未验证 提交 4df89e94 编写于 作者: X xiaoguoguo626807 提交者: GitHub

【new_frl】modify multiply_grad_node create (#54389)

* modify multiply_grad_node create

* modify build conflict

* add place choose

* ci segment fault

* clear branch
上级 0cc46b4a
......@@ -26,6 +26,10 @@ paddle::Tensor conv2d_ad_func(const paddle::Tensor& input,
std::vector<int> dilations,
int groups,
std::string data_format);
paddle::Tensor multiply_ad_func(const paddle::Tensor& x,
const paddle::Tensor& y);
paddle::Tensor& multiply__ad_func(paddle::Tensor& x, // NOLINT
const paddle::Tensor& y);
std::tuple<paddle::Tensor,
paddle::Tensor&,
......@@ -62,4 +66,8 @@ sync_batch_norm__ad_func(const paddle::Tensor& x,
std::string data_layout,
bool use_global_stats,
bool trainable_statistics);
paddle::Tensor multiply_ad_func(const paddle::Tensor& x,
const paddle::Tensor& y);
} // namespace sparse
......@@ -2,4 +2,5 @@ set(eager_manual_functions
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/eager_manual/forwards/add_n_fwd_func.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/eager_manual/forwards/conv2d_fwd_function.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/eager_manual/forwards/sync_batch_norm_fwd_func.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/eager_manual/forwards/multiply_fwd_func.cc
PARENT_SCOPE)
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/eager/amp_utils.h"
#include "paddle/fluid/eager/api/manual/eager_manual/dygraph_forward_api.h"
#include "paddle/fluid/eager/api/manual/eager_manual/nodes/nodes.h"
#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
#include "paddle/fluid/eager/eager_layout_auto_tune.h"
#include "paddle/fluid/eager/nan_inf_utils.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/phi/api/include/sparse_api.h"
#include "paddle/phi/core/flags.h"
DECLARE_bool(check_nan_inf);
paddle::Tensor multiply_ad_func(const paddle::Tensor& x,
const paddle::Tensor& y) {
FLAGS_tensor_operants_mode = "eager";
VLOG(3) << "Running AD API: "
<< "multiply";
// Dygraph Record Event
paddle::platform::RecordEvent dygraph_entrance_record_event(
"multiply dygraph", paddle::platform::TracerEventType::Operator, 1);
// AMP Logic
if (egr::Controller::Instance().GetAMPLevel() !=
paddle::imperative::AmpLevel::O0) {
VLOG(5) << "Check and Prepare For AMP";
auto op_name = phi::TransToFluidOpName("multiply");
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
amp_tensors_vector = {{x}, {y}};
auto amp_dst_dtype = egr::GetAmpDestDtype(op_name, amp_tensors_vector);
auto new_x = egr::EagerAmpAutoCast("x", x, amp_dst_dtype, op_name);
auto new_y = egr::EagerAmpAutoCast("y", y, amp_dst_dtype, op_name);
{
paddle::imperative::AutoCastGuard guard(
egr::Controller::Instance().GetCurrentTracer(),
paddle::imperative::AmpLevel::O0);
return multiply_ad_func(new_x, new_y);
}
}
// Layout autotune
if (egr::Controller::Instance().UseLayoutAutoTune()) {
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
tensors_vector = {{x}, {y}};
auto op_name = phi::TransToFluidOpName("multiply");
auto transformer = egr::EagerLayoutAutotune(op_name, tensors_vector);
auto new_x = transformer->TransInTensor("x", x);
auto new_y = transformer->TransInTensor("y", y);
VLOG(5) << "Check and Prepare For LAYOUT " << op_name;
paddle::imperative::LayoutAutotuneGuard guard(
egr::Controller::Instance().GetCurrentTracer(), false);
paddle::Tensor out = multiply_ad_func(new_x, new_y);
transformer->SetOutTensorLayout(&out);
// Returns
return out;
}
// Get Input AutoGradMeta
egr::AutogradMeta* x_autograd_meta =
egr::EagerUtils::nullable_autograd_meta(x);
egr::AutogradMeta* y_autograd_meta =
