diff --git a/paddle/phi/infermeta/unary.cc b/paddle/phi/infermeta/unary.cc index e6eaa7bc3a362d70b60bbb83a4b847ae7852c3ab..773c158d380741a78db963dae19e3d722843241f 100644 --- a/paddle/phi/infermeta/unary.cc +++ b/paddle/phi/infermeta/unary.cc @@ -472,6 +472,7 @@ void CumInferMeta(const MetaTensor& x, out->set_dims(x_dims); out->set_dtype(x.dtype()); } + out->share_lod(x); } @@ -970,7 +971,7 @@ void ExpandInferMeta(const MetaTensor& x, MAX_RANK_SUPPORTED)); PADDLE_ENFORCE_GE( expand_shape.size(), - 1, + 0, phi::errors::InvalidArgument("The number of elements (%d) of 'shape' for " "must be a positive integer.", expand_shape.size())); @@ -1005,7 +1006,7 @@ void ExpandInferMeta(const MetaTensor& x, out->set_dims(make_ddim(out_shape)); out->set_dtype(x.dtype()); - if (out_shape[0] == x_dims[0]) { + if (out_rank > 0 && out_shape[0] == x_dims[0]) { out->share_lod(x); } } @@ -4097,14 +4098,23 @@ void TopKInferMeta(const MetaTensor& x, MetaConfig config) { auto input_dims = x.dims(); const int& dim_size = input_dims.size(); - PADDLE_ENFORCE_EQ( - (axis < dim_size) && (axis >= (-1 * dim_size)), - true, - phi::errors::InvalidArgument( - "the axis of topk must be [-%d, %d), but you set axis is %d", - dim_size, - dim_size, - axis)); + if (dim_size != 0) { + PADDLE_ENFORCE_EQ( + (axis < dim_size) && (axis >= (-1 * dim_size)), + true, + phi::errors::InvalidArgument( + "the axis of topk must be [-%d, %d), but you set axis is %d", + dim_size, + dim_size, + axis)); + } else { + PADDLE_ENFORCE_EQ( + (axis == dim_size) || (axis == -1), + true, + phi::errors::InvalidArgument("the axis of topk must be 0 or -1 when " + "x.dims() = 0, but you set axis is %d", + axis)); + } if (axis < 0) axis += dim_size; @@ -4122,12 +4132,13 @@ void TopKInferMeta(const MetaTensor& x, PADDLE_ENFORCE_GE( input_dims.size(), - 1, - phi::errors::InvalidArgument("input of topk must have >= 1d shape")); + 0, + phi::errors::InvalidArgument("input of topk must have >= 0d shape")); phi::DDim dims = input_dims; - - dims[axis] = k; + if (input_dims.size() > 0) { + dims[axis] = k; + } out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); diff --git a/paddle/phi/kernels/cpu/top_k_grad_kernel.cc b/paddle/phi/kernels/cpu/top_k_grad_kernel.cc index 2d02b0ab523b231d4eae1ec22f4670f5174aadc7..a65c2324cc768bf1bf0d7779d78128403a9135a8 100644 --- a/paddle/phi/kernels/cpu/top_k_grad_kernel.cc +++ b/paddle/phi/kernels/cpu/top_k_grad_kernel.cc @@ -66,6 +66,11 @@ void TopkGradKernel(const Context& dev_ctx, axis = (axis < 0) ? (in_dims.size() + axis) : axis; T* x_grad_data = dev_ctx.template Alloc(x_grad); + if (in_dims.size() == 0) { + phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, x_grad); + return; + } + if (axis + 1 == in_dims.size()) { // allocate the memory for the input_grad diff --git a/paddle/phi/kernels/cpu/top_k_kernel.cc b/paddle/phi/kernels/cpu/top_k_kernel.cc index cebe292d33951ed02536cc36a8adec81a2da5d94..5a5789effadf95da04c5e160896714bb12c4be96 100644 --- a/paddle/phi/kernels/cpu/top_k_kernel.cc +++ b/paddle/phi/kernels/cpu/top_k_kernel.cc @@ -140,7 +140,13 @@ void TopkKernel(const Context& dev_ctx, const auto* input = &x; // Get the top k elements of each row of input tensor const auto& in_dims = input->dims(); - + // 0d input x + if (in_dims.size() == 0) { + phi::Copy(dev_ctx, x, dev_ctx.GetPlace(), false, out); + dev_ctx.template Alloc(indices); + phi::funcs::set_constant(dev_ctx, indices, 0.0); + return; + } // axis < 0, cacluate the real axis if (axis < 0) { axis += in_dims.size(); diff --git