Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4ed6f3bc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4ed6f3bc
编写于
9月 01, 2022
作者:
X
Xiaoxu Chen
提交者:
GitHub
9月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gelu and erf primitive operators for new autograd (#45338)
* add erf_p primitive operators * add gelu orig2prim rule
上级
1a0ef45e
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
313 addition
and
21 deletion
+313
-21
paddle/fluid/operators/prim_ops/CMakeLists.txt
paddle/fluid/operators/prim_ops/CMakeLists.txt
+5
-1
paddle/fluid/operators/prim_ops/erf_p_op.cc
paddle/fluid/operators/prim_ops/erf_p_op.cc
+78
-0
paddle/fluid/operators/prim_ops/prim_op_test.cc
paddle/fluid/operators/prim_ops/prim_op_test.cc
+20
-0
python/paddle/fluid/tests/unittests/autograd/test_jvp_and_transpose.py
.../fluid/tests/unittests/autograd/test_jvp_and_transpose.py
+36
-0
python/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
...n/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
+65
-0
python/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
...n/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
+20
-0
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
+38
-17
python/paddle/fluid/tests/unittests/autograd/test_primops.py
python/paddle/fluid/tests/unittests/autograd/test_primops.py
+1
-0
python/paddle/incubate/autograd/primops.py
python/paddle/incubate/autograd/primops.py
+5
-0
python/paddle/incubate/autograd/primrules.py
python/paddle/incubate/autograd/primrules.py
+45
-3
未找到文件。
paddle/fluid/operators/prim_ops/CMakeLists.txt
浏览文件 @
4ed6f3bc
...
...
@@ -22,13 +22,17 @@ set(PRIM_OP_SRCS
div_p_op.cc
sqrt_p_op.cc
tanh_p_op.cc
sin_p_op.cc
cos_p_op.cc
exp_p_op.cc
matmul_p_op.cc
fill_constant_p_op.cc
log_p_op.cc
select_p_op.cc
eq_p_op.cc
pow_p_op.cc
max_p_op.cc
)
max_p_op.cc
erf_p_op.cc
)
cc_test
(
prim_op_test
...
...
paddle/fluid/operators/prim_ops/erf_p_op.cc
0 → 100644
浏览文件 @
4ed6f3bc
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
framework
{
class
InferShapeContext
;
class
VarDesc
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
operators
{
class
ErfPrimOp
:
public
framework
::
OperatorBase
{
public:
ErfPrimOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Prim operator erf_p should not be excuted directly"
));
}
};
class
ErfPrimOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), The input tensor of erf_p op."
);
AddOutput
(
"Y"
,
"(Tensor), The output tensor of erf_p op."
);
AddComment
(
R"DOC(Autograd primitive erf_p operator.)DOC"
);
}
};
class
ErfPrimOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
framework
::
InferShapeVarPtr
x_var_ptr
=
ctx
->
GetInputVarPtrs
(
"X"
)[
0
];
framework
::
InferShapeVarPtr
y_var_ptr
=
ctx
->
GetOutputVarPtrs
(
"Y"
)[
0
];
framework
::
VarDesc
*
x_var
=
PADDLE_GET
(
framework
::
VarDesc
*
,
x_var_ptr
);
PADDLE_GET
(
framework
::
VarDesc
*
,
y_var_ptr
)
->
SetShape
(
x_var
->
GetShape
());
}
};
class
ErfPrimOpVarTypeInference
:
public
framework
::
StaticGraphVarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
x_name
=
Input
(
ctx
,
"X"
)[
0
];
auto
y_name
=
Output
(
ctx
,
"Y"
)[
0
];
SetType
(
ctx
,
y_name
,
GetType
(
ctx
,
x_name
));
SetDataType
(
ctx
,
y_name
,
GetDataType
(
ctx
,
x_name
));
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OPERATOR
(
erf_p
,
paddle
::
operators
::
ErfPrimOp
,
paddle
::
operators
::
ErfPrimOpMaker
,
paddle
::
operators
::
ErfPrimOpShapeInference
,
paddle
::
operators
::
ErfPrimOpVarTypeInference
);
paddle/fluid/operators/prim_ops/prim_op_test.cc
浏览文件 @
4ed6f3bc
...
...