egr::EagerUtils::nullable_autograd_meta(y);
VLOG(5) << "Running C++ API: "
<< "multiply";
// Before log info
if (VLOG_IS_ON(3)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s]} ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
VLOG(3) << paddle::string::Sprintf(INPUT_PRINT_TEMPLATE, input_str);
}
// Forward API Call
auto api_result = paddle::experimental::multiply(x, y);
// Check NaN and Inf if needed
if (FLAGS_check_nan_inf) {
egr::CheckTensorHasNanOrInf("multiply", api_result);
}
// Get Outputs
auto& out = api_result;
// Get Output AutoGradMeta
egr::AutogradMeta* out_autograd_meta = egr::EagerUtils::autograd_meta(&out);
bool trace_backward = egr::Controller::Instance().HasGrad();
bool require_any_grad = egr::EagerUtils::ComputeRequireGrad(
trace_backward, x_autograd_meta, y_autograd_meta);
// Check Inplace if needed
// Node Creation
if (require_any_grad) {
paddle::platform::RecordEvent node_creation_record_event(
"multiply node_creation",
paddle::platform::TracerEventType::OperatorInner,
1);
egr::EagerUtils::PassStopGradient(false, out_autograd_meta);
// Node Construction
auto grad_node =
std::shared_ptr<MultiplyGradNode>(new MultiplyGradNode(1, 2));
// SetAttributes if needed
grad_node->SetAttributeaxis(-1);
// Set TensorWrappers for Forward Inputs if needed
if (paddle::platform::is_gpu_place(x.place())) {
if (x_autograd_meta != nullptr && x_autograd_meta->StopGradient() &&
y_autograd_meta != nullptr && !y_autograd_meta->StopGradient()) {
grad_node->SetTensorWrapperx(x);
grad_node->SetTensorWrapperNoNeedBuffery(y);
} else if (x_autograd_meta != nullptr &&
!x_autograd_meta->StopGradient() &&
y_autograd_meta != nullptr &&
y_autograd_meta->StopGradient()) {
grad_node->SetTensorWrapperNoNeedBufferx(x);
grad_node->SetTensorWrappery(y);
} else {
grad_node->SetTensorWrapperx(x);
grad_node->SetTensorWrappery(y);
}
} else {
grad_node->SetTensorWrapperx(x);
grad_node->SetTensorWrappery(y);
}
// SetGradOutMeta & SetEdges
grad_node->SetGradOutMeta(x, 0);
grad_node->SetGradOutMeta(y, 1);
// SetOutRank & SetHistory & SetGradInMeta
if (out_autograd_meta) {
egr::EagerUtils::SetOutRankWithSlot(out_autograd_meta, 0);
}
if (out_autograd_meta) {
egr::EagerUtils::SetHistory(out_autograd_meta, grad_node);
}
grad_node->SetGradInMeta(out, 0);
// Set TensorWrappers for Forward Outputs if needed
}
VLOG(4) << "Finish AD API: multiply";
// LOG IF DEBUG
if (VLOG_IS_ON(4)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s], \n Output: [%s] } ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_OUT_TEMPLATE = " \n( out , [%s]), ";
std::string output_out_str = paddle::string::Sprintf(
TENSOR_OUT_TEMPLATE, egr::EagerUtils::TensorStr(out));
output_str += output_out_str;
VLOG(4) << paddle::string::Sprintf(
INPUT_PRINT_TEMPLATE, input_str, output_str);
}
// Returns
return out;
}
paddle::Tensor& multiply__ad_func(paddle::Tensor& x, // NOLINT
const paddle::Tensor& y) {
FLAGS_tensor_operants_mode = "eager";
VLOG(3) << "Running AD API: "
<< "multiply_";
// Dygraph Record Event
paddle::platform::RecordEvent dygraph_entrance_record_event(
"multiply_ dygraph", paddle::platform::TracerEventType::Operator, 1);
// AMP Logic
VLOG(5)
<< " No AMP for multiply__ad_func because it is a inplace or cast api. ";
// Layout autotune
if (egr::Controller::Instance().UseLayoutAutoTune()) {
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
tensors_vector = {{x}, {y}};
auto op_name = phi::TransToFluidOpName("multiply_");
auto transformer = egr::EagerLayoutAutotune(op_name, tensors_vector);
auto new_x = transformer->TransInTensor("x", x);
