Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4faac179
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4faac179
编写于
9月 08, 2023
作者:
Y
Yichen Zhang
提交者:
GitHub
9月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add elementwise backward rule (#56506)
上级
fa1d0e39
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
333 addition
and
10 deletion
+333
-10
paddle/fluid/distributed/auto_parallel/spmd_rules/elementwise_spmd_rule.cc
...ributed/auto_parallel/spmd_rules/elementwise_spmd_rule.cc
+81
-8
paddle/fluid/distributed/auto_parallel/spmd_rules/elementwise_spmd_rule.h
...tributed/auto_parallel/spmd_rules/elementwise_spmd_rule.h
+2
-1
test/auto_parallel/spmd_rules/test_elementwise_rule.py
test/auto_parallel/spmd_rules/test_elementwise_rule.py
+250
-1
未找到文件。
paddle/fluid/distributed/auto_parallel/spmd_rules/elementwise_spmd_rule.cc
浏览文件 @
4faac179
...
...
@@ -25,7 +25,7 @@ ElementwiseSPMDRule::InferForward(
const
std
::
vector
<
DistTensorSpec
>&
input_specs
,
const
paddle
::
framework
::
AttributeMap
&
attrs
)
{
// step0: Verify Input Args Based on Elementwise Logic
int64_t
ninputs
=
static_cast
<
int64_t
>
(
input_specs
.
size
()
);
int64_t
ninputs
=
input_specs
.
size
(
);
PADDLE_ENFORCE_GT
(
ninputs
,
0
,
...
...
@@ -39,7 +39,7 @@ ElementwiseSPMDRule::InferForward(
std
::
vector
<
std
::
string
>
input_axes_vec
;
int64_t
max_ndim
=
0
;
for
(
int64_t
i
=
0
;
i
<
ninputs
;
++
i
)
{
int64_t
ndim
=
static_cast
<
int64_t
>
(
input_specs
[
i
].
shape
().
size
()
);
int64_t
ndim
=
input_specs
[
i
].
shape
().
size
(
);
if
(
ndim
>
max_ndim
)
{
max_ndim
=
ndim
;
}
...
...
@@ -49,7 +49,7 @@ ElementwiseSPMDRule::InferForward(
std
::
vector
<
int64_t
>
broadcast_axis_count
(
max_ndim
,
0
);
for
(
int64_t
i
=
0
;
i
<
ninputs
;
++
i
)
{
std
::
vector
<
int64_t
>
shape
=
input_specs
[
i
].
shape
();
int64_t
ndim
=
s
tatic_cast
<
int64_t
>
(
shape
.
size
()
);
int64_t
ndim
=
s
hape
.
size
(
);
int64_t
start_dim
=
max_ndim
-
ndim
;
std
::
string
axes_notation
=
GetBroadcastAxes
(
ndim
,
max_ndim
,
alphabet
);
if
(
ninputs
>
1
)
{
...
...
@@ -108,8 +108,8 @@ ElementwiseSPMDRule::InferForward(
new_input_dist_attrs
.
emplace_back
(
dist_attr
);
}
// step
2.4
: handle partial
//
Step2.3.2
handle input tensor partial (TODO)
// step
3
: handle partial
// handle input tensor partial (TODO)
VLOG
(
4
)
<<
"ElementwiseSPMDRule InferForward:"
;
for
(
int64_t
i
=
0
;
i
<
ninputs
;
i
++
)
{
VLOG
(
4
)
<<
"Input"
<<
std
::
to_string
(
i
)
<<
" shape: ["
...
...
@@ -127,12 +127,85 @@ ElementwiseSPMDRule::InferForward(
std
::
pair
<
std
::
vector
<
TensorDistAttr
>
,
std
::
vector
<
TensorDistAttr
>>
ElementwiseSPMDRule
::
InferBackward
(
const
std
::
vector
<
DistTensorSpec
>&
input_specs
,
const
std
::
vector
<
DistTensorSpec
>&
output_specs
,
const
paddle
::
framework
::
AttributeMap
&
attrs
)
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"InferBackward of ElementwiseSPMDRule is NOT implemented yet."
));
// step0: Verify Input Args Based on Elementwise Logic
int64_t
ninputs
=
input_specs
.
size
();
int64_t
noutputs
=
output_specs
.
size
();
PADDLE_ENFORCE_GT
(
ninputs
,
0
,
phi
::
errors
::
InvalidArgument
(
"The size of InputSpec in elementwise must "
"be greater than 0, but got [%d]."