@@ -39,6 +39,7 @@ USE_OP_ITSELF(select_p);
USE_OP_ITSELF
(
eq_p
);
USE_OP_ITSELF
(
pow_p
);
USE_OP_ITSELF
(
max_p
);
USE_OP_ITSELF
(
erf_p
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -710,5 +711,24 @@ TEST(PrimOp, max_p) {
ASSERT_EQ
(
shapes
[
2
],
4L
);
}
TEST
(
PrimOp
,
erf_p
)
{
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
std
::
vector
<
int64_t
>
shape
{
3
,
4
,
5
};
std
::
string
x0
=
"x0"
;
std
::
string
x1
=
"x1"
;
NewVar
(
block
,
x0
,
shape
);
AppendOp
(
block
,
"erf_p"
,
{{
"X"
,
{
x0
}}},
{{
"Y"
,
{
x1
}}},
{});
ASSERT_EQ
(
block
->
Var
(
"x1"
)
->
GetType
(),
proto
::
VarType
::
LOD_TENSOR
);
ASSERT_EQ
(
block
->
Var
(
"x1"
)
->
GetDataType
(),
proto
::
VarType_Type_FP32
);
auto
shapes
=
block
->
Var
(
"x1"
)
->
GetShape
();
ASSERT_EQ
(
shapes
.
size
(),
3UL
);
ASSERT_EQ
(
shapes
[
0
],
3L
);
ASSERT_EQ
(
shapes
[
1
],
4L
);
ASSERT_EQ
(
shapes
[
2
],
5L
);
}
}
// namespace framework
}
// namespace paddle
python/paddle/fluid/tests/unittests/autograd/test_jvp_and_transpose.py
浏览文件 @
4ed6f3bc
...
...
@@ -364,6 +364,42 @@ class TestExpPJVPAndTranspose(TestAddPJVPAndTranspose):
]
class
TestErfPJVPAndTranspose
(
TestAddPJVPAndTranspose
):
def
init_data
(
self
):
# Set prim op
self
.
op_type
=
'erf_p'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
6
],
dtype
=
'int64'
)
self
.
prim_input
=
{
'X'
:
X
,
}
self
.
prim_output
=
{
'Y'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
)
}
self
.
prim_attrs
=
{}
# Set JVP
X_DOT
=
paddle
.
static
.
data
(
name
=
'X_DOT'
,
shape
=
[
5
,
6
],
dtype
=
'int64'
)
self
.
jvp_args
=
(
X_DOT
,
)
self
.
jvp_out_shape_map
=
{
0
:
self
.
prim_output
[
'Y'
]}
self
.
all_ops
=
[
# prim op:
'erf_p'
,
# jvp op:
'exp_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'mul_p'
,
'mul_p'
,
'pow_p'
,
'sub_p'
,
# transpose op:
]
class
TestLogPJVPAndTranspose
(
TestAddPJVPAndTranspose
):
def
init_data
(
self
):
...
...
python/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
浏览文件 @
4ed6f3bc
...
...
@@ -208,6 +208,26 @@ class TestExpOrig2Prim(TestElementWiseAddOrig2Prim):
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
class
TestErfOrig2Prim
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'erf'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
3
,
4
],
dtype
=
'float'
)
self
.
input
=
{
'X'
:
X
,
}
self
.
output
=
{
'Out'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
)
}
self
.
attrs
=
{}
self
.
orig2prim_args
=
(
X
,
)
self
.
all_ops
=
[
'erf'
,
'erf_p'
]
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
class
TestLogOrig2Prim
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
...
...
@@ -559,5 +579,50 @@ class TestMaxOrig2Prim(TestElementWiseAddOrig2Prim):
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
class
TestGeluOrig2Prim
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'gelu'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
8
],
dtype
=
'float'
)
self
.
input
=
{
'X'
:
X
}
self
.
output
=
{
'Out'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
)
}
self
.
attrs
=
{
'approximate'
:
False
}
self
.
orig2prim_args
=
(
X
,
)
self
.
all_ops
=
[
'gelu'
,
'add_p'
,
'erf_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'mul_p'
,
'mul_p'
,
'mul_p'
]
# { prim_op_output_index: orig_op_output_var }
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
class
TestGeluApproximateOrig2Prim
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'gelu'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
8
],
dtype
=
'float'
)
self
.
input
=
{
'X'
:
X
}
self
.
output
=
{
'Out'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
)
}
self
.
attrs
=
{
'approximate'
:
True
}
self
.
orig2prim_args
=
(
X
,
)
self
.
all_ops
=
[
'add_p'
,
'add_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'gelu'
,
'mul_p'
,
'mul_p'
,
'mul_p'
,
'mul_p'
,
'pow_p'
,
'tanh_p'
]
# { prim_op_output_index: orig_op_output_var }
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
浏览文件 @
4ed6f3bc
...