auto new_y = transformer->TransInTensor("y", y);
VLOG(5) << "Check and Prepare For LAYOUT " << op_name;
paddle::imperative::LayoutAutotuneGuard guard(
egr::Controller::Instance().GetCurrentTracer(), false);
paddle::Tensor& out = multiply__ad_func(new_x, new_y);
transformer->SetOutTensorLayout(&out);
// Returns
return out;
}
// Get Input AutoGradMeta
egr::AutogradMeta* x_autograd_meta =
egr::EagerUtils::nullable_autograd_meta(x);
egr::AutogradMeta* y_autograd_meta =
egr::EagerUtils::nullable_autograd_meta(y);
VLOG(5) << "Running C++ API: "
<< "multiply_";
// Before log info
if (VLOG_IS_ON(3)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s]} ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
VLOG(3) << paddle::string::Sprintf(INPUT_PRINT_TEMPLATE, input_str);
}
// Forward API Call
auto& api_result = paddle::experimental::multiply_(x, y);
// Check NaN and Inf if needed
if (FLAGS_check_nan_inf) {
egr::CheckTensorHasNanOrInf("multiply_", api_result);
}
// Get Outputs
auto& out = api_result;
// Get Output AutoGradMeta
egr::AutogradMeta* out_autograd_meta = egr::EagerUtils::autograd_meta(&out);
bool trace_backward = egr::Controller::Instance().HasGrad();
bool require_any_grad = egr::EagerUtils::ComputeRequireGrad(
trace_backward, x_autograd_meta, y_autograd_meta);
// Check Inplace if needed
egr::EagerUtils::CheckInplace(x, x_autograd_meta, require_any_grad);
// Bump Inplace Version
x.bump_inplace_version();
VLOG(3) << "Tensor(" << x.name() << ") uses Inplace Strategy.";
// Node Creation
if (require_any_grad) {
paddle::platform::RecordEvent node_creation_record_event(
"multiply node_creation",
paddle::platform::TracerEventType::OperatorInner,
1);
egr::EagerUtils::PassStopGradient(false, out_autograd_meta);
// Node Construction
auto grad_node =
std::shared_ptr<MultiplyGradNode>(new MultiplyGradNode(1, 2));
// SetAttributes if needed
grad_node->SetAttributeaxis(-1);
// Set TensorWrappers for Forward Inputs if needed
grad_node->SetTensorWrapperx(x);
grad_node->SetTensorWrappery(y);
// SetGradOutMeta & SetEdges
grad_node->SetGradOutMeta(x, 0);
grad_node->SetGradOutMeta(y, 1);
// SetOutRank & SetHistory & SetGradInMeta
if (out_autograd_meta) {
egr::EagerUtils::SetOutRankWithSlot(out_autograd_meta, 0);
}
if (out_autograd_meta) {
egr::EagerUtils::SetHistory(out_autograd_meta, grad_node);
}
grad_node->SetGradInMeta(out, 0);
// Set TensorWrappers for Forward Outputs if needed
}
VLOG(4) << "Finish AD API: multiply_";
// LOG IF DEBUG
if (VLOG_IS_ON(4)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s], \n Output: [%s] } ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_OUT_TEMPLATE = " \n( out , [%s]), ";
std::string output_out_str = paddle::string::Sprintf(
TENSOR_OUT_TEMPLATE, egr::EagerUtils::TensorStr(out));
output_str += output_out_str;
VLOG(4) << paddle::string::Sprintf(
INPUT_PRINT_TEMPLATE, input_str, output_str);
}
// Returns
return out;
}
namespace sparse {
paddle::Tensor multiply_ad_func(const paddle::Tensor& x,
const paddle::Tensor& y) {
FLAGS_tensor_operants_mode = "eager";
VLOG(3) << "Running AD API: "
<< "multiply";
// Dygraph Record Event
paddle::platform::RecordEvent dygraph_entrance_record_event(
"multiply dygraph", paddle::platform::TracerEventType::Operator, 1);
// AMP Logic
if (egr::Controller::Instance().GetAMPLevel() !=
paddle::imperative::AmpLevel::O0) {
VLOG(5) << "Check and Prepare For AMP";
auto op_name = phi::TransToFluidOpName("multiply");
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
amp_tensors_vector = {{x}, {y}};
auto amp_dst_dtype = egr::GetAmpDestDtype(op_name, amp_tensors_vector);