,
ninputs
));
PADDLE_ENFORCE_EQ
(
noutputs
,
1
,
phi
::
errors
::
InvalidArgument
(
"The size of OutputSpec in elementwise must "
"be equal to 1, but got [%d]."
,
noutputs
));
VerifySpecs
(
output_specs
,
"elementwise_backward"
);
// step1: Build Einsum Notation
std
::
string
alphabet
=
"abcdefghijklmnopqrstuvwxyz"
;
std
::
vector
<
std
::
string
>
input_axes_vec
;
int64_t
output_ndim
=
output_specs
[
0
].
shape
().
size
();
std
::
string
output_axes
=
GetBroadcastAxes
(
output_ndim
,
output_ndim
,
alphabet
);
// get einsum notation for each input, deal with broadcast
for
(
int64_t
i
=
0
;
i
<
ninputs
;
++
i
)
{
const
std
::
vector
<
int64_t
>&
shape
=
input_specs
[
i
].
shape
();
int64_t
ndim
=
shape
.
size
();
int64_t
start_dim
=
output_ndim
-
ndim
;
std
::
string
axes_notation
=
GetBroadcastAxes
(
ndim
,
output_ndim
,
alphabet
);
if
(
ninputs
>
1
)
{
for
(
int64_t
idim
=
0
;
idim
<
output_ndim
;
idim
++
)
{
// deal with the broadcast axes
if
(
idim
>=
start_dim
&&
shape
[
idim
-
start_dim
]
==
1
)
{
// mark the broadcast axis to a special "1"
axes_notation
[
idim
-
start_dim
]
=
'1'
;
}
}
}
input_axes_vec
.
emplace_back
(
axes_notation
);
}
// step2: Sharding Propogation
// step2.1: get dim mapping for each output axis
std
::
unordered_map
<
std
::
string
,
int64_t
>
axis_to_dim_map
=
ShardingMergeForTensors
({{
output_axes
,
output_specs
[
0
].
dims_mapping
()}});
// step2.2: infer input dims mappings from output dims mapping
// and get the input distributed attributes to return
std
::
vector
<
TensorDistAttr
>
input_dist_attrs
;
std
::
vector
<
TensorDistAttr
>
output_dist_attrs
;
for
(
int64_t
i
=
0
;
i
<
ninputs
;
++
i
)
{
const
DistTensorSpec
&
spec
=
input_specs
[
i
];
TensorDistAttr
dist_attr
(
spec
.
dist_attr
());
std
::
vector
<
int64_t
>
dims_mapping
=
GetDimsMappingForAxes
(
input_axes_vec
[
i
],
axis_to_dim_map
);
dist_attr
.
set_dims_mapping
(
dims_mapping
);
input_dist_attrs
.
emplace_back
(
dist_attr
);
}
output_dist_attrs
.
emplace_back
(
output_specs
[
0
].
dist_attr
());
// step3: handle partial (TODO)
VLOG
(
4
)
<<
"ElementwiseSPMDRule InferBackward:"
;
VLOG
(
4
)
<<
"Output shape: ["
<<
str_join
(
output_specs
[
0
].
shape
())
<<
"] dims_mapping: ["
<<
str_join
(
output_specs
[
0
].
dims_mapping
())
<<
"]"
;
for
(
int64_t
i
=
0
;
i
<
ninputs
;
i
++
)
{
VLOG
(
4
)
<<
"Input"
<<
std
::
to_string
(
i
)
<<
" shape: ["
<<
str_join
(
input_specs
[
i
].
shape
())
<<
"] "
<<
"dims_mapping: ["
<<
str_join
(
input_dist_attrs
[
i
].
dims_mapping
())
<<
"]"
;
}
return
{};
return
{
input_dist_attrs
,
output_dist_attrs
};
}
}
// namespace auto_parallel
...
...
paddle/fluid/distributed/auto_parallel/spmd_rules/elementwise_spmd_rule.h
浏览文件 @
4faac179
...
...