...
@@ -224,6 +224,26 @@ class TestExpPPrim2Orig(TestAddPPrim2Orig):
self
.
out_map
=
{
self
.
output
[
'Y'
]:
0
}
class
TestErfPPrim2Orig
(
TestAddPPrim2Orig
):
def
init_data
(
self
):
self
.
op_type
=
'erf_p'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
7
,
8
],
dtype
=
'float64'
)
self
.
input
=
{
'X'
:
X
,
}
self
.
output
=
{
'Y'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
)
}
self
.
attrs
=
{}
self
.
prim2orig_args
=
(
X
,
)
self
.
all_ops
=
[
'erf_p'
,
'erf'
]
self
.
out_map
=
{
self
.
output
[
'Y'
]:
0
}
class
TestLogPPrim2Orig
(
TestAddPPrim2Orig
):
def
init_data
(
self
):
...
...
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
浏览文件 @
4ed6f3bc
...
...
@@ -16,11 +16,11 @@ import typing
import
unittest
import
numpy
as
np
import
autograd
import
autograd.numpy
as
np_autograd
import
paddle
import
autograd
import
autograd.numpy
as
anp
import
autograd.scipy
as
ascipy
import
config
import
utils
...
...
@@ -278,6 +278,11 @@ where_wrap = lambda x, y: paddle.where(paddle.eye(3, 4) == 1, x, y)
np
.
array
([
1
,
2
,
3
]),
np
.
array
([
2
,
2
,
2
]),
),
None
,
'float32'
),
(
'erf'
,
paddle
.
erf
,
(
np
.
random
.
rand
(
300
,
288
),
),
None
,
'float32'
),
(
'gelu'
,
paddle
.
nn
.
functional
.
gelu
,
(
np
.
random
.
rand
(
200
,
189
),
),
None
,
'float32'
),
(
'gelu_approximate'
,
lambda
x
:
paddle
.
nn
.
functional
.
gelu
(
x
,
True
),
(
np
.
random
.
rand
(
200
,
189
),
),
None
,
'float32'
),
))
class
TestGrad
(
unittest
.
TestCase
):
...
...
@@ -397,17 +402,27 @@ def multiply_pd(x):
multiply_ag
=
lambda
xs
:
xs
[
0
]
*
xs
[
0
]
*
xs
[
0
]
*
xs
[
0
]
*
xs
[
0
]
sin_ag
=
lambda
xs
:
np_autograd
.
sin
(
xs
[
0
])
cos_ag
=
lambda
xs
:
np_autograd
.
cos
(
xs
[
0
])
exp_ag
=
lambda
xs
:
np_autograd
.
exp
(
xs
[
0
])
sin_ag
=
lambda
xs
:
anp
.
sin
(
xs
[
0
])
cos_ag
=
lambda
xs
:
anp
.
cos
(
xs
[
0
])
exp_ag
=
lambda
xs
:
anp
.
exp
(
xs
[
0
])
pow_ag
=
lambda
xs
:
xs
[
0
]
**
xs
[
1
]
log_ag
=
lambda
xs
:
np_autograd
.
log
(
xs
[
0
])
log_ag
=
lambda
xs
:
anp
.
log
(
xs
[
0
])
erf_ag
=
lambda
xs
:
ascipy
.
special
.
erf
(
xs
[
0
])
def
gelu_ag
(
x
,
approximate
=
False
):
if
approximate
:
sqrt_2_over_pi
=
np
.
sqrt
(
2
/
np
.
pi
).
astype
(
x
.
dtype
)
cdf
=
0.5
*
(
1.0
+
anp
.
tanh
(
sqrt_2_over_pi
*
(
x
+
0.044715
*
(
x
**
3
))))
return
x
*
cdf
else
:
return
x
*
(
ascipy
.
special
.
erf
(
x
/
np
.
sqrt
(
2
))
+
1
)
/
2
@
utils
.
place
(
config
.