auto new_x = egr::EagerAmpAutoCast("x", x, amp_dst_dtype, op_name);
auto new_y = egr::EagerAmpAutoCast("y", y, amp_dst_dtype, op_name);
{
paddle::imperative::AutoCastGuard guard(
egr::Controller::Instance().GetCurrentTracer(),
paddle::imperative::AmpLevel::O0);
return multiply_ad_func(new_x, new_y);
}
}
// Layout autotune
if (egr::Controller::Instance().UseLayoutAutoTune()) {
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
tensors_vector = {{x}, {y}};
auto op_name = phi::TransToFluidOpName("multiply");
auto transformer = egr::EagerLayoutAutotune(op_name, tensors_vector);
auto new_x = transformer->TransInTensor("x", x);
auto new_y = transformer->TransInTensor("y", y);
VLOG(5) << "Check and Prepare For LAYOUT " << op_name;
paddle::imperative::LayoutAutotuneGuard guard(
egr::Controller::Instance().GetCurrentTracer(), false);
paddle::Tensor out = multiply_ad_func(new_x, new_y);
transformer->SetOutTensorLayout(&out);
// Returns
return out;
}
// Get Input AutoGradMeta
egr::AutogradMeta* x_autograd_meta =
egr::EagerUtils::nullable_autograd_meta(x);
egr::AutogradMeta* y_autograd_meta =
egr::EagerUtils::nullable_autograd_meta(y);
VLOG(5) << "Running C++ API: "
<< "multiply";
// Before log info
if (VLOG_IS_ON(3)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s]} ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
VLOG(3) << paddle::string::Sprintf(INPUT_PRINT_TEMPLATE, input_str);
}
// Forward API Call
auto api_result = paddle::experimental::sparse::multiply(x, y);
// Check NaN and Inf if needed
if (FLAGS_check_nan_inf) {
egr::CheckTensorHasNanOrInf("multiply", api_result);
}
// Get Outputs
auto& out = api_result;
// Get Output AutoGradMeta
egr::AutogradMeta* out_autograd_meta = egr::EagerUtils::autograd_meta(&out);
bool trace_backward = egr::Controller::Instance().HasGrad();
bool require_any_grad = egr::EagerUtils::ComputeRequireGrad(
trace_backward, x_autograd_meta, y_autograd_meta);
// Check Inplace if needed
// Node Creation
if (require_any_grad) {
paddle::platform::RecordEvent node_creation_record_event(
"multiply node_creation",
paddle::platform::TracerEventType::OperatorInner,
1);
egr::EagerUtils::PassStopGradient(false, out_autograd_meta);
// Node Construction
auto grad_node =
std::shared_ptr<MultiplyGradNode>(new MultiplyGradNode(1, 2));
// SetAttributes if needed
// Set TensorWrappers for Forward Inputs if needed
grad_node->SetTensorWrapperx(x);
grad_node->SetTensorWrappery(y);
// SetGradOutMeta & SetEdges
grad_node->SetGradOutMeta(x, 0);
grad_node->SetGradOutMeta(y, 1);
// SetOutRank & SetHistory & SetGradInMeta
if (out_autograd_meta) {
egr::EagerUtils::SetOutRankWithSlot(out_autograd_meta, 0);
}
if (out_autograd_meta) {
egr::EagerUtils::SetHistory(out_autograd_meta, grad_node);
}
grad_node->SetGradInMeta(out, 0);
// Set TensorWrappers for Forward Outputs if needed
}
VLOG(4) << "Finish AD API: multiply";
// LOG IF DEBUG
if (VLOG_IS_ON(4)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s], \n Output: [%s] } ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_OUT_TEMPLATE = " \n( out , [%s]), ";
std::string output_out_str = paddle::string::Sprintf(
TENSOR_OUT_TEMPLATE, egr::EagerUtils::TensorStr(out));
output_str += output_out_str;
VLOG(4) << paddle::string::Sprintf(
INPUT_PRINT_TEMPLATE, input_str, output_str);
}
// Returns
return out;
}
} // namespace sparse
......@@ -2,4 +2,5 @@ set(eager_manual_nodes
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/eager_manual/nodes/conv2d_nodes.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/eager_manual/nodes/add_n_node.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/eager_manual/nodes/sync_batch_norm_node.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/eager_manual/nodes/multiply_node.cc
