未验证 提交 4e67cd17 编写于 作者: Z zhulei 提交者: GitHub

[NPU] Add huber_loss op (#34826)

* [NPU] Add huber_loss op

* [NPU] Add huber_loss op

* [NPU] Add huber_loss p[

* [NPU] Add huber_loss
上级 f014e301
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/huber_loss_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
void HuberLossSub(const platform::Place& place, const aclrtStream& stream,
const Tensor* x, const Tensor* y, Tensor* z) {
// Calculate z = x - y
z->mutable_data<T>(x->dims(), place);
const auto& runner = NpuOpRunner("Sub", {*x, *y}, {*z}, {});
runner.Run(stream);
}
template <typename T>
void HuberLossMuls(const platform::Place& place, const aclrtStream& stream,
const Tensor* x, float scalar, Tensor* y) {
// Calculate y = x + scale
y->mutable_data<T>(x->dims(), place);
const auto& runner = NpuOpRunner("Muls", {*x}, {*y}, {{"value", scalar}});
runner.Run(stream);
}
template <typename T>
void HuberLossZerosLike(const platform::Place& place, const aclrtStream& stream,
const Tensor* x, Tensor* y) {
y->mutable_data<T>(x->dims(), place);
const auto& runner = NpuOpRunner("ZerosLike", {*x}, {*y}, {});
runner.Run(stream);
}
template <typename T>
void HuberLossSmoothL1Loss(const platform::Place& place,
const aclrtStream& stream, const Tensor* x,
const Tensor* y, float delta, Tensor* z) {
z->mutable_data<T>(x->dims(), place);
const auto& runner =
NpuOpRunner("SmoothL1Loss", {*x, *y}, {*z}, {{"sigma", delta}});
runner.Run(stream);
}
template <typename T>
void HuberLossSmoothL1LossGrad(const platform::Place& place,
const aclrtStream& stream, const Tensor* pred,
const Tensor* lab, const Tensor* dout,
float sigma, Tensor* grad) {
grad->mutable_data<T>(pred->dims(), place);
const auto& runner = NpuOpRunner("SmoothL1LossGrad", {*pred, *lab, *dout},
{*grad}, {{"sigma", sigma}});
runner.Run(stream);
}
template <typename T>
class HuberLossNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in0 = ctx.Input<Tensor>("X");
auto* in1 = ctx.Input<Tensor>("Y");
auto* residual = ctx.Output<Tensor>("Residual");
auto* out = ctx.Output<Tensor>("Out");
auto delta = ctx.Attr<float>("delta");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
auto place = ctx.GetPlace();
HuberLossSub<T>(place, stream, in1, in0, residual);
HuberLossSmoothL1Loss<T>(place, stream, in0, in1, delta, out);
HuberLossMuls<T>(place, stream, out, delta, out);
}
};
template <typename T>
class HuberLossGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* residual = ctx.Input<Tensor>("Residual");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto delta = ctx.Attr<float>("delta");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
auto place = ctx.GetPlace();
Tensor t_grad_rd;
if (dx || dy) {
Tensor t_zero;
HuberLossZerosLike<T>(place, stream, residual, &t_zero);
HuberLossSmoothL1LossGrad<T>(place, stream, residual, &t_zero, dout,
delta, &t_grad_rd);
}
if (dx) {
HuberLossMuls<T>(place, stream, &t_grad_rd, -delta, dx);
}
if (dy) {
HuberLossMuls<T>(place, stream, &t_grad_rd, delta, dy);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(huber_loss, ops::HuberLossNPUKernel<float>,
ops::HuberLossNPUKernel<plat::float16>);
REGISTER_OP_NPU_KERNEL(huber_loss_grad, ops::HuberLossGradNPUKernel<float>,
ops::HuberLossGradNPUKernel<plat::float16>);
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
paddle.enable_static()
def huber_loss_forward(val, delta):
abs_val = abs(val)
if abs_val <= delta:
return 0.5 * val * val
else:
return delta * (abs_val - 0.5 * delta)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestHuberLossOp(OpTest):
def setUp(self):
self.set_npu()
self.op_type = 'huber_loss'
self.place = paddle.NPUPlace(0)
self.init_dtype()
self.set_inputs()
self.set_attrs()
self.set_outputs()
def set_inputs(self):
shape = self.set_shape()
x = np.random.uniform(0, 1., shape).astype(self.dtype)
y = np.random.uniform(0, 1., shape).astype(self.dtype)
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(x),
'Y': OpTest.np_dtype_to_fluid_dtype(y)
}
def set_attrs(self):
self.attrs = {'delta': 0.5}
def set_outputs(self):
delta = self.attrs['delta']
shape = self.set_shape()
residual = self.inputs['Y'] - self.inputs['X']
loss = np.vectorize(huber_loss_forward)(residual,
delta).astype(self.dtype)
self.outputs = {'Residual': residual, 'Out': loss.reshape(shape)}
def set_shape(self):
return (100, 1)
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(self.place, ['X', 'Y'], 'Out')
def test_check_grad_ingore_x(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(
self.place, ['Y'],
'Out',
max_relative_error=0.008,
no_grad_set=set("residual"))
def test_check_grad_ingore_y(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(
self.place, ['X'],
'Out',
max_relative_error=0.008,
no_grad_set=set('residual'))
def TestHuberLossOp1(TestHuberLossOp):
def set_shape(self):
return (64)
def TestHuberLossOp2(TestHuberLossOp):
def set_shape(self):
return (6, 6)
def TestHuberLossOp3(TestHuberLossOp):
def set_shape(self):
return (6, 6, 1)
def TestHuberLossOpFP16(TestHuberLossOp):
def init_dtype(self):
self.dtype = np.float16
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestHuberLossOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# the input and label must be Variable
xw = np.random.random((6, 6)).astype("float32")
xr = fluid.data(name='xr', shape=[None, 6], dtype="float32")
lw = np.random.random((6, 6)).astype("float32")
lr = fluid.data(name='lr', shape=[None, 6], dtype="float32")
delta = 1.0
self.assertRaises(TypeError, fluid.layers.huber_loss, xr, lw, delta)
self.assertRaises(TypeError, fluid.layers.huber_loss, xw, lr, delta)
# the dtype of input and label must be float32 or float64
xw2 = fluid.data(name='xw2', shape=[None, 6], dtype="int32")
lw2 = fluid.data(name='lw2', shape=[None, 6], dtype="int32")
self.assertRaises(TypeError, fluid.layers.huber_loss, xw2, lr,
delta)
self.assertRaises(TypeError, fluid.layers.huber_loss, xr, lw2,
delta)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册