a/paddle/phi/kernels/gpu/top_k_grad_kernel.cu b/paddle/phi/kernels/gpu/top_k_grad_kernel.cu index e20fec806873f1f5aa4856fc3439a4c942f96059..638d53c010ce64ca5c429ef94f9e657c6ffa1af3 100644 --- a/paddle/phi/kernels/gpu/top_k_grad_kernel.cu +++ b/paddle/phi/kernels/gpu/top_k_grad_kernel.cu @@ -47,6 +47,11 @@ void TopkGradKernel(const Context& dev_ctx, const T* out_grad_data = out_grad.data(); const int64_t* indices_data = indices.data(); + if (in_dims.size() == 0) { + phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, x_grad); + return; + } + int pre, n, post; phi::funcs::GetDims(in_dims, axis, &pre, &n, &post); diff --git a/paddle/phi/kernels/gpu/top_k_kernel.cu b/paddle/phi/kernels/gpu/top_k_kernel.cu index a455d9305d955f0b21dd6ecd3277178e7473f7bf..01bae0dd96cc5f25a1115d3b64e6f5cc5e15fb19 100644 --- a/paddle/phi/kernels/gpu/top_k_kernel.cu +++ b/paddle/phi/kernels/gpu/top_k_kernel.cu @@ -61,6 +61,14 @@ void TopkKernel(const Context& dev_ctx, const auto* input = &x; // get the input dims const auto& in_dims = input->dims(); + + // 0d input tensor + if (in_dims.size() == 0) { + phi::Copy(dev_ctx, x, dev_ctx.GetPlace(), false, out); + dev_ctx.template Alloc(indices); + phi::funcs::set_constant(dev_ctx, indices, 0.0); + return; + } // calcluate the real axis if (axis < 0) axis += in_dims.size(); diff --git a/paddle/phi/kernels/impl/expand_as_grad_kernel_impl.h b/paddle/phi/kernels/impl/expand_as_grad_kernel_impl.h index 998c54e77fe01300a2befe9ac70f1311929bada3..f0c32dd32e42f3c2880f1c4d471430c213903c0d 100644 --- a/paddle/phi/kernels/impl/expand_as_grad_kernel_impl.h +++ b/paddle/phi/kernels/impl/expand_as_grad_kernel_impl.h @@ -49,6 +49,12 @@ void ExpandAsGradKernel(const Context& context, const std::vector& target_shape, DenseTensor* in_grad) { auto x_dims = x.dims(); + + if (in_grad->dims() == out_grad.dims()) { + phi::Copy(context, out_grad, context.GetPlace(), false, in_grad); + return; + } + auto vec_in_dims = phi::vectorize(x_dims); auto diff = target_shape.size() - vec_in_dims.size(); vec_in_dims.insert(vec_in_dims.begin(), diff, 1); @@ -65,64 +71,56 @@ void ExpandAsGradKernel(const Context& context, } int dims = reduce_dims_vec.size(); - bool just_copy = true; - for (size_t i = 0; i < repeat_times.size(); i++) { - if (repeat_times[i] != 1) { - just_copy = false; + + PADDLE_ENFORCE_GE( + dims, + 0, + errors::InvalidArgument("The rank of the input 'Out@GRAD' for " + "expand_as_v2_grad op must be greater than or " + "equal to 0, but the value received is %d.", + dims)); + PADDLE_ENFORCE_LE( + dims, + MAX_RANK_SUPPORTED, + errors::InvalidArgument("The rank of the input 'Out@GRAD' for " + "expand_as_v2_grad op must be less than or equal " + "to %d, but the value received is %d.", + MAX_RANK_SUPPORTED, + dims)); + switch (dims) { + case 0: + ExpandAsBackward( + context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); break; - } - } - // no need reduce, just copy - if (just_copy) { - context.template Alloc(in_grad); - phi::Copy(context, out_grad, context.GetPlace(), false, in_grad); - } else { - PADDLE_ENFORCE_GE( - dims, - 1, - errors::InvalidArgument("The rank of the input 'Out@GRAD' for " - "expand_as_v2_grad op must be greater than or " - "equal to 1, but the value received is %d.", - dims)); - PADDLE_ENFORCE_LE(dims, - MAX_RANK_SUPPORTED, - errors::InvalidArgument( - "The rank of the input 'Out@GRAD' for " - "expand_as_v2_grad op must be less than or equal " - "to %d, but the value received is %d.", - MAX_RANK_SUPPORTED, - dims)); - switch (dims) { - case 1: - ExpandAsBackward( - context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 2: - ExpandAsBackward( - context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 3: - ExpandAsBackward( - context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 4: - ExpandAsBackward( - context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 5: - ExpandAsBackward( - context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 6: - ExpandAsBackward( - context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - default: - PADDLE_THROW(errors::InvalidArgument( - "Only support tensor with rank being between 1 and 6. But " - "received tensor's rank = %d.", - dims)); - } + case 1: + ExpandAsBackward( + context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 2: + ExpandAsBackward( + context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 3: + ExpandAsBackward( + context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 4: + ExpandAsBackward( + context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 5: + ExpandAsBackward( + context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 6: + ExpandAsBackward( + context, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + default: + PADDLE_THROW(errors::InvalidArgument( + "Only support tensor with rank being between 1 and 6. But " + "received tensor's rank = %d.", + dims)); } } diff --git a/paddle/phi/kernels/impl/expand_as_kernel_impl.h b/paddle/phi/kernels/impl/expand_as_kernel_impl.h index 717fd8ebc895069cd8733752ebfe7332cfad5213..7e3a1a6656140eb77c4e8297c11679d25f24ba7c 100755 --- a/paddle/phi/kernels/impl/expand_as_kernel_impl.h +++ b/paddle/phi/kernels/impl/expand_as_kernel_impl.h @@ -34,6 +34,10 @@ void ExpandAs(const Context& context, auto diff = target_shape.size() - vec_in_dims.size(); vec_in_dims.insert(vec_in_dims.begin(), diff, 1); std::vector repeat_times(vec_in_dims.size()); + if (Rank == 0) { + phi::Copy(context, x, context.GetPlace(), false, out); + return; + } for (size_t i = 0; i < vec_in_dims.size(); ++i) { PADDLE_ENFORCE_NE( target_shape[i], @@ -108,7 +112,7 @@ void ExpandAsKernel(const Context& ctx, rank)); PADDLE_ENFORCE_GE( rank, - 1, + 0, errors::InvalidArgument("The rank (%d) of the input 'x' for " "expand_as_v2 op must be positive.", rank)); @@ -133,6 +137,9 @@ void ExpandAsKernel(const Context& ctx, } switch (target_rank) { + case 0: + ExpandAs(ctx, x, real_target_shape, out); + break; case 1: ExpandAs(ctx, x, real_target_shape, out); break; diff --git a/paddle/phi/kernels/impl/expand_grad_kernel_impl.h b/paddle/phi/kernels/impl/expand_grad_kernel_impl.h index 31cb87da25f65517ba8b83ca4d5f7782d895cbf7..700f64863e4feea5bc86729bceeb5e6d81750c9c 100644 --- a/paddle/phi/kernels/impl/expand_grad_kernel_impl.h +++ b/paddle/phi/kernels/impl/expand_grad_kernel_impl.h @@ -54,6 +54,11 @@ void ExpandGradKernel(const Context& ctx, DenseTensor* in_grad) { auto expand_shape = shape.GetData(); auto x_dims = x.dims(); + + if (in_grad->dims() == out_grad.dims()) { + phi::Copy(ctx, out_grad, ctx.GetPlace(), false, in_grad); + return; + } auto vec_in_dims = phi::vectorize(x_dims); auto diff = expand_shape.size() - vec_in_dims.size(); vec_in_dims.insert(vec_in_dims.begin(), diff, 1); @@ -79,63 +84,55 @@ void ExpandGradKernel(const Context& ctx, int dims = reduce_dims_vec.size(); - bool just_copy = true; - for (size_t i = 0; i < repeat_times.size(); i++) { - if (repeat_times[i] != 1) { - just_copy = false; + PADDLE_ENFORCE_GE( + dims, + 0, + phi::errors::InvalidArgument("The rank of the input 'Out@GRAD' for " + "expand_v2_grad op must be greater than or " + "equal to 0, but the value received is %d.", + dims)); + PADDLE_ENFORCE_LE(dims, + MAX_RANK_SUPPORTED, + phi::errors::InvalidArgument( + "The rank of the input 'Out@GRAD' for " + "expand_v2_grad op must be less than or equal " + "to %d, but the value received is %d.", + MAX_RANK_SUPPORTED, + dims)); + switch (dims) { + case 0: + ExpandBackward( + ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); break; - } - } - // no need reduce, just copy - if (just_copy) { - phi::Copy(ctx, out_grad, ctx.GetPlace(), false, in_grad); - } else { - PADDLE_ENFORCE_GE(dims, - 1, - phi::errors::InvalidArgument( - "The rank of the input 'Out@GRAD' for " - "expand_v2_grad op must be greater than or " - "equal to 1, but the value received is %d.", - dims)); - PADDLE_ENFORCE_LE(dims, - MAX_RANK_SUPPORTED, - phi::errors::InvalidArgument( - "The rank of the input 'Out@GRAD' for " - "expand_v2_grad op must be less than or equal " - "to %d, but the value received is %d.", - MAX_RANK_SUPPORTED, - dims)); - switch (dims) { - case 1: - ExpandBackward( - ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 2: - ExpandBackward( - ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 3: - ExpandBackward( - ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 4: - ExpandBackward( - ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 5: - ExpandBackward( - ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - case 6: - ExpandBackward( - ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); - break; - default: - PADDLE_THROW(phi::errors::InvalidArgument( - "Only support tensor with rank being between 1 and 6. But " - "received tensor's rank = %d.", - dims)); - } + case 1: + ExpandBackward( + ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 2: + ExpandBackward( + ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 3: + ExpandBackward( + ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 4: + ExpandBackward( + ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 5: + ExpandBackward( + ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + case 6: + ExpandBackward( + ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); + break; + default: + PADDLE_THROW(phi::errors::InvalidArgument( + "Only support tensor with rank being between 1 and 6. But " + "received tensor's rank = %d.", + dims)); } } diff --git a/paddle/phi/kernels/impl/expand_kernel_impl.h b/paddle/phi/kernels/impl/expand_kernel_impl.h index 54fd1100ab332c0ed783ed6f1527c4dafec429e1..4738088781de9df1ac9c74edb85bfce5f7e835c7 100644 --- a/paddle/phi/kernels/impl/expand_kernel_impl.h +++ b/paddle/phi/kernels/impl/expand_kernel_impl.h @@ -35,6 +35,10 @@ void Expand(const Context& ctx, auto diff = expand_shape.size() - vec_in_dims.size(); vec_in_dims.insert(vec_in_dims.begin(), diff, 1); std::vector repeat_times(vec_in_dims.size()); + if (Rank == 0) { + phi::Copy(ctx, x, ctx.GetPlace(), false, out); + return; + } for (size_t i = 0; i < vec_in_dims.size(); ++i) { PADDLE_ENFORCE_NE( expand_shape[i], @@ -74,7 +78,6 @@ void Expand(const Context& ctx, repeat_times[i] = 1; } } - Eigen::DSizes bcast_dims; for (size_t i = 0; i < repeat_times.size(); ++i) { bcast_dims[i] = repeat_times[i]; @@ -112,7 +115,7 @@ void ExpandKernel(const Context& ctx, auto rank = x.dims().size(); PADDLE_ENFORCE_GE( rank, - 1, + 0, phi::errors::InvalidArgument( "The rank of the input 'X' for expand_v2 op must be positive, " "but the value received is %d.", @@ -145,6 +148,9 @@ void ExpandKernel(const Context& ctx, MAX_RANK_SUPPORTED)); rank = std::max(rank, static_cast(shape_size)); switch (rank) { + case 0: + Expand(ctx, x, shape, out); + break; case 1: Expand(ctx, x, shape, out); break; diff --git a/python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py b/python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py index 1e6a3b41c81d8e3266f0c958cd149a61ebdbfb78..fd48cd372262470190fbefca2f276e85d59205fc 100644 --- a/python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py +++ b/python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py @@ -559,6 +559,210 @@ class TestSundryAPI(unittest.TestCase): paddle.disable_static() self.x = paddle.rand([]) + def test_expand(self): + # case1 + x = paddle.full([], 1, 'float32') + x.stop_gradient = False + out = paddle.expand(x, shape=[1]) + out.retain_grads() + out.backward() + + self.assertEqual(out.shape, [1]) + np.testing.assert_allclose(out, 1.0) + self.assertEqual(x.grad.shape, []) + np.testing.assert_allclose(x.grad, 1.0) + self.assertEqual(out.grad.shape, [1]) + np.testing.assert_allclose(out.grad, 1.0) + + # case2 + x1 = paddle.full([], 1, 'float32') + x1.stop_gradient = False + out1 = paddle.expand(x1, shape=[]) + out1.retain_grads() + out1.backward() + + self.assertEqual(out1.shape, []) + np.testing.assert_allclose(out1, 1.0) + self.assertEqual(x1.grad.shape, []) + np.testing.assert_allclose(x1.grad, 1.0) + self.assertEqual(out1.grad.shape, []) + np.testing.assert_allclose(out1.grad, 1.0) + + # case3 + x2 = paddle.full([], 1, 'float32') + x2.stop_gradient = False + out2 = paddle.expand(x2, shape=[1, 1]) + out2.retain_grads() + out2.backward() + + self.assertEqual(out2.shape, [1, 1]) + np.testing.assert_allclose(out2, 1.0) + self.assertEqual(x2.grad.shape, []) + np.testing.assert_allclose(x2.grad, 1.0) + self.assertEqual(out2.grad.shape, [1, 1]) + np.testing.assert_allclose(out2.grad, 1.0) + + # case4 + x3 = paddle.full([], 1, 'float32') + x3.stop_gradient = False + out3 = paddle.expand(x3, shape=[3, 3]) + out3.retain_grads() + out3.backward() + + self.assertEqual(out3.shape, [3, 3]) + np.testing.assert_allclose(out3, 1.0) + self.assertEqual(x3.grad.shape, []) + np.testing.assert_allclose(x3.grad, 9.0) + self.assertEqual(out3.grad.shape, [3, 3]) + np.testing.assert_allclose(out3.grad, 1.0) + + def test_expand_as(self): + x = paddle.full([], 1, 'float32') + x.stop_gradient = False + y = paddle.full([], 1, 'float32') + y.stop_gradient = False + out = paddle.expand_as(x, y) + out.backward() + self.assertEqual(x.shape, []) + self.assertEqual(x.item(), 1.0) + self.assertEqual(x.grad.shape, []) + self.assertEqual(x.grad.item(), 1.0) + self.assertEqual(out.shape, []) + self.assertEqual(out.item(), 1.0) + self.assertEqual(out.grad, None) + + x1 = paddle.full([], 1, 'float32') + x1.stop_gradient = False + y1 = paddle.full([1], 1, 'float32') + out1 = paddle.expand_as(x1, y1) + out1.backward() + self.assertEqual(x1.shape, []) + self.assertEqual(x1.item(), 1.0) + self.assertEqual(x1.grad.shape, []) + self.assertEqual(x1.grad.item(0), 1.0) + self.assertEqual(out1.shape, [1]) + self.assertEqual(out1.item(0), 1.0) + self.assertEqual(out1.grad, None) + + x2 = paddle.full([], 1, 'float32') + x2.stop_gradient = False + y2 = paddle.full([3, 3], 1, 'float32') + out2 = paddle.expand_as(x2, y2) + out2.backward() + self.assertEqual(x2.shape, []) + self.assertEqual(x2.item(), 1.0) + self.assertEqual(x2.grad.shape, []) + self.assertEqual(x2.grad.item(0), 9.0) + self.assertEqual(out2.shape, [3, 3]) + self.assertEqual(out2.item(0), 1.0) + self.assertEqual(out2.grad, None) + + def test_top_k(self): + x = paddle.full([], 