@@ -32,7 +32,8 @@ class ElementwiseSPMDRule : public SPMDRuleBase {
const
paddle
::
framework
::
AttributeMap
&
attrs
)
override
;
std
::
pair
<
std
::
vector
<
TensorDistAttr
>
,
std
::
vector
<
TensorDistAttr
>>
InferBackward
(
const
std
::
vector
<
DistTensorSpec
>&
output_specs
,
InferBackward
(
const
std
::
vector
<
DistTensorSpec
>&
input_specs
,
const
std
::
vector
<
DistTensorSpec
>&
output_specs
,
const
paddle
::
framework
::
AttributeMap
&
attrs
)
override
;
};
}
// namespace auto_parallel
...
...
test/auto_parallel/spmd_rules/test_elementwise_rule.py
浏览文件 @
4faac179
...
...
@@ -40,6 +40,8 @@ class TestElementwiseSPMDRule(unittest.TestCase):
y_tensor_dist_attr
.
process_mesh
=
process_mesh
self
.
y_dist_tensor_spec
=
DistTensorSpec
(
y_shape
,
y_tensor_dist_attr
)
self
.
out_dist_tensor_spec
=
DistTensorSpec
(
self
.
x_dist_tensor_spec
)
self
.
attrs
=
{}
def
test_single_mesh_dim
(
self
):
...
...
@@ -87,7 +89,7 @@ class TestElementwiseSPMDRule(unittest.TestCase):
self
.
x_dist_tensor_spec
.
set_dims_mapping
([
-
1
,
0
])
result_dist_attrs
=
self
.
rule
.
infer_forward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
self
.
attrs
[
self
.
x_dist_tensor_spec
],
self
.
attrs
)
infered_input_dist_attrs
=
result_dist_attrs
[
0
]
infered_output_dist_attrs
=
result_dist_attrs
[
1
]
...
...
@@ -309,6 +311,253 @@ class TestElementwiseSPMDRule(unittest.TestCase):
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
0
,
-
1
,
1
]
)
def
test_backward_single_mesh_dim
(
self
):
# [0, -1] --> [0, -1], [0, -1], [0, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
0
,
-
1
])
result_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
result_dist_attrs
[
0
]
infered_output_dist_attrs
=
result_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
0
,
-
1
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
0
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
0
,
-
1
])
# [-1, -1] --> [-1, -1], [-1, -1], [-1, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
-
1
,
-
1
])
result_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
result_dist_attrs
[
0
]
infered_output_dist_attrs
=
result_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
1
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
-
1
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
1
])
# [-1, 0]--> [-1, 0], [-1, 0] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
-
1
,
0
])
result_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
)
infered_input_dist_attrs
=
result_dist_attrs
[
0
]
infered_output_dist_attrs
=
result_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
0
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
0
])
def
test_backward_single_mesh_dim_broadcast
(
self
):
self
.
x_dist_tensor_spec
.
shape
=
[
64
,
36
,
12
]
self
.
y_dist_tensor_spec
.
shape
=
[
12
]
self
.
out_dist_tensor_spec
.
shape
=
[
64
,
36
,
12
]
# [0, -1, -1] --> [0, -1, -1], [-1], [0, -1, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
0
,
-
1
,
-
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
len
(
resulted_dist_attrs
),
2
)
self
.
assertEqual
(
len
(
infered_input_dist_attrs
),
2
)
self
.
assertEqual
(
len
(
infered_output_dist_attrs
),
1
)
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
0
,
-
1
,
-
1
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
0
,
-
1
,
-
1
])
# [-1, 0, -1] --> [-1, 0, -1], [-1], [-1, 0, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
-
1
,
0
,
-
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
0
,
-
1
])
self
.
assertEqual
((
infered_input_dist_attrs
[
1
].
dims_mapping
),
[
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
0
,
-
1
])
# [-1, -1, 0] --> [-1, -1, 0], [0], [-1, -1, 0] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
-
1
,
-
1
,
0
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
1
,
0
])
self
.
assertEqual
((
infered_input_dist_attrs
[
1
].
dims_mapping
),
[
0
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
1
,
0
])
self
.
x_dist_tensor_spec
.
shape
=
[
64
,
36
,
12
]
self
.
y_dist_tensor_spec
.
shape
=
[
1
,
12
]
self
.
out_dist_tensor_spec
.