PARENT_SCOPE)
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "glog/logging.h"
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
#include "paddle/fluid/eager/api/manual/eager_manual/nodes/nodes.h"
#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/nan_inf_utils.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/prim/api/all.h"
#include "paddle/fluid/prim/api/composite_backward/composite_backward_api.h"
#include "paddle/fluid/prim/utils/utils.h"
#include "paddle/phi/api/all.h"
#include "paddle/phi/api/backward/backward_api.h"
#include "paddle/phi/api/backward/sparse_bw_api.h"
#include "paddle/phi/api/include/sparse_api.h"
#include "paddle/phi/api/lib/api_custom_impl.h"
#include "paddle/phi/core/flags.h"
DECLARE_bool(check_nan_inf);
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
MultiplyGradNode::operator()(
paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>& grads,
bool create_graph,
bool is_new_grad) {
VLOG(3) << "Running AD API GRAD: "
<< "multiply_grad";
// Fill Zero For GradIn Tensors
const auto& input_metas = this->InputMeta();
egr::EagerUtils::FillZeroForEmptyGradInput(&grads[0][0], input_metas[0][0]);
// Apply Gradient Hooks
auto hooked_grads = ApplyGradientHooks(grads);
// Collect GradIn Tensors, Attrs and Recovered TensorWrappers
auto x = egr::EagerUtils::RecoverTensorWrapper(&this->x_);
auto y = egr::EagerUtils::RecoverTensorWrapper(&this->y_);
auto& grad_out = hooked_grads[0][0];
auto& axis = this->axis_;
// Prepare Grad function call
const auto& out_metas = OutputMeta();
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
returns(2);
for (int i = 0; i < 2; ++i) {
out_metas[i].size() == 0 ? returns[i].resize(1)
: returns[i].resize(out_metas[i].size());
}
auto* api_output_0 =
(out_metas[0].empty() || out_metas[0][0].IsStopGradient())
? nullptr
: &returns[0][0];
auto* api_output_1 =
(out_metas[1].empty() || out_metas[1][0].IsStopGradient())
? nullptr
: &returns[1][0];
// Runtime check if we need next grad
bool trace_backward = egr::Controller::Instance().HasGrad() && create_graph;
// Inplace Check
// Inplace Strategy
VLOG(5) << "Running C++ API: "
<< "multiply_grad";
// Before log info
if (VLOG_IS_ON(3)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s]} ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_GRAD_OUT_TEMPLATE = " \n( grad_out , [%s]), ";
std::string input_grad_out_str = paddle::string::Sprintf(
TENSOR_GRAD_OUT_TEMPLATE, egr::EagerUtils::TensorStr(grad_out));
input_str += input_grad_out_str;
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
VLOG(3) << paddle::string::Sprintf(INPUT_PRINT_TEMPLATE, input_str);
}
// Call grad_api function
if (paddle::prim::PrimCommonUtils::IsEagerPrimEnabled()) {
bool original_global_grad = egr::Controller::Instance().HasGrad();
if (!create_graph) {
egr::Controller::Instance().SetHasGrad(create_graph);
}
paddle::prim::multiply_grad<paddle::Tensor>(
x, y, grad_out, axis, api_output_0, api_output_1);
VLOG(4) << "Composite api multiply_grad is called ";
if (!create_graph) {
egr::Controller::Instance().SetHasGrad(original_global_grad);
}
} else {
paddle::experimental::multiply_grad(
x, y, grad_out, axis, api_output_0, api_output_1);
VLOG(4) << "Fused api multiply_grad is called ";
}
// Check NaN and Inf id needed
if (FLAGS_check_nan_inf) {
try {
egr::CheckTensorHasNanOrInf("multiply_grad", returns);
} catch (...) {
LOG(WARNING) << "There are nan/inf in (multiply_grad)";
std::rethrow_exception(std::current_exception());
