From 5100c4c3aa73ba50db24c16b8d9f0e5bfe3e3e80 Mon Sep 17 00:00:00 2001 From: Wu Yi Date: Tue, 12 Jun 2018 12:00:27 +0800 Subject: [PATCH] Enable docstring checker and fix comments (#11351) * enable docstring checker and fix comments * update * update by comments * fix build --- python/paddle/fluid/layers/nn.py | 351 ++++++++++++++++--------- tools/codestyle/docstring_checker.py | 25 +- tools/codestyle/pylint_pre_commit.hook | 6 +- 3 files changed, 253 insertions(+), 129 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 9e2c06d26f5..b5274daef74 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -12,7 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. """ -All layers just related to the neural network. +All layers just related to the neural network. """ from ..layer_helper import LayerHelper @@ -95,7 +95,6 @@ def fc(input, num_flatten_dims=1, param_attr=None, bias_attr=None, - use_cudnn=False, use_mkldnn=False, act=None, is_test=False, @@ -222,6 +221,7 @@ def embedding(input, have two elements which indicate the size of the dictionary of embeddings and the size of each embedding vector respectively. is_sparse(bool): The flag indicating whether to use sparse update. + is_distributed (bool): Whether to run lookup table from remote parameter server. padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup. Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters it in :attr:`input`. If @@ -654,8 +654,9 @@ def dynamic_gru(input, :attr:`False`. gate_activation(str): The activation for update gate and reset gate. Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid". - activation(str): The activation for candidate hidden state. + candidate_activation(str): The activation for candidate hidden state. Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh". + h_0 (Variable): The hidden output of the first time step. Returns: Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \ @@ -873,6 +874,13 @@ def cos_sim(X, Y): """ This function performs the cosine similarity between two tensors X and Y and returns that as the output. + + Args: + X (Variable): The input X. + Y (Variable): The input Y. + + Returns: + Variable: the output of cosine(X, Y). """ helper = LayerHelper('cos_sim', **locals()) out = helper.create_tmp_variable(dtype=X.dtype) @@ -899,15 +907,15 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None): unchanged. Args: - x(variable): The input tensor. - dropout_prob(float): Probability of setting units to zero. - is_test(bool): A flag indicating whether it is in test phrase or not. - seed(int): A Python integer used to create random seeds. If this - parameter is set to None, a random seed is used. - NOTE: If an integer seed is given, always the same output - units will be dropped. DO NOT use a fixed seed in training. - name(str|None): A name for this layer(optional). If set None, the layer - will be named automatically. + x (Variable): The input tensor. + dropout_prob (float): Probability of setting units to zero. + is_test (bool): A flag indicating whether it is in test phrase or not. + seed (int): A Python integer used to create random seeds. If this + parameter is set to None, a random seed is used. + NOTE: If an integer seed is given, always the same output + units will be dropped. DO NOT use a fixed seed in training. + name (str|None): A name for this layer(optional). If set None, the layer + will be named automatically. Returns: Variable: A tensor variable. @@ -1029,8 +1037,8 @@ def square_error_cost(input, label): * :math:`Out`: Output value, same shape with :math:`X`. Args: - input(Variable): Input tensor, has predictions. - label(Variable): Label tensor, has target labels. + input (Variable): Input tensor, has predictions. + label (Variable): Label tensor, has target labels. Returns: Variable: The tensor variable storing the element-wise squared error \ @@ -1059,6 +1067,7 @@ def square_error_cost(input, label): return square_out +@templatedoc() def chunk_eval(input, label, chunk_scheme, @@ -1067,6 +1076,18 @@ def chunk_eval(input, """ This function computes and outputs the precision, recall and F1-score of chunk detection. + + Args: + input (Variable): prediction output of the network. + label (Variable): label of the test data set. + chunk_scheme (str): ${chunk_scheme_comment} + num_chunk_types (int): ${num_chunk_types_comment} + excluded_chunk_types (list): ${excluded_chunk_types_comment} + + Returns: + tuple: tuple containing: (precision, recall, f1_score, + num_infer_chunks, num_label_chunks, + num_correct_chunks) """ helper = LayerHelper("chunk_eval", **locals()) @@ -1099,6 +1120,7 @@ def chunk_eval(input, num_correct_chunks) +@templatedoc() def sequence_conv(input, num_filters, filter_size=3, @@ -1111,6 +1133,19 @@ def sequence_conv(input, This function creates the op for sequence_conv, using the inputs and other convolutional configurations for the filters and stride as given in the input parameters to the function. + + Args: + input (Variable): ${x_comment} + num_filters (int): number of filters. + filter_size (int): the filter size (H and W). + filter_stride (int): stride of the filter. + padding (bool): if True, add paddings. + bias_attr (ParamAttr|None): attributes for bias + param_attr (ParamAttr|None): attributes for parameter + act (str): the activation type + + Returns: + Variable: output of sequence_conv """ # FIXME(dzh) : want to unify the argument of python layer @@ -1225,33 +1260,34 @@ def conv2d(input, W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: - input(Variable): The input image with [N, C, H, W] format. - num_filters(int): The number of filter. It is as same as the output - image channel. - filter_size(int|tuple|None): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_H, filter_size_W). - Otherwise, the filter will be a square. - stride(int|tuple): The stride size. If stride is a tuple, it must - contain two integers, (stride_H, stride_W). Otherwise, the - stride_H = stride_W = stride. Default: stride = 1. - padding(int|tuple): The padding size. If padding is a tuple, it must - contain two integers, (padding_H, padding_W). Otherwise, the - padding_H = padding_W = padding. Default: padding = 0. - dilation(int|tuple): The dilation size. If dilation is a tuple, it must - contain two integers, (dilation_H, dilation_W). Otherwise, the - dilation_H = dilation_W = dilation. Default: dilation = 1. - groups(int): The groups number of the Conv2d Layer. According to grouped - convolution in Alex Krizhevsky's Deep CNN paper: when group=2, - the first half of the filters is only connected to the first half - of the input channels, while the second half of the filters is only - connected to the second half of the input channels. Default: groups=1 - param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None - bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None - use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn - library is installed. Default: True - act(str): Activation type. Default: None - name(str|None): A name for this layer(optional). If set None, the layer - will be named automatically. + input (Variable): The input image with [N, C, H, W] format. + num_filters(int): The number of filter. It is as same as the output + image channel. + filter_size (int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_H, filter_size_W). + Otherwise, the filter will be a square. + stride (int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_H, stride_W). Otherwise, the + stride_H = stride_W = stride. Default: stride = 1. + padding (int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_H, padding_W). Otherwise, the + padding_H = padding_W = padding. Default: padding = 0. + dilation (int|tuple): The dilation size. If dilation is a tuple, it must + contain two integers, (dilation_H, dilation_W). Otherwise, the + dilation_H = dilation_W = dilation. Default: dilation = 1. + groups (int): The groups number of the Conv2d Layer. According to grouped + convolution in Alex Krizhevsky's Deep CNN paper: when group=2, + the first half of the filters is only connected to the first half + of the input channels, while the second half of the filters is only + connected to the second half of the input channels. Default: groups=1 + param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None + bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None + use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + use_mkldnn (bool): Use mkldnn kernels or not. + act (str): Activation type. Default: None + name (str|None): A name for this layer(optional). If set None, the layer + will be named automatically. Returns: Variable: The tensor variable storing the convolution and \ @@ -1486,6 +1522,22 @@ def pool2d(input, """ This function adds the operator for pooling in 2 dimensions, using the pooling configurations mentioned in input parameters. + + Args: + input (Variable): ${input_comment} + pool_size (int): ${ksize_comment} + pool_type (str): ${pooling_type_comment} + pool_stride (int): stride of the pooling layer. + pool_padding (int): padding size. + global_pooling (bool): ${global_pooling_comment} + use_cudnn (bool): ${use_cudnn_comment} + ceil_mode (bool): ${ceil_mode_comment} + use_mkldnn (bool): ${use_mkldnn_comment} + name (str): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: output of pool2d layer. """ if pool_type not in ["max", "avg"]: raise ValueError( @@ -1543,6 +1595,25 @@ def batch_norm(input, """ This function helps create an operator to implement the BatchNorm layer using the configurations from the input parameters. + + Args: + input (Variable): the input variable. + act (str): activation type + is_test (bool): whether to run batch_norm as test mode. + momentum (float): momentum + epsilon (float): epsilon, default 1e-05 + param_attr (ParamAttr|None): attributes for parameter + bias_attr (ParamAttr|None): attributes for bias + data_layout (str): data layout, default NCHW + in_place (bool): if True, do not create tmp variable + use_mkldnn (bool): ${use_mkldnn_comment} + name (str): The name of this layer. It is optional. + moving_mean_name (str): The name of moving mean variable name, optional. + moving_variance_name (str): The name of moving variance name, optional. + do_model_average_for_mean_and_var (bool): + + Returns: + Variable: output of batch_norm layer. """ helper = LayerHelper('batch_norm', **locals()) dtype = helper.input_dtype() @@ -1670,6 +1741,7 @@ def layer_norm(input, bias_attr(ParamAttr|None): The parameter attribute for the learnable bias :math:`b`. act(str): Activation to be applied to the output of layer normalizaiton. + name (str): The name of this layer. It is optional. Returns: Variable: A tensor variable with the same shape as the input. @@ -1721,6 +1793,17 @@ def layer_norm(input, def beam_search_decode(ids, scores, name=None): + """ + ${beam_search_decode} + + Args: + ids (Variable): ${ids_comment} + scores (Variable): ${scores_comment} + name (str): The name of this layer. It is optional. + + Returns: + tuple: a tuple of two output variable: sentence_ids, sentence_scores + """ helper = LayerHelper('beam_search_decode', **locals()) sentence_ids = helper.create_tmp_variable(dtype=ids.dtype) sentence_scores = helper.create_tmp_variable(dtype=ids.dtype) @@ -1796,46 +1879,46 @@ def conv2d_transpose(input, W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 Args: - input(Variable): The input image with [N, C, H, W] format. - num_filters(int): The number of the filter. It is as same as the output - image channel. - output_size(int|tuple|None): The output image size. If output size is a - tuple, it must contain two integers, (image_H, image_W). This - parameter only works when filter_size is None. - filter_size(int|tuple|None): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_H, filter_size_W). - Otherwise, the filter will be a square. None if use output size to - calculate filter_size. - padding(int|tuple): The padding size. If padding is a tuple, it must - contain two integers, (padding_H, padding_W). Otherwise, the - padding_H = padding_W = padding. Default: padding = 0. - stride(int|tuple): The stride size. If stride is a tuple, it must - contain two integers, (stride_H, stride_W). Otherwise, the - stride_H = stride_W = stride. Default: stride = 1. - dilation(int|tuple): The dilation size. If dilation is a tuple, it must - contain two integers, (dilation_H, dilation_W). Otherwise, the - dilation_H = dilation_W = dilation. Default: dilation = 1. - groups(int): The groups number of the Conv2d transpose layer. Inspired by - grouped convolution in Alex Krizhevsky's Deep CNN paper, in which - when group=2, the first half of the filters is only connected to the - first half of the input channels, while the second half of the - filters is only connected to the second half of the input channels. - Default: groups=1 - param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer. - Default: None - bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None - use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn - library is installed. Default: True - act(str): Activation type. Default: None - name(str|None): A name for this layer(optional). If set None, the layer - will be named automatically. + input(Variable): The input image with [N, C, H, W] format. + num_filters(int): The number of the filter. It is as same as the output + image channel. + output_size(int|tuple|None): The output image size. If output size is a + tuple, it must