DEVICES
)
@
utils
.
parameterize
(
(
utils
.
TEST_CASE_NAME
,
'fun_pd'
,
'fun_ag'
,
'xs'
,
'v'
,
'dtype'
),
(
(
'multiply'
,
multiply_pd
,
multiply_ag
,
(
utils
.
TEST_CASE_NAME
,
'fun_pd'
,
'fun_ag'
,
'xs'
,
'v'
,
'dtype'
),
(
(
'multiply'
,
multiply_pd
,
multiply_ag
,
(
np
.
random
.
rand
(
3
,
5
),
),
None
,
'float32'
),
(
'sin'
,
paddle
.
sin
,
sin_ag
,
(
np
.
random
.
rand
(
2
,
3
),
),
None
,
'float32'
),
(
'cos'
,
paddle
.
cos
,
cos_ag
,
(
np
.
random
.
rand
(
3
,
4
),
),
None
,
'float32'
),
...
...
@@ -415,7 +430,13 @@ log_ag = lambda xs: np_autograd.log(xs[0])
(
'pow'
,
paddle
.
pow
,
pow_ag
,
(
np
.
random
.
rand
(
2
,
3
),
np
.
random
.
rand
(
2
,
3
)),
None
,
'float32'
),
(
'log'
,
paddle
.
log
,
log_ag
,
(
np
.
random
.
rand
(
3
,
8
),
),
None
,
'float32'
),
))
(
'erf'
,
paddle
.
erf
,
erf_ag
,
(
np
.
random
.
rand
(
100
,
200
),
),
None
,
'float32'
),
(
'gelu'
,
paddle
.
nn
.
functional
.
gelu
,
lambda
xs
:
gelu_ag
(
xs
[
0
]),
(
np
.
random
.
rand
(
10
,
20
,
30
),
),
None
,
'float32'
),
(
'gelu_approximate'
,
lambda
x
:
paddle
.
nn
.
functional
.
gelu
(
x
,
approximate
=
True
),
lambda
xs
:
gelu_ag
(
xs
[
0
],
approximate
=
True
),
(
np
.
random
.
rand
(
10
,
20
,
30
),
),
None
,
'float32'
)))
class
TestGradWithHigherOrder
(
unittest
.
TestCase
):
def
setUp
(
self
):
...
...
python/paddle/fluid/tests/unittests/autograd/test_primops.py
浏览文件 @
4ed6f3bc
...
...
@@ -41,6 +41,7 @@ paddle.enable_static()
(
'sin'
,
primops
.
sin
,
randn
(
2
,
3
),
{},
(
2
,
3
),
'float64'
),
(
'cos'
,
primops
.
cos
,
randn
(
2
,
3
),
{},
(
2
,
3
),
'float64'
),
(
'exp'
,
primops
.
exp
,
randn
(
2
,
3
),
{},
(
2
,
3
),
'float64'
),
(
'erf'
,
primops
.
erf
,
randn
(
2
,
3
),
{},
(
2
,
3
),
'float64'
),
(
'log'
,
primops
.
log
,
randn
(
2
,
3
),
{},
(
2
,
3
),
'float64'
),
(
'reshape'
,
primops
.
reshape
,
randn
(
2
,
3
),
{
'shape'
:
(
3
,
2
)
...
...
python/paddle/incubate/autograd/primops.py
浏览文件 @
4ed6f3bc
...
...
@@ -355,3 +355,8 @@ def pow(x, y, out=None):
@
REGISTER_FN
(
'max_p'
,
'X'
,
'Y'
,
'Z'
)
def
max
(
x
,
y
,
out
=
None
):
return
_simple_binop
(
LayerHelper
(
'max_p'
,
**
locals
()))
@
REGISTER_FN
(
'erf_p'
,
'X'
,
'Y'
)
def
erf
(
x
,
out
=
None
):
return
_simple_unop
(
LayerHelper
(
'erf_p'
,
**
locals
()))
python/paddle/incubate/autograd/primrules.py
浏览文件 @
4ed6f3bc
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
typing
import
math
import
paddle
...
...