shape
=
[
64
,
36
,
12
]
# [-1, 0, -1] --> [-1, 0, -1], [-1, -1], [-1, 0, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
-
1
,
0
,
-
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
0
,
-
1
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
-
1
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
0
,
-
1
])
self
.
x_dist_tensor_spec
.
shape
=
[
64
,
1
,
1
,
12
]
self
.
y_dist_tensor_spec
.
shape
=
[
64
,
32
,
12
]
self
.
out_dist_tensor_spec
.
shape
=
[
64
,
64
,
32
,
12
]
# [0, -1, -1, -1] --> [0, -1, -1, -1], [-1, -1, -1], [0, -1, -1, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
0
,
-
1
,
-
1
,
-
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
0
,
-
1
,
-
1
,
-
1
]
)
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
-
1
,
-
1
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
0
,
-
1
,
-
1
,
-
1
]
)
# [-1, 0, -1, -1] --> [-1, -1, -1, -1], [0, -1, -1], [-1, 0, -1, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
-
1
,
0
,
-
1
,
-
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
1
,
-
1
,
-
1
]
)
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
0
,
-
1
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
0
,
-
1
,
-
1
]
)
def
test_backward_multi_mesh_dim
(
self
):
process_mesh
=
auto
.
ProcessMesh
([[
0
,
1
,
2
],
[
3
,
4
,
5
]])
self
.
x_dist_tensor_spec
.
set_process_mesh
(
process_mesh
)
self
.
y_dist_tensor_spec
.
set_process_mesh
(
process_mesh
)
self
.
x_dist_tensor_spec
.
shape
=
[
96
,
24
,
48
]
self
.
y_dist_tensor_spec
.
shape
=
[
96
,
24
,
48
]
self
.
out_dist_tensor_spec
.
shape
=
[
96
,
24
,
48
]
# [0, 1, -1] --> [0, 1, -1], [0, 1, -1], [0, 1, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
0
,
1
,
-
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
len
(
resulted_dist_attrs
),
2
)
self
.
assertEqual
(
len
(
infered_input_dist_attrs
),
2
)
self
.
assertEqual
(
len
(
infered_output_dist_attrs
),
1
)
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
0
,
1
,
-
1
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
0
,
1
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
0
,
1
,
-
1
])
def
test_backward_multi_mesh_dim_broadcast
(
self
):
process_mesh
=
auto
.
ProcessMesh
([[
0
,
1
,
2
],
[
3
,
4
,
5
]])
self
.
x_dist_tensor_spec
.
set_process_mesh
(
process_mesh
)
self
.
y_dist_tensor_spec
.
set_process_mesh
(
process_mesh
)
self
.
x_dist_tensor_spec
.
shape
=
[
96
,
24
,
48
]
self
.
y_dist_tensor_spec
.
shape
=
[
48
]
self
.
out_dist_tensor_spec
.
shape
=
[
96
,
24
,
48
]
# [0, -1, 1] --> [0, -1, 1], [1], [0, -1, 1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
0
,
-
1
,
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
len
(
resulted_dist_attrs
),
2
)
self
.
assertEqual
(
len
(
infered_input_dist_attrs
),
2
)
self
.
assertEqual
(
len
(
infered_output_dist_attrs
),
1
)
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
0
,
-
1
,
1
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
0
,
-
1
,
1
])
# [0, 1, -1] --> [0, 1, -1], [-1], [0, 1, -1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
0
,
1
,
-
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
0
,
1
,
-
1
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
0
,
1
,
-
1
])
self
.
x_dist_tensor_spec
.
shape
=
[
96
,
1
,
1
,
48
]
self
.
y_dist_tensor_spec
.
shape
=
[
96
,
24
,
48
]
self
.
out_dist_tensor_spec
.
shape
=
[
96
,
96
,
24
,
48
]
# [-1, 0, -1, 1] --> [-1, -1, -1, 1], [0, -1, 1], [-1, 0, -1, 1] (output --> inputs, output)
self
.
out_dist_tensor_spec
.
set_dims_mapping
([
-
1
,
0
,
-
1
,
1
])
resulted_dist_attrs
=
self
.
rule
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
y_dist_tensor_spec
],
[
self
.
out_dist_tensor_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
resulted_dist_attrs
[
0
]
infered_output_dist_attrs
=
resulted_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
1
,
-
1
,
1
]
)
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
0
,
-
1
,
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
0
,
-
1
,
1
]
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录