Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5092f529
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5092f529
编写于
2月 03, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Separate GPU and CPU implementation
上级
e0333735
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
202 addition
and
24 deletion
+202
-24
paddle/operators/layer_norm_op.cc
paddle/operators/layer_norm_op.cc
+185
-1
paddle/operators/layer_norm_op.h
paddle/operators/layer_norm_op.h
+13
-16
python/paddle/v2/fluid/tests/test_layer_norm_op.py
python/paddle/v2/fluid/tests/test_layer_norm_op.py
+4
-7
未找到文件。
paddle/operators/layer_norm_op.cc
浏览文件 @
5092f529
...
...
@@ -21,6 +21,13 @@ using Tensor = framework::Tensor;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
EigenMatrixMapRowMajor
=
Eigen
::
Map
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
template
<
typename
T
>
using
ConstEigenMatrixMapRowMajor
=
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
class
LayerNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -101,7 +108,6 @@ class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Layer Normalization.
Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
...
...
@@ -109,6 +115,75 @@ https://arxiv.org/abs/1607.06450
}
};
template
<
typename
T
>
class
LayerNormKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
input_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
EigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
EigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
auto
output_map
=
EigenMatrixMapRowMajor
<
T
>
(
output
->
data
<
T
>
(),
left
,
right
);
auto
squre
=
[](
T
ele
)
{
return
ele
*
ele
;
};
auto
add_epslion
=
[
epsilon
](
T
ele
)
{
return
ele
+
epsilon
;
};
mean_map
=
input_map
.
rowwise
().
mean
();
var_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
unaryExpr
(
squre
)
.
rowwise
()
.
mean
()
.
unaryExpr
(
add_epslion
);
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// TODO(zcd): Some thinking about output_map, is it appropriate that
// `output_map` and `input_map` point to the same memory.
auto
inv_std
=
var_map
.
unaryExpr
(
inv_std_func
);
if
(
scale
&&
bias
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
+
bias_map
.
replicate
(
left
,
1
);
}
else
if
(
scale
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
));
}
else
if
(
bias
)
{
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
+
bias_map
.
replicate
(
left
,
1
);
}
else
{
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
));
}
}
};
class
LayerNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -161,6 +236,115 @@ class LayerNormGradOp : public framework::OperatorWithKernel {
}
};
template
<
typename
T
>
class
LayerNormGradKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
x_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
d_y_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
d_y
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_bias_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_bias
->
data
<
T
>
(),
1
,
right
);
d_bias_map
=
d_y_map
.
colwise
().
sum
();
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_scale_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_scale
->
data
<
T
>
(),
1
,
right
);
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// There are two equation to compute d_scale. One uses "Y" and the other
// does not use "Y"
d_scale_map
=
((
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
var_map
.
unaryExpr
(
inv_std_func
).
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
))
.
colwise
()
.
sum
();
}
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_x_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_x
->
data
<
T
>
(),
left
,
right
);
auto
triple_product_func
=
[](
T
ele
)
{
return
ele
*
ele
*
ele
;
};
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
auto
inv_std_map
=
var_map
.
unaryExpr
(
inv_std_func
).
eval
();
// TODO(zcd): these code can be refined
if
(
d_scale
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
// dy_dx
auto
dx_end
=
inv_std_map
.
replicate
(
1
,
right
).
cwiseProduct
(
d_y_map
).
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
));
// dy_dmean_dx
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
dx_end
.
rowwise
().
sum
().
replicate
(
1
,
right
);
// dy_var_dx
auto
dvar_end_part
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
();
auto
dvar_end
=
inv_std_map
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_part
)
.
replicate
(
1
,
right
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
)).
cwiseProduct
(
dvar_end
);
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
else
{
// dy_dx
auto
dx_end
=
inv_std_map
.
replicate
(
1
,
right
).
cwiseProduct
(
d_y_map
);
// dy_dmean_dx
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
dx_end
.
rowwise
().
sum
().
replicate
(
1
,
right
);
// dy_var_dx
auto
dvar_end_part
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
();
auto
dvar_end
=
inv_std_map
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_part
)
.
replicate
(
1
,
right
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
)).
cwiseProduct
(
dvar_end
);
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
}
}
};
}
// namespace operators
}
// namespace paddle
...