@@ -19,7 +20,7 @@ from . import primops
from
.primops
import
(
add
,
broadcast
,
concat
,
cos
,
div
,
exp
,
fill_const
,
gather
,
matmul
,
mul
,
neg
,
reduce
,
reshape
,
scatter_add
,
set_value
,
sin
,
slice_assign
,
slice_select
,
split
,
sqrt
,
sub
,
tanh
,
transpose
,
log
,
select
,
eq
,
max
)
transpose
,
log
,
select
,
eq
,
max
,
erf
)
from
.primreg
import
(
REGISTER_JVP
,
REGISTER_ORIG2PRIM
,
REGISTER_PRIM2ORIG
,
REGISTER_TRANSPOSE
,
lookup_fn
,
lookup_jvp
,
lookup_orig2prim
,
lookup_prim2orig
,
lookup_transpose
,
...
...
@@ -171,6 +172,11 @@ def exp_orig2prim(op, x):
return
exp
(
x
)
@
REGISTER_ORIG2PRIM
(
'erf'
)
def
erf_orig2prim
(
op
,
x
):
return
erf
(
x
)
@
REGISTER_ORIG2PRIM
(
'log'
)
def
log_orig2prim
(
op
,
x
):
return
log
(
x
)
...
...
@@ -321,13 +327,34 @@ def elementwise_pow_orig2prim(op, x, y):
def
elementwise_max_orig2prim
(
op
,
x
,
y
):
if
x
.
shape
!=
y
.
shape
:
y
=
broadcast
(
y
,
shape
=
x
.
shape
)
return
primops
.
max
(
x
,
y
)
## Register prim2orig lower rules
@
REGISTER_ORIG2PRIM
(
'gelu'
)
def
gelu_orig2prim
(
op
,
x
):
if
op
.
attr
(
'approximate'
):
cdf
=
mul
(
fill_const
(
0.5
,
x
.
shape
,
x
.
dtype
),
add
(
fill_const
(
1.0
,
x
.
shape
,
x
.
dtype
),
tanh
(
mul
(
fill_const
(
math
.
sqrt
(
2
/
math
.
pi
),
x
.
shape
,
x
.
dtype
),
add
(
x
,
mul
(
fill_const
(
0.044715
,
x
.
shape
,
x
.
dtype
),
primops
.
pow
(
x
,
fill_const
(
3.
,
x
.
shape
,
x
.
dtype
))))))))
return
mul
(
x
,
cdf
)
else
:
return
mul
(
mul
(
fill_const
(
0.5
,
x
.
shape
,
x
.
dtype
),
x
),
add
(
fill_const
(
1.0
,
x
.
shape
,
x
.
dtype
),
erf
(
mul
(
x
,
fill_const
(
1
/
math
.
sqrt
(
2.
),
x
.
shape
,
x
.
dtype
)))))
## Register prim2orig lower rules
@
REGISTER_PRIM2ORIG
(
'add_p'
)
def
add_prim2orig
(
op
,
x
,
y
):
return
paddle
.
add
(
x
,
y
)
...
...
@@ -373,6 +400,11 @@ def exp_prim2orig(op, x):
return
paddle
.
exp
(
x
)
@
REGISTER_PRIM2ORIG
(
'erf_p'
)
def
erf_prim2orig
(
op
,
x
):
return
paddle
.
erf
(
x
)
@
REGISTER_PRIM2ORIG
(
'log_p'
)
def
log_prim2orig
(
op
,
x
):
return
paddle
.
log
(
x
)
...
...
@@ -574,6 +606,16 @@ def exp_jvp(op, x_dot):
return
mul
(
x_dot
,
y
)
@
REGISTER_JVP
(
'erf_p'
)
def
erf_jvp
(
op
,
x_dot
):
if
x_dot
is
None
:
return
None
x
,
=
op_position_inputs
(
op
)
return
mul
(
fill_const
(
2.
/
math
.
sqrt
(
math
.
pi
),
x
.
shape
,
x
.
dtype
),
mul
(
x_dot
,
exp
(
neg
(
primops
.
pow
(
x
,
fill_const
(
2.
,
x
.
shape
,
x
.
dtype
))))))
@
REGISTER_JVP
(
'log_p'
)
def
log_jvp
(
op
,
x_dot
):
if
x_dot
is
None
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录