1, 'float32') + x.stop_gradient = False + out, indices = paddle.topk(x, k=1, axis=0) + out.retain_grads() + out.backward() + self.assertEqual(indices.shape, []) + self.assertEqual(indices.item(), 0) + self.assertEqual(x.shape, []) + self.assertEqual(x.item(), 1.0) + self.assertEqual(x.grad.shape, []) + self.assertEqual(x.grad.item(0), 1.0) + self.assertEqual(out.shape, []) + self.assertEqual(out.item(), 1.0) + self.assertEqual(out.grad, 1.0) + + x1 = paddle.full([], 1, 'float32') + x1.stop_gradient = False + out1, indices1 = paddle.topk(x1, k=1, axis=-1) + out1.retain_grads() + out1.backward() + self.assertEqual(indices1.shape, []) + self.assertEqual(indices1.item(), 0) + self.assertEqual(x1.shape, []) + self.assertEqual(x1.item(), 1.0) + self.assertEqual(x.grad.shape, []) + self.assertEqual(x.grad.item(0), 1.0) + self.assertEqual(out1.shape, []) + self.assertEqual(out1.item(), 1.0) + self.assertEqual(out1.grad, 1.0) + + with self.assertRaises(ValueError): + tmp = paddle.topk(x1, k=1, axis=2) + + def test_broadcast_to(self): + x = paddle.full([], 1, 'float32') + x.stop_gradient = False + out = paddle.broadcast_to(x, shape=[1]) + out.retain_grads() + out.backward() + + self.assertEqual(out.shape, [1]) + np.testing.assert_allclose(out, 1.0) + self.assertEqual(x.grad.shape, []) + np.testing.assert_allclose(x.grad, 1.0) + self.assertEqual(out.grad.shape, [1]) + np.testing.assert_allclose(out.grad, 1.0) + + # case2 + x1 = paddle.full([], 1, 'float32') + x1.stop_gradient = False + out1 = paddle.broadcast_to(x1, shape=[]) + out1.retain_grads() + out1.backward() + + self.assertEqual(out1.shape, []) + np.testing.assert_allclose(out1, 1.0) + self.assertEqual(x1.grad.shape, []) + np.testing.assert_allclose(x1.grad, 1.0) + self.assertEqual(out1.grad.shape, []) + np.testing.assert_allclose(out1.grad, 1.0) + + # case3 + x2 = paddle.full([], 1, 'float32') + x2.stop_gradient = False + out2 = paddle.broadcast_to(x2, shape=[1, 1]) + out2.retain_grads() + out2.backward() + + self.assertEqual(out2.shape, [1, 1]) + np.testing.assert_allclose(out2, 1.0) + self.assertEqual(x2.grad.shape, []) + np.testing.assert_allclose(x2.grad, 1.0) + self.assertEqual(out2.grad.shape, [1, 1]) + np.testing.assert_allclose(out2.grad, 1.0) + + # case4 + x3 = paddle.full([], 1, 'float32') + x3.stop_gradient = False + out3 = paddle.broadcast_to(x3, shape=[3, 3]) + out3.retain_grads() + out3.backward() + + self.assertEqual(out3.shape, [3, 3]) + np.testing.assert_allclose(out3, 1.0) + self.assertEqual(x3.grad.shape, []) + np.testing.assert_allclose(x3.grad, 9.0) + self.assertEqual(out3.grad.shape, [3, 3]) + np.testing.assert_allclose(out3.grad, 1.0) + + def test_broadcast_shape(self): + x = [] + y = [3, 5] + out = paddle.broadcast_shape(x, y) + self.assertEqual(out, [3, 5]) + + x = [3, 5] + y = [] + out = paddle.broadcast_shape(x, y) + self.assertEqual(out, [3, 5]) + + x = [] + y = [] + out = paddle.broadcast_shape(x, y) + self.assertEqual(out, []) + def test_argmin(self): x = paddle.rand([]) out1 = paddle.argmin(x, 0) @@ -1673,6 +1877,200 @@ class TestSundryAPIStatic(unittest.TestCase): self.exe = paddle.static.Executor() @prog_scope() + def test_expand(self): + x = paddle.full([], 1, 'float32') + x.stop_gradient = False + out = paddle.expand(x, shape=[1]) + paddle.static.append_backward(out.sum()) + + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x, out, x.grad_name, out.