}
}
// Get GradOut autograd_meta
auto& grad_x = returns[0][0];
egr::AutogradMeta* grad_x_autograd_meta =
returns[0][0].initialized() ? egr::EagerUtils::autograd_meta(&grad_x)
: nullptr;
if (grad_x_autograd_meta) grad_x_autograd_meta->SetStopGradient(false);
auto& grad_y = returns[1][0];
egr::AutogradMeta* grad_y_autograd_meta =
returns[1][0].initialized() ? egr::EagerUtils::autograd_meta(&grad_y)
: nullptr;
if (grad_y_autograd_meta) grad_y_autograd_meta->SetStopGradient(false);
// Create Grad Node
if (!paddle::prim::PrimCommonUtils::IsEagerPrimEnabled()) {
if (trace_backward) {
paddle::platform::RecordEvent node_creation_record_event(
"multiply_grad node_creation",
paddle::platform::TracerEventType::OperatorInner,
1);
// Node Construction
auto grad_node = std::shared_ptr<MultiplyDoubleGradNode>(
new MultiplyDoubleGradNode(2, 3));
// SetAttributes if needed
grad_node->SetAttributeaxis(axis);
// Set TensorWrappers for Forward Inputs if needed
grad_node->SetTensorWrapperx(x);
grad_node->SetTensorWrappery(y);
grad_node->SetTensorWrappergrad_out(grad_out);
// SetGradOutMeta & SetEdges
grad_node->SetGradOutMeta(x, 0);
grad_node->SetGradOutMeta(y, 1);
grad_node->SetGradOutMeta(grad_out, 2);
// SetOutRank & SetHistory & SetGradInMeta
if (grad_x_autograd_meta) {
egr::EagerUtils::SetOutRankWithSlot(grad_x_autograd_meta, 0);
}
if (grad_y_autograd_meta) {
egr::EagerUtils::SetOutRankWithSlot(grad_y_autograd_meta, 1);
}
if (grad_x_autograd_meta) {
egr::EagerUtils::SetHistory(grad_x_autograd_meta, grad_node);
}
if (grad_y_autograd_meta) {
egr::EagerUtils::SetHistory(grad_y_autograd_meta, grad_node);
}
grad_node->SetGradInMeta(grad_x, 0);
grad_node->SetGradInMeta(grad_y, 1);
// Set TensorWrappers for Forward Outputs if needed
}
}
VLOG(4) << "Finish AD API GRAD: multiply_grad";
// LOG IF DEBUG
if (VLOG_IS_ON(4)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s], \n Output: [%s] } ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_GRAD_OUT_TEMPLATE = " \n( grad_out , [%s]), ";
std::string input_grad_out_str = paddle::string::Sprintf(
TENSOR_GRAD_OUT_TEMPLATE, egr::EagerUtils::TensorStr(grad_out));
input_str += input_grad_out_str;
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_GRAD_X_TEMPLATE = " \n ( grad_x , [%s]), ";
std::string output_grad_x_str = paddle::string::Sprintf(
TENSOR_GRAD_X_TEMPLATE, egr::EagerUtils::TensorStr(grad_x));
output_str += output_grad_x_str;
const char* TENSOR_GRAD_Y_TEMPLATE = " \n ( grad_y , [%s]), ";
std::string output_grad_y_str = paddle::string::Sprintf(
TENSOR_GRAD_Y_TEMPLATE, egr::EagerUtils::TensorStr(grad_y));
output_str += output_grad_y_str;
VLOG(4) << paddle::string::Sprintf(
INPUT_PRINT_TEMPLATE, input_str, output_str);
}
// Return
if (NeedComplexToRealConversion()) HandleComplexGradToRealGrad(&returns);
return returns;
}
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
MultiplyDoubleGradNode::operator()(
paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>& grads,
bool create_graph,
bool is_new_grad) {
VLOG(3) << "Running AD API GRAD: "
<< "multiply_double_grad";
// Fill Zero For GradIn Tensors
const auto& input_metas = this->InputMeta();
egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&grads[0][0],
input_metas[0][0]);
egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&grads[1][0],
input_metas[1][0]);
// Apply Gradient Hooks
auto hooked_grads = ApplyGradientHooks(grads);
// Collect GradIn Tensors, Attrs and Recovered TensorWrappers
auto x = egr::EagerUtils::RecoverTensorWrapper(&this->x_);
auto y = egr::EagerUtils::RecoverTensorWrapper(&this->y_);