contain two integers, (image_H, image_W). This + parameter only works when filter_size is None. + filter_size(int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_H, filter_size_W). + Otherwise, the filter will be a square. None if use output size to + calculate filter_size. + padding(int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_H, padding_W). Otherwise, the + padding_H = padding_W = padding. Default: padding = 0. + stride(int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_H, stride_W). Otherwise, the + stride_H = stride_W = stride. Default: stride = 1. + dilation(int|tuple): The dilation size. If dilation is a tuple, it must + contain two integers, (dilation_H, dilation_W). Otherwise, the + dilation_H = dilation_W = dilation. Default: dilation = 1. + groups(int): The groups number of the Conv2d transpose layer. Inspired by + grouped convolution in Alex Krizhevsky's Deep CNN paper, in which + when group=2, the first half of the filters is only connected to the + first half of the input channels, while the second half of the + filters is only connected to the second half of the input channels. + Default: groups=1 + param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer. + Default: None + bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None + use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + act(str): Activation type. Default: None + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. Returns: - Variable: The tensor variable storing the convolution transpose result. + Variable: The tensor variable storing the convolution transpose result. Raises: - ValueError: If the shapes of input, filter_size, stride, padding and - groups mismatch. + ValueError: If the shapes of input, filter_size, stride, padding and + groups mismatch. Examples: .. code-block:: python @@ -1972,6 +2055,17 @@ def sequence_expand(x, y, ref_level=-1, name=None): def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0): ''' This function implements the beam search algorithm. + + Args: + pre_ids (Variable): ${pre_ids_comment} + ids (Variable): ${ids_comment} + scores (Variable): ${scores_comment} + beam_size (int): ${beam_size_comment} + end_id (int): ${end_id_comment} + level (int): ${level_comment} + + Returns: + tuple: a tuple of beam_search output variables: selected_ids, selected_scores ''' helper = LayerHelper('beam_search', **locals()) score_type = scores.dtype @@ -2474,14 +2568,14 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): slice along dimension `axis`. Args: - x(Variable|list): The input tensor to l2_normalize layer. - axis(int): The axis on which to apply normalization. If `axis < 0`, - the dimension to normalization is rank(X) + axis. -1 is the - last dimension. - epsilon(float): The epsilon value is used to avoid division by zero, - the defalut value is 1e-10. - name(str|None): A name for this layer(optional). If set None, the layer - will be named automatically. + x(Variable|list): The input tensor to l2_normalize layer. + axis(int): The axis on which to apply normalization. If `axis < 0`, + the dimension to normalization is rank(X) + axis. -1 is the + last dimension. + epsilon(float): The epsilon value is used to avoid division by zero, + the defalut value is 1e-10. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. Returns: @@ -2694,16 +2788,13 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None, the edit distance will be divided by the length of reference string. Args: - input(Variable): The indices for hypothesis strings. - label(Variable): The indices for reference strings. - normalized(bool): Indicated whether to normalize the edit distance by the length of reference string. - ignored_tokens(list of int): Tokens that should be removed before calculating edit distance. + name (str): The name of this layer. It is optional. Returns: Variable: sequence-to-sequence edit distance in shape [batch_size, 1]. @@ -2793,10 +2884,10 @@ def ctc_greedy_decoder(input, blank, name=None): where Lp is the sum of all input sequences' length and num_classes is the true number of classes. (not including the blank label). - blank(int): the blank label index of Connectionist Temporal Classification (CTC) loss, which is in thehalf-opened interval [0, num_classes + 1). + name (str): The name of this layer. It is optional. Returns: Variable: CTC greedy decode result. If all the sequences in result were @@ -2833,23 +2924,23 @@ def warpctc(input, label, blank=0, norm_by_times=False): input