...
paddle/operators/layer_norm_op.h
浏览文件 @
5092f529
...
...
@@ -78,7 +78,7 @@ class LayerNormKernel : public framework::OpKernel<T> {
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
const
auto
&
x_dims
=
x
.
dims
();
const
auto
x_dims
=
x
.
dims
();
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -87,11 +87,12 @@ class LayerNormKernel : public framework::OpKernel<T> {
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
framework
::
DDim
matrix_shape
({
left
,
right
});
x
.
Resize
(
matrix_shape
);
y
->
Resize
(
matrix_shape
);
Tensor
out
;
out
.
ShareDataWith
(
*
y
);
out
.
Resize
(
matrix_shape
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
RowwiseMean
<
DeviceContext
,
T
>
row_mean
;
...
...
@@ -101,30 +102,24 @@ class LayerNormKernel : public framework::OpKernel<T> {
// functor-> get variance
ElementwiseComputeEx
<
SubAndSquareFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubAndSquareFunctor
<
T
>
(),
y
);
row_mean
(
dev_ctx
,
*
y
,
var
);
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubAndSquareFunctor
<
T
>
(),
&
out
);
row_mean
(
dev_ctx
,
out
,
var
);
// functor-> get norm_out
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
y
);
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
&
out
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
))
,
y
);
ctx
,
&
out
,
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
&
out
);
framework
::
DDim
scale_shape
({
right
});
if
(
scale
)
{
Tensor
scale_matrix
=
*
scale
;
scale_matrix
.
Resize
(
scale_shape
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
&
scale_matrix
,
/*axis*/
1
,
MulFunctor
<
T
>
(),
y
);
ctx
,
&
out
,
scale
,
/*axis*/
1
,
MulFunctor
<
T
>
(),
&
out
);
}
if
(
bias
)
{
Tensor
bias_matrix
=
*
bias
;
bias_matrix
.
Resize
(
scale_shape
);
ElementwiseComputeEx
<
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
&
bias_matrix
,
/*axis*/
1
,
AddFunctor
<
T
>
(),
y
);
ctx
,
&
out
,
bias
,
/*axis*/
1
,
AddFunctor
<
T
>
(),
&
out
);
}
y
->
Resize
(
x_dims
);
}
};
...
...
@@ -184,6 +179,7 @@ class LayerNormGradKernel : public framework::OpKernel<T> {
if
(
d_x
)
{
framework
::
DDim
vec_shape
({
left
});
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dx_dim
=
d_x
->
dims
();
Tensor
temp_vec
;
temp_vec
.
mutable_data
<
T
>
(
vec_shape
,
ctx
.
GetPlace
());
...
...
@@ -227,6 +223,7 @@ class LayerNormGradKernel : public framework::OpKernel<T> {
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
d_x
);
d_x
->
Resize
(
dx_dim
);
}
}
};
...
...
python/paddle/v2/fluid/tests/test_layer_norm_op.py
浏览文件 @
5092f529
...
...
@@ -62,9 +62,9 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, begin_norm_axis=1):
grad_x
=
dx_end
+
d_mean
+
d_std
grad_y
.
shape
=
x_shape
x
.
shape
=
x_shape
grad_x
.
shape
,
x
.
shape
,
grad_y
.
shape
=
x_shape
,
x_shape
,
x_shape
scale
.
shape
=
scale_shape
var
.
shape
,
mean
.
shape
=
[
N
,
],
[
N
,
]
return
grad_x
,
d_scale
,
d_bias
...
...
@@ -112,10 +112,7 @@ def set_output_grad(scope, outputs, place, feed_dict=None):
class
TestLayerNormdOp
(
OpTest
):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
).
reshape
(
np_array
.
shape
),
np_array
,
atol
=
atol
),
msg
)
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
__assert_grad_close
(
self
,
tensor
,
...
...
@@ -123,7 +120,7 @@ class TestLayerNormdOp(OpTest):
name
,
place
,
max_relative_error
=
0.02
):
a
=
np
.
array
(
tensor
)
.
reshape
(
np_array
.
shape
)
a
=
np
.
array
(
tensor
)
b
=
np_array
abs_a
=
np
.
abs
(
a
)
abs_a
[
abs_a
<
1e-5
]
=
1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录