auto fwd_grad_out = egr::EagerUtils::RecoverTensorWrapper(&this->grad_out_);
auto& fwd_grad_grad_x = hooked_grads[0][0];
paddle::optional<paddle::Tensor> fwd_grad_grad_x_optional;
if (fwd_grad_grad_x.initialized())
fwd_grad_grad_x_optional =
paddle::make_optional<paddle::Tensor>(fwd_grad_grad_x);
auto& fwd_grad_grad_y = hooked_grads[1][0];
paddle::optional<paddle::Tensor> fwd_grad_grad_y_optional;
if (fwd_grad_grad_y.initialized())
fwd_grad_grad_y_optional =
paddle::make_optional<paddle::Tensor>(fwd_grad_grad_y);
auto& axis = this->axis_;
// Prepare Grad function call
const auto& out_metas = OutputMeta();
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
returns(3);
for (int i = 0; i < 3; ++i) {
out_metas[i].size() == 0 ? returns[i].resize(1)
: returns[i].resize(out_metas[i].size());
}
auto* api_output_0 =
(out_metas[0].empty() || out_metas[0][0].IsStopGradient())
? nullptr
: &returns[0][0];
auto* api_output_1 =
(out_metas[1].empty() || out_metas[1][0].IsStopGradient())
? nullptr
: &returns[1][0];
auto* api_output_2 =
(out_metas[2].empty() || out_metas[2][0].IsStopGradient())
? nullptr
: &returns[2][0];
// Runtime check if we need next grad
bool trace_backward = egr::Controller::Instance().HasGrad() && create_graph;
// Inplace Check
bool can_be_inplaced = false;
if (fwd_grad_grad_x.initialized()) {
VLOG(10) << fwd_grad_grad_x.name() << "(grad_x_grad) use_count: "
<< fwd_grad_grad_x.impl().use_count();
if (fwd_grad_grad_x.impl().use_count() == 1 ||
(fwd_grad_grad_x.impl().use_count() == 2 &&
fwd_grad_grad_x.impl().get() == grads[0][0].impl().get())) {
can_be_inplaced = true;
}
}
// Inplace Strategy
if (trace_backward) {
VLOG(6) << "No Inplace should happend for wrappered input: "
"{inplace_grad_input_str}";
} else {
if (api_output_2 != nullptr && can_be_inplaced) {
egr::EagerUtils::HandleViewBetweenInputAndOutput(fwd_grad_grad_x,
api_output_2);
}
}
VLOG(5) << "Running C++ API: "
<< "multiply_double_grad";
// Before log info
if (VLOG_IS_ON(3)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s]} ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_FWD_GRAD_GRAD_X_TEMPLATE =
" \n( fwd_grad_grad_x , [%s]), ";
std::string input_fwd_grad_grad_x_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_GRAD_X_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_x));
input_str += input_fwd_grad_grad_x_str;
const char* TENSOR_FWD_GRAD_GRAD_Y_TEMPLATE =
" \n( fwd_grad_grad_y , [%s]), ";
std::string input_fwd_grad_grad_y_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_GRAD_Y_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_y));
input_str += input_fwd_grad_grad_y_str;
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_FWD_GRAD_OUT_TEMPLATE = " \n( fwd_grad_out , [%s]), ";
std::string input_fwd_grad_out_str = paddle::string::Sprintf(
TENSOR_FWD_GRAD_OUT_TEMPLATE, egr::EagerUtils::TensorStr(fwd_grad_out));
input_str += input_fwd_grad_out_str;
VLOG(3) << paddle::string::Sprintf(INPUT_PRINT_TEMPLATE, input_str);
}
// Call grad_api function
paddle::experimental::multiply_double_grad(x,
y,
fwd_grad_out,
fwd_grad_grad_x_optional,
fwd_grad_grad_y_optional,
axis,
api_output_0,
api_output_1,
api_output_2);
// Check NaN and Inf id needed
if (FLAGS_check_nan_inf) {
try {
egr::CheckTensorHasNanOrInf("multiply_double_grad", returns);
} catch (...) {
LOG(WARNING) << "There are nan/inf in (multiply_double_grad)";
std::rethrow_exception(std::current_exception());
}
}
// Get GradOut autograd_meta
auto& grad_x = returns[0][0];
egr::AutogradMeta* grad_x_autograd_meta =
returns[0][0].initialized() ? egr::EagerUtils::autograd_meta(&grad_x)
