未验证 提交 5098891f 编写于 作者: Z zhupengyang 提交者: GitHub

add softmax xpu kernel (#27700)

上级 65c06141
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;
template <typename DeviceContext, typename T>
class SoftmaxXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* out = context.Output<Tensor>("Out");
const int rank = x->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
PADDLE_ENFORCE_EQ(axis == -1 || axis == rank - 1, true,
platform::errors::InvalidArgument(
"xpu softmax kernel only support last dimension of x "
"(axis==-1 or axis==x_dims-1), but received axis: "
"%d, x's shape: %s.",
axis, x->dims()));
// allocate memory on device.
out->mutable_data<T>(context.GetPlace());
const int n = SizeToAxis(axis, x->dims());
const int d = SizeFromAxis(axis, x->dims());
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::softmax2d_forward(dev_ctx.x_context(), x->data<float>(),
out->data<float>(), n, d, d <= 2048);
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External("XPU API(softmax2d_forward) return wrong "
"value[%d], please check whether "
"Baidu Kunlun Card is properly installed.",
r));
}
};
template <typename DeviceContext, typename T>
class SoftmaxGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* out = context.Input<Tensor>("Out");
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
const int rank = dx->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
// allocate memory on device.
dx->mutable_data<T>(context.GetPlace());
const int n = SizeToAxis(axis, dx->dims());
const int d = SizeFromAxis(axis, dx->dims());
auto& dev_ctx = context.template device_context<DeviceContext>();
int r =
xpu::softmax2d_backward(dev_ctx.x_context(), out->data<float>(),
dout->data<float>(), dx->data<float>(), n, d);
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External("XPU API(softmax2d_backward) return wrong "
"value[%d], please check whether "
"Baidu Kunlun Card is properly installed.",
r));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
softmax, ops::SoftmaxXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
softmax_grad,
ops::SoftmaxGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif // PADDLE_WITH_XPU
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import numpy as np
import sys
import unittest
sys.path.append("..")
from op_test import OpTest
paddle.enable_static()
np.random.seed(10)
def stable_softmax(x):
"""Compute the softmax of vector x in a numerically stable way."""
# clip to shiftx, otherwise, when calc loss with
# log(exp(shiftx)), may get log(0)=INF
shiftx = (x - np.max(x)).clip(-64.)
exps = np.exp(shiftx)
return exps / np.sum(exps)
def ref_softmax(x, axis=None, dtype=None):
x_t = x.copy()
if dtype is not None:
x_t = x_t.astype(dtype)
if axis is None:
axis = -1
return np.apply_along_axis(stable_softmax, axis, x_t)
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXPUSoftmaxOp(OpTest):
def setUp(self):
self.op_type = "softmax"
self.dtype = np.float32
self.shape = [2, 3, 4, 5]
self.axis = -1
self.set_attrs()
x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
out = np.apply_along_axis(stable_softmax, self.axis, x)
self.inputs = {'X': x}
self.outputs = {'Out': out}
self.attrs = {'axis': self.axis, 'use_xpu': True}
def set_attrs(self):
pass
def test_check_output(self):
self.check_output_with_place(paddle.XPUPlace(0), atol=1e-4)
def test_check_grad(self):
self.check_grad_with_place(paddle.XPUPlace(0), ['X'], 'Out')
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXPUSoftmaxAxis3(TestXPUSoftmaxOp):
def set_attrs(self):
self.axis = 3
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXPUSoftmax2D(TestXPUSoftmaxOp):
def set_attrs(self):
self.shape = [10, 12]
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXPUSoftmax3D(TestXPUSoftmaxOp):
def set_attrs(self):
self.shape = [4, 5, 6]
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册