tensor. Args: - input(Variable): (LodTensor, default: LoDTensor), - the unscaled probabilities of variable-length sequences, - which is a 2-D Tensor with LoD information. - It's shape is [Lp, num_classes + 1], where Lp is the sum of all input - sequences' length and num_classes is the true number of classes. - (not including the blank label). - label(Variable): (LodTensor, default: LoDTensor), the ground truth - of variable-length sequence, which is a 2-D Tensor with LoD - information. It is of the shape [Lg, 1], where Lg is th sum of - all labels' length. - blank: (int, default: 0), the blank label index of Connectionist - Temporal Classification (CTC) loss, which is in the - half-opened interval [0, num_classes + 1). - norm_by_times: (bool, default: false), whether to normalize - the gradients by the number of time-step, which is also the - sequence's length. There is no need to normalize the gradients - if warpctc layer was follewed by a mean_op. + input(Variable): (LodTensor, default: LoDTensor), + the unscaled probabilities of variable-length sequences, + which is a 2-D Tensor with LoD information. + It's shape is [Lp, num_classes + 1], where Lp is the sum of all input + sequences' length and num_classes is the true number of classes. + (not including the blank label). + label(Variable): (LodTensor, default: LoDTensor), the ground truth + of variable-length sequence, which is a 2-D Tensor with LoD + information. It is of the shape [Lg, 1], where Lg is th sum of + all labels' length. + blank (int): default 0, the blank label index of Connectionist + Temporal Classification (CTC) loss, which is in the + half-opened interval [0, num_classes + 1). + norm_by_times (bool): default false, whether to normalize + the gradients by the number of time-step, which is also the + sequence's length. There is no need to normalize the gradients + if warpctc layer was follewed by a mean_op. Returns: Variable: The Connectionist Temporal Classification (CTC) loss, @@ -2908,9 +2999,9 @@ def sequence_reshape(input, new_dim): no remainder for each sequence. Args: - input (Variable): (LodTensor, default: LoDTensor), a 2-D LoDTensor - with shape being [N, M] where M for dimension. - new_dim (int): New dimension which the input LoDTensor is reshaped to. + input (Variable): (LodTensor, default: LoDTensor), a 2-D LoDTensor + with shape being [N, M] where M for dimension. + new_dim (int): New dimension which the input LoDTensor is reshaped to. Returns: Variable: Reshaped LoDTensor according to new dimension. @@ -2932,7 +3023,10 @@ def sequence_reshape(input, new_dim): return out -@autodoc() +# FIXME(wuyi): let docstring_checker.py understand @autodoc. +# For now, the comments in c++ use types like Tensor, but in python side +# the type is often "Variable", and arguments may vary. +@templatedoc(op_type="nce") def nce(input, label, num_total_classes, @@ -2940,6 +3034,21 @@ def nce(input, param_attr=None, bias_attr=None, num_neg_samples=None): + """ + ${comment} + + Args: + input (Variable): input variable. + label (Variable): label. + num_total_classes (int):${num_total_classes_comment} + sample_weight (int): ${sample_weight_comment} + param_attr (ParamAttr|None): attributes for parameter + bias_attr (ParamAttr|None): attributes for bias + num_neg_samples (int): ${num_neg_samples_comment} + + Returns: + Variable: output of nce layer. + """ helper = LayerHelper('nce', **locals()) assert isinstance(input, Variable) dim = input.shape[1] @@ -2997,8 +3106,9 @@ def transpose(x, perm, name=None): perm[i]-th dimension of `input`. Args: - input (Variable): (Tensor), A Tensor. - perm (list): A permutation of the dimensions of `input`. + x (Variable): The input Tensor. + perm (list): A permutation of the dimensions of `input`. + name (str): The name of this layer. It is optional. Returns: Variable: A transposed Tensor. @@ -3231,9 +3341,9 @@ def multiplex(inputs, index): row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`. Args: - inputs (list): A list of variables to gather from. All variables have the + inputs (list): A list of variables to gather from. All variables have the same shape and the rank is at least 2. - index (Variable): Tensor, index variable which is a 2-D tensor + index (Variable): Tensor, index variable which is a 2-D tensor with shape [M, 1] where M is the batch size. Returns: @@ -3432,7 +3542,8 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1): begin(int): The first value of this counter. step(int): The increment step between each execution. - Returns(Variable): The global run counter. + Returns: + Variable: The global run counter. """ helper = LayerHelper('global_step_counter') if counter_name is None: @@ -3493,7 +3604,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): the corresponding dimension of x. Args: - input(variable): The input tensor. + x(variable): The input tensor. shape(list): The new shape. At most one dimension of the new shape can be -1. actual_shape(variable): An optional input. If provided, reshape @@ -3505,8 +3616,10 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): inplace(bool): If this flag is set true, a new output tensor is created whose data is copied from input x, otherwise the output shares data with input without copying. + name (str): The name of this layer. It is optional. - Returns(variable): The output tensor. + Returns: + Variable: The output tensor. Examples: .. code-block:: python @@ -4027,7 +4140,6 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None): name(str|None): The output variable name. Returns: - ${out_comment}. """ @@ -4046,6 +4158,7 @@ def image_resize_short(input, out_short_len, resample='BILINEAR'): This is a 4-D tensor of the shape (num_batches, channels, in_h, in_w). out_short_len(int): The length of output images' short edge. + resample (str): resample method, default: BILINEAR. Returns: out (Variable): The output is a 4-D tensor of the shape diff --git a/tools/codestyle/docstring_checker.py b/tools/codestyle/docstring_checker.py index 48100e5bf98..54a69046269 100644 --- a/tools/codestyle/docstring_checker.py +++ b/tools/codestyle/docstring_checker.py @@ -126,9 +126,10 @@ class DocstringChecker(BaseChecker): 'W9002': ('Doc string does not end with "." period', symbol + "-end-with", 'Used when a doc string does not end with a period'), - 'W9003': ('All args with their types must be mentioned in doc string', - symbol + "-with-all-args", - 'Used when not all arguments are in the doc string '), + 'W9003': + ('All args with their types must be mentioned in doc string %s', + symbol + "-with-all-args", + 'Used when not all arguments are in the doc string '), 'W9005': ('Missing docstring or docstring is too short', symbol + "-missing", 'Add docstring longer >=10'), 'W9006': ('Docstring indent error, use 4 space for indent', @@ -178,6 +179,8 @@ class DocstringChecker(BaseChecker): self.indent_style(node) def missing_doc_string(self, node): + if node.name.startswith("__") or node.name.startswith("_"): + return True if node.tolineno - node.fromlineno <= 10: return True @@ -199,12 +202,16 @@ class DocstringChecker(BaseChecker): doc = node.doc lines = doc.splitlines() + line_num = 0 for l in lines: + if line_num == 0: + continue cur_indent = len(l) - len(l.lstrip()) if cur_indent % indent != 0: self.add_message('W9006', node=node, line=node.fromlineno) return False + line_num += 1 return True @@ -320,15 +327,19 @@ class DocstringChecker(BaseChecker): return True parsed_args = doc.args + args_not_documented = set(args) - set(parsed_args) if len(args) > 0 and len(parsed_args) <= 0: - print "debug:parsed args: ", parsed_args - self.add_message('W9003', node=node, line=node.fromlineno) + self.add_message( + 'W9003', + node=node, + line=node.fromlineno, + args=list(args_not_documented)) return False for t in args: if t not in parsed_args: - print t, " with (type) not in ", parsed_args - self.add_message('W9003', node=node, line=node.fromlineno) + self.add_message( + 'W9003', node=node, line=node.fromlineno, args=[t, ]) return False return True diff --git a/tools/codestyle/pylint_pre_commit.hook b/tools/codestyle/pylint_pre_commit.hook index e7c92ba671e..150a3f5666b 100755 --- a/tools/codestyle/pylint_pre_commit.hook +++ b/tools/codestyle/pylint_pre_commit.hook @@ -7,13 +7,13 @@ DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )" export PYTHONPATH=$DIR:$PYTHONPATH # The trick to remove deleted files: https://stackoverflow.com/a/2413151 -for file in $(git diff --cached --name-status | awk '$1 != "D" {print $2}'); do +for file in $(git diff --name-status | awk '$1 != "D" {print $2}'); do pylint --disable=all --load-plugins=docstring_checker \ --enable=doc-string-one-line,doc-string-end-with,doc-string-with-all-args,doc-string-triple-quotes,doc-string-missing,doc-string-indent-error,doc-string-with-returns,doc-string-with-raises $file; TOTAL_ERRORS=$(expr $TOTAL_ERRORS + $?); done -#exit $TOTAL_ERRORS +exit $TOTAL_ERRORS #For now, just warning: -exit 0 +#exit 0 -- GitLab