: nullptr;
if (grad_x_autograd_meta) grad_x_autograd_meta->SetStopGradient(false);
auto& grad_y = returns[1][0];
egr::AutogradMeta* grad_y_autograd_meta =
returns[1][0].initialized() ? egr::EagerUtils::autograd_meta(&grad_y)
: nullptr;
if (grad_y_autograd_meta) grad_y_autograd_meta->SetStopGradient(false);
auto& grad_grad_out = returns[2][0];
egr::AutogradMeta* grad_grad_out_autograd_meta =
returns[2][0].initialized()
? egr::EagerUtils::autograd_meta(&grad_grad_out)
: nullptr;
if (grad_grad_out_autograd_meta)
grad_grad_out_autograd_meta->SetStopGradient(false);
// Create Grad Node
if (!paddle::prim::PrimCommonUtils::IsEagerPrimEnabled()) {
if (trace_backward) {
paddle::platform::RecordEvent node_creation_record_event(
"multiply_double_grad node_creation",
paddle::platform::TracerEventType::OperatorInner,
1);
// Node Construction
auto grad_node = std::shared_ptr<MultiplyTripleGradNode>(
new MultiplyTripleGradNode(3, 5));
// SetAttributes if needed
grad_node->SetAttributeaxis(-1);
// Set TensorWrappers for Forward Inputs if needed
grad_node->SetTensorWrapperx(x);
grad_node->SetTensorWrappery(y);
grad_node->SetTensorWrapperfwd_grad_out(fwd_grad_out);
grad_node->SetTensorWrapperfwd_grad_grad_x(fwd_grad_grad_x);
grad_node->SetTensorWrapperfwd_grad_grad_y(fwd_grad_grad_y);
// SetGradOutMeta & SetEdges
grad_node->SetGradOutMeta(x, 0);
grad_node->SetGradOutMeta(y, 1);
grad_node->SetGradOutMeta(fwd_grad_out, 2);
grad_node->SetGradOutMeta(fwd_grad_grad_x, 3);
grad_node->SetGradOutMeta(fwd_grad_grad_y, 4);
// SetOutRank & SetHistory & SetGradInMeta
if (grad_x_autograd_meta) {
egr::EagerUtils::SetOutRankWithSlot(grad_x_autograd_meta, 0);
}
if (grad_y_autograd_meta) {
egr::EagerUtils::SetOutRankWithSlot(grad_y_autograd_meta, 1);
}
if (grad_grad_out_autograd_meta) {
egr::EagerUtils::SetOutRankWithSlot(grad_grad_out_autograd_meta, 2);
}
if (grad_x_autograd_meta) {
egr::EagerUtils::SetHistory(grad_x_autograd_meta, grad_node);
}
if (grad_y_autograd_meta) {
egr::EagerUtils::SetHistory(grad_y_autograd_meta, grad_node);
}
if (grad_grad_out_autograd_meta) {
egr::EagerUtils::SetHistory(grad_grad_out_autograd_meta, grad_node);
}
grad_node->SetGradInMeta(grad_x, 0);
grad_node->SetGradInMeta(grad_y, 1);
grad_node->SetGradInMeta(grad_grad_out, 2);
// Set TensorWrappers for Forward Outputs if needed
}
}
VLOG(4) << "Finish AD API GRAD: multiply_double_grad";
// LOG IF DEBUG
if (VLOG_IS_ON(4)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s], \n Output: [%s] } ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_FWD_GRAD_GRAD_X_TEMPLATE =
" \n( fwd_grad_grad_x , [%s]), ";
std::string input_fwd_grad_grad_x_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_GRAD_X_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_x));
input_str += input_fwd_grad_grad_x_str;
const char* TENSOR_FWD_GRAD_GRAD_Y_TEMPLATE =
" \n( fwd_grad_grad_y , [%s]), ";
std::string input_fwd_grad_grad_y_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_GRAD_Y_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_y));
input_str += input_fwd_grad_grad_y_str;
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_FWD_GRAD_OUT_TEMPLATE = " \n( fwd_grad_out , [%s]), ";
std::string input_fwd_grad_out_str = paddle::string::Sprintf(
TENSOR_FWD_GRAD_OUT_TEMPLATE, egr::EagerUtils::TensorStr(fwd_grad_out));
input_str += input_fwd_grad_out_str;
const char* TENSOR_GRAD_X_TEMPLATE = " \n ( grad_x , [%s]), ";
std::string output_grad_x_str = paddle::string::Sprintf(
TENSOR_GRAD_X_TEMPLATE, egr::EagerUtils::TensorStr(grad_x));
output_str += output_grad_x_str;
const char* TENSOR_GRAD_Y_TEMPