Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
514d83de
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
514d83de
编写于
4月 17, 2023
作者:
张
张春乔
提交者:
GitHub
4月 17, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove hccl in some .cc files (#52942)
上级
27a601e8
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
0 addition
and
319 deletion
+0
-319
paddle/fluid/imperative/hccl_context.cc
paddle/fluid/imperative/hccl_context.cc
+0
-267
paddle/fluid/imperative/hccl_context.h
paddle/fluid/imperative/hccl_context.h
+0
-14
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+0
-1
paddle/phi/backends/dynload/dynamic_loader.cc
paddle/phi/backends/dynload/dynamic_loader.cc
+0
-8
python/paddle/fluid/tests/unittests/test_ascend_group.sh
python/paddle/fluid/tests/unittests/test_ascend_group.sh
+0
-29
未找到文件。
paddle/fluid/imperative/hccl_context.cc
已删除
100644 → 0
浏览文件 @
27a601e8
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/hccl_context.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
class
Variable
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
imperative
{
static
void
AllReduce
(
const
phi
::
DenseTensor
&
src
,
phi
::
DenseTensor
*
dst
,
const
aclrtStream
stream
,
const
platform
::
HCCLComm
*
comm
)
{
const
auto
&
place
=
src
.
place
();
PADDLE_ENFORCE_EQ
(
platform
::
is_npu_place
(
place
),
true
,
platform
::
errors
::
Unimplemented
(
"Imperative mode does not support multi-CPU training yet."
));
void
*
src_ptr
=
const_cast
<
void
*>
(
src
.
data
());
dst
->
Resize
(
src
.
dims
());
void
*
dst_ptr
=
dst
->
mutable_data
(
src
.
place
(),
src
.
dtype
());
HcclDataType
hccl_dtype
=
platform
::
ToHCCLDataType
(
framework
::
TransToProtoVarType
(
src
.
dtype
()));
PADDLE_ENFORCE_NPU_SUCCESS
(
platform
::
dynload
::
HcclAllReduce
(
src_ptr
,
dst_ptr
,
src
.
numel
(),
hccl_dtype
,
HCCL_REDUCE_SUM
,
comm
->
comm
(),
reinterpret_cast
<
void
*>
(
stream
)));
}
void
HCCLParallelContext
::
BcastHCCLId
(
std
::
vector
<
HcclRootInfo
>
&
hccl_ids
,
// NOLINT
int
root
,
int
server_fd
)
{
if
(
strategy_
.
local_rank_
==
root
)
{
std
::
vector
<
std
::
string
>
other_trainers
;
for
(
auto
&
ep
:
strategy_
.
trainer_endpoints_
)
{
if
(
ep
!=
strategy_
.
current_endpoint_
)
{
other_trainers
.
push_back
(
ep
);
}
}
platform
::
SendBroadCastCommID
(
other_trainers
,
&
hccl_ids
);
}
else
{
platform
::
RecvBroadCastCommID
(
server_fd
,
strategy_
.
current_endpoint_
,
&
hccl_ids
);
}
}
void
HCCLParallelContext
::
Init
()
{
int
server_fd
=
-
1
;
std
::
vector
<
HcclRootInfo
>
hccl_ids
;
hccl_ids
.
resize
(
strategy_
.
nrings_
);
if
(
strategy_
.
local_rank_
==
0
)
{
// generate the unique hcclid on the root worker
for
(
size_t
i
=
0
;
i
<
hccl_ids
.
size
();
++
i
)
{
platform
::
dynload
::
HcclGetRootInfo
(
&
hccl_ids
[
i
]);
}
}
else
{
server_fd
=
platform
::
SocketServer
::
GetInstance
(
strategy_
.
current_endpoint_
)
.
socket
();
}
BcastHCCLId
(
hccl_ids
,
0
,
server_fd
);
int
npu_id
=
place_
.
device
;
for
(
int
ring_id
=
0
;
ring_id
<
strategy_
.
nrings_
;
ring_id
++
)
{
VLOG
(
0
)
<<
"init hccl context nranks: "
<<
strategy_
.
nranks_
<<
" local rank: "
<<
strategy_
.
local_rank_
<<
" npu id: "
<<
npu_id
<<
" ring id: "
<<
ring_id
;
// it will assign hccl_comm in NPUDeviceContext within ring_id
platform
::
HCCLCommContext
::
Instance
().
CreateHCCLComm
(
&
hccl_ids
[
ring_id
],
strategy_
.
nranks_
,
strategy_
.
local_rank_
,
npu_id
,
ring_id
);
compute_events_
.
emplace_back
(
platform
::
NpuEventResourcePool
::
Instance
().
New
(
place_
.
device
));
comm_events_
.
emplace_back
(
platform
::
NpuEventResourcePool
::
Instance
().
New
(
place_
.
device
));
}
}
void
HCCLParallelContext
::
InitWithRingID
(
int
ring_id
)
{
int
server_fd
=
-
1
;
std
::
vector
<
HcclRootInfo
>
hccl_ids
;
hccl_ids
.
resize
(
1
);
if
(
strategy_
.
local_rank_
==
0
)
{
// generate the unique hcclid on the root worker
platform
::
dynload
::
HcclGetRootInfo
(
&
hccl_ids
[
0
]);
}
else
{
server_fd
=
platform
::
SocketServer
::
GetInstance
(
strategy_
.
current_endpoint_
)
.
socket
();
}
BcastHCCLId
(
hccl_ids
,
0
,
server_fd
);
int
npu_id
=
place_
.
device
;
VLOG
(
0
)
<<
"init hccl context nranks: "
<<
strategy_
.
nranks_
<<
" local rank: "
<<
strategy_
.
local_rank_
<<
" npu id: "
<<
npu_id
<<
" ring id: "
<<
ring_id
;
// it will assign hccl_comm in NPUDeviceContext within ring_id
platform
::
HCCLCommContext
::
Instance
().
CreateHCCLComm
(
&
hccl_ids
[
0
],
strategy_
.
nranks_
,
strategy_
.
local_rank_
,
npu_id
,
ring_id
);
compute_events_
.
emplace_back
(
platform
::
NpuEventResourcePool
::
Instance
().
New
(
place_
.
device
));
comm_events_
.
emplace_back
(
platform
::
NpuEventResourcePool
::
Instance
().
New
(
place_
.
device
));
}
void
HCCLParallelContext
::
AllReduceByStream
(
const
framework
::
Variable
&
src
,
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_npu_place
(
place_
),
true
,
platform
::
errors
::
Unimplemented
(
"Dynamic graph mode does not support multi-CPU training yet."
));
auto
*
dev_ctx
=
static_cast
<
platform
::
NPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
));
platform
::
HCCLComm
*
comm
=
platform
::
HCCLCommContext
::
Instance
().
Get
(
ring_id
,
place_
);
aclrtStream
stream
=
use_calc_stream
?
dev_ctx
->
stream
()
:
comm
->
stream
();
if
(
src
.
IsType
<
phi
::
DenseTensor
>
())
{
if
(
!
dst
->
IsType
<
phi
::
DenseTensor
>
())
{
dst
->
Clear
();
}
AllReduce
(
src
.
Get
<
phi
::
DenseTensor
>
(),
dst
->
GetMutable
<
phi
::
DenseTensor
>
(),
stream
,
comm
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"XPU unsupported variable type %s for imperative allreduce, only "
"LoDTensor are supported."
,
platform
::
demangle
(
framework
::
ToTypeName
(
src
.
Type
()))));
}
}
void
HCCLParallelContext
::
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
{
VLOG
(
3
)
<<
"/// DEBUG /// start inter broadcast with ring_id: "
<<
ring_id
;
if
(
src
->
IsType
<
phi
::
DenseTensor
>
())
{
phi
::
DenseTensor
*
src_tensor
=
src
->
GetMutable
<
phi
::
DenseTensor
>
();
const
auto
&
place
=
src_tensor
->
place
();
platform
::
HCCLComm
*
comm
=
platform
::
HCCLCommContext
::
Instance
().
Get
(
ring_id
,
place
);
aclrtStream
stream
=
comm
->
stream
();
void
*
src_ptr
=
reinterpret_cast
<
void
*>
(
const_cast
<
void
*>
(
src_tensor
->
data
()));
auto
hccl_dtype
=
platform
::
ToHCCLDataType
(
framework
::
TransToProtoVarType
(
src_tensor
->
dtype
()));
PADDLE_ENFORCE_NPU_SUCCESS
(
platform
::
dynload
::
HcclBroadcast
(
src_ptr
,
src_tensor
->
numel
(),
hccl_dtype
,
0
,
comm
->
comm
(),
reinterpret_cast
<
void
*>
(
stream
)));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported variable type %s for imperative allreduce, only "
"LoDTensor is supported."
,
platform
::
demangle
(
framework
::
ToTypeName
(
src
->
Type
()))));
}
}
paddle
::
platform
::
DeviceContext
*
HCCLParallelContext
::
GetDeviceContext
(
int
ring_id
)
{
return
static_cast
<
platform
::
DeviceContext
*>
(
platform
::
HCCLCommContext
::
Instance
()
.
Get
(
ring_id
,
place_
)
->
dev_context
());
}
void
HCCLParallelContext
::
WaitCompute
(
int
ring_id
)
{
PADDLE_ENFORCE_GE
(
ring_id
,
0
,
platform
::
errors
::
OutOfRange
(
"ring id must >= 0, but got %d"
,
ring_id
));
PADDLE_ENFORCE_LT
(
ring_id
,
compute_events_
.
size
(),
platform
::
errors
::
OutOfRange
(
"ring id must < compute events size,"
"but got ring id = %d, compute events size = %d"
,
ring_id
,
compute_events_
.
size
()));
auto
compute_stream
=
static_cast
<
platform
::
NPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
auto
comm_stream
=
platform
::
HCCLCommContext
::
Instance
().
Get
(
ring_id
,
place_
)
->
stream
();
auto
event
=
compute_events_
[
ring_id
].
get
();
// compute_stream-->event-->comm_stream
PADDLE_ENFORCE_NPU_SUCCESS
(
aclrtRecordEvent
(
event
,
compute_stream
));
PADDLE_ENFORCE_NPU_SUCCESS
(
aclrtStreamWaitEvent
(
comm_stream
,
event
));
}
void
HCCLParallelContext
::
WaitComm
(
int
ring_id
)
{
PADDLE_ENFORCE_GE
(
ring_id
,
0
,
platform
::
errors
::
OutOfRange
(
"ring id must >= 0, but got %d"
,
ring_id
));
PADDLE_ENFORCE_LT
(
ring_id
,
comm_events_
.
size
(),
platform
::
errors
::
OutOfRange
(
"ring id must < comm events size,"
"but got ring id = %d, comm events size = %d"
,
ring_id
,
comm_events_
.
size
()));
auto
compute_stream
=
static_cast
<
platform
::
NPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
auto
comm_stream
=
platform
::
HCCLCommContext
::
Instance
().
Get
(
ring_id
,
place_
)
->
stream
();
auto
event
=
comm_events_
[
ring_id
].
get
();
// comm_stream-->event-->compute_stream
PADDLE_ENFORCE_NPU_SUCCESS
(
aclrtRecordEvent
(
event
,
comm_stream
));
PADDLE_ENFORCE_NPU_SUCCESS
(
aclrtStreamWaitEvent
(
compute_stream
,
event
));
}
void
HCCLParallelContext
::
SynchronizeCompute
()
{
auto
*
compute_dev_ctx
=
static_cast
<
platform
::
NPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
));
compute_dev_ctx
->
Wait
();
}
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/hccl_context.h
已删除
100644 → 0
浏览文件 @
27a601e8
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
paddle/fluid/pybind/imperative.cc
浏览文件 @
514d83de
...
...
@@ -43,7 +43,6 @@ limitations under the License. */
#include "paddle/fluid/imperative/bkcl_context.h"
#include "paddle/fluid/imperative/data_loader.h"
#include "paddle/fluid/imperative/gloo_context.h"
#include "paddle/fluid/imperative/hccl_context.h"
#include "paddle/fluid/imperative/heter_ccl_context.h"
#include "paddle/fluid/imperative/hooks.h"
#include "paddle/fluid/imperative/layer.h"
...
...
paddle/phi/backends/dynload/dynamic_loader.cc
浏览文件 @
514d83de
...
...
@@ -48,14 +48,6 @@ DEFINE_string(nccl_dir,
"For instance, /usr/local/cuda/lib64. If default, "
"dlopen will search cuda from LD_LIBRARY_PATH"
);
DEFINE_string
(
hccl_dir
,
""
,
"Specify path for loading hccl library, such as libhccl.so. "
"For instance, "
"/usr/local/Ascend/ascend-toolkit/latest/fwkacllib/lib64/. If "
"default, "
"dlopen will search hccl from LD_LIBRARY_PATH"
);
DEFINE_string
(
cupti_dir
,
""
,
"Specify path for loading cupti.so."
);
DEFINE_string
(
...
...
python/paddle/fluid/tests/unittests/test_ascend_group.sh
已删除
100644 → 0
浏览文件 @
27a601e8
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
curr_host_ip
=
`
hostname
-i
`
python hccl_tools.py
--device_num
"[0,4)"
--server_ip
${
curr_host_ip
}
export
RANK_TABLE_FILE
=
"
${
PWD
}
/hccl_4p_0123_
${
curr_host_ip
}
.json"
# use ascend
echo
"begin test use ascend npu"
distributed_args
=
"--run_mode=collective --log_dir=testlog"
python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
\
ascend_group.py fleetascendgroup
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录