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) –<spanclass="math">\(\beta\)</span>, better be zero when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) –<spanclass="math">\(\gamma\)</span>, better be one when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>use_global_stats</strong> (<em>bool | None.</em>) – whether use moving mean/variance statistics
during testing peroid. If None or True,
it will use moving mean/variance statistics during
testing. If False, it will use the mean
and variance of current batch of test data for
testing.</li>
<li><strong>moving_average_fraction</strong> (<em>float.</em>) – Factor used in the moving average
cudnn_batch_norm, we suggested you use latest version,
such as v5.1.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation type. paddle.v2.activation.Relu is the default activation.</li>
<li><strong>num_channels</strong> (<em>int</em>) – The number of input channels. If the parameter is not set or
set to None, its actual value will be automatically set to
the channels number of the input.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) –<spanclass="math">\(\beta\)</span>. The bias attribute. If the parameter is set to
False or an object whose type is not paddle.v2.attr.ParameterAttribute, no
bias is defined. If the parameter is set to True, the bias is
initialized to zero.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) –<spanclass="math">\(\gamma\)</span>. The parameter attribute. See paddle.v2.attr.ParameterAttribute
for details.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
<li><strong>use_global_stats</strong> (<em>bool | None.</em>) – Whether use moving mean/variance statistics during
testing peroid. If the parameter is set to None or
True, it will use moving mean/variance statistics
during testing. If the parameter is set to False, it
will use the mean and variance of the current batch
of test data.</li>
<li><strong>moving_average_fraction</strong> (<em>float.</em>) – Factor used in the moving average computation.
<li><strong>boot</strong> (<em>paddle.v2.config_base.Layer | None</em>) – This parameter specifies memory’s output at the first time
step and the output is boot’s output.</li>
<li><strong>boot_bias</strong> (<em>paddle.v2.attr.ParameterAttribute | None</em>) – The bias attribute of memory’s output at the first time step.
If the parameter is set to False or an object whose type is not
paddle.v2.attr.ParameterAttribute, no bias is defined. If the parameter is set
to True, the bias is initialized to zero.</li>
<li><strong>boot_bias_active_type</strong> (<em>paddle.v2.activation.Base</em>) – Activation type for memory’s bias at the first time
step. paddle.v2.activation.Linear is the default activation.</li>
<li><strong>boot_with_const_id</strong> (<em>int</em>) – This parameter specifies memory’s output at the first
time step and the output is an index.</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">返回:</th><tdclass="field-body"><pclass="first">paddle.v2.config_base.Layer object which is a memory.</p>
<li><strong>a</strong> (<em>paddle.v2.config_base.Layer</em>) –The first input sequence layer</li>
<li><strong>b</strong> (<em>paddle.v2.config_base.Layer</em>) –The second input sequence layer</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation type. paddle.v2.activation.Identity is the default activation.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) – The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
...
...
@@ -2609,29 +2621,26 @@ and <span class="math">\(f\)</span> is activation function.</p>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple</em>) –Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple</em>) –The input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
paddle.v2.config_base.Layer.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type. paddle.v2.activation.Linear is the default activation.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) – The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer attribute.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – The extra layer attribute. See paddle.v2.attr.ExtraAttribute for