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, (1,)) + self.assertEqual(res[1], 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 1.0) + self.assertEqual(res[3].shape, (1,)) + self.assertEqual(res[3], 1.0) + + x1 = paddle.full([], 1, 'float32') + x1.stop_gradient = False + out1 = paddle.expand(x1, shape=[]) + paddle.static.append_backward(out1.sum()) + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x1, out1, x1.grad_name, out1.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, ()) + self.assertEqual(res[1], 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 1.0) + self.assertEqual(res[3].shape, ()) + self.assertEqual(res[3], 1.0) + + x2 = paddle.full([], 1, 'float32') + x2.stop_gradient = False + out2 = paddle.expand(x2, shape=[3, 3]) + paddle.static.append_backward(out2.sum()) + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x2, out2, x2.grad_name, out2.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, (3, 3)) + self.assertEqual(res[1].any(), 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 9) + self.assertEqual(res[3].shape, (3, 3)) + self.assertEqual(res[3].any(), 1.0) + + @prog_scope() + def test_expand_as(self): + x = paddle.full([], 1, 'float32') + x.stop_gradient = False + y = paddle.full([], 1, 'float32') + y.stop_gradient = False + out = paddle.expand_as(x, y) + paddle.static.append_backward(out.sum()) + + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x, out, x.grad_name, out.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, ()) + self.assertEqual(res[1], 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 1.0) + self.assertEqual(res[3].shape, ()) + self.assertEqual(res[3], 1.0) + + x1 = paddle.full([], 1, 'float32') + x1.stop_gradient = False + y1 = paddle.full([1], 1, 'float32') + y1.stop_gradient = False + out1 = paddle.expand_as(x1, y1) + paddle.static.append_backward(out1.sum()) + + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x1, out1, x1.grad_name, out1.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, (1,)) + self.assertEqual(res[1], 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 1.0) + self.assertEqual(res[3].shape, (1,)) + self.assertEqual(res[3], 1.0) + + x2 = paddle.full([], 1, 'float32') + x2.stop_gradient = False + y2 = paddle.full([3, 3], 1, 'float32') + y2.stop_gradient = False + out2 = paddle.expand_as(x2, y2) + paddle.static.append_backward(out2.sum()) + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x2, out2, x2.grad_name, out2.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, (3, 3)) + self.assertEqual(res[1].any(), 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 9) + self.assertEqual(res[3].shape, (3, 3)) + self.assertEqual(res[3].any(), 1.0) + + @prog_scope() + def test_top_k(self): + x = paddle.full([], 1, 'float32') + x.stop_gradient = False + out, indices = paddle.topk(x, k=1, axis=0) + paddle.static.append_backward(out.sum()) + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x, out, indices, x.grad_name, out.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, ()) + self.assertEqual(res[1], 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 0.0) + self.assertEqual(res[3].shape, ()) + self.assertEqual(res[3], 1.0) + self.assertEqual(res[4].shape, ()) + self.assertEqual(res[4], 1.0) + + x1 = paddle.full([], 1, 'float32') + x1.stop_gradient = False + out1, indices1 = paddle.topk(x1, k=1, axis=-1) + paddle.static.append_backward(out1.sum()) + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x1, out1, indices1, x1.grad_name, out1.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, ()) + self.assertEqual(res[1], 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 0.0) + self.assertEqual(res[3].shape, ()) + self.assertEqual(res[3], 1.0) + self.assertEqual(res[4].shape, ()) + self.assertEqual(res[4], 1.0) + + with self.assertRaises(ValueError): + tmp = paddle.topk(x1, k=1, axis=2) + + @prog_scope() + def test_broadcast_to(self): + x = paddle.full([], 1, 'float32') + x.stop_gradient = False + out = paddle.broadcast_to(x, shape=[1]) + paddle.static.append_backward(out.sum()) + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x, out, x.grad_name, out.grad_name] + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, (1,)) + self.assertEqual(res[1], 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 1.0) + self.assertEqual(res[3].shape, (1,)) + self.assertEqual(res[3], 1.0) + + x1 = paddle.full([], 1, 'float32') + x1.stop_gradient = False + out1 = paddle.broadcast_to(x1, shape=[]) + paddle.static.append_backward(out1.sum()) + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, fetch_list=[x1, out1, x1.grad_name, out1.grad_name] + ) + + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[0], 1.0) + self.assertEqual(res[1].shape, ()) + self.assertEqual(res[1], 1.0) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[2], 1.0) + self.assertEqual(res[3].shape, ()) + self.assertEqual(res[3], 1.0) + def test_argmin(self): x = paddle.rand([]) out1 = paddle.argmin(x, 0) diff --git a/python/paddle/tensor/manipulation.py b/python/paddle/tensor/manipulation.py index 35293a30a0e5e6ed39ed4712a6bd63002603ecb9..e2325fda753a1aae749988429b7a10acf1520ff2 100644 --- a/python/paddle/tensor/manipulation.py +++ b/python/paddle/tensor/manipulation.py @@ -3192,7 +3192,7 @@ def expand_as(x, y, name=None): Expand the input tensor ``x`` to the same shape as the input tensor ``y``. - Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1. + Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 0. Args: x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64. @@ -3252,13 +3252,13 @@ def broadcast_to(x, shape, name=None): Broadcast the input tensor to a given shape. - Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1. + Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 0. Args: x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64. shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements - should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. + should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. The value -1 in shape means keeping the corresponding dimension unchanged. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: @@ -3280,13 +3280,13 @@ def broadcast_to(x, shape, name=None): if isinstance(shape, Variable): assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.' else: + type_tuple = (int, np.int32, np.int64) for elem in shape: if isinstance(elem, Variable): assert ( len(elem.shape) == 1 ), 'Elements in shape must be 1-D Tensors or integers.' else: - type_tuple = (int, np.int32, np.int64) assert isinstance( elem, type_tuple ), 'Elements in shape must be 1-D Tensors or integers.' @@ -3346,12 +3346,12 @@ def expand(x, shape, name=None): Expand the input tensor to a given shape. - Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1. + Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 0. Args: x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64. shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements - should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. + should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. The value -1 in shape means keeping the corresponding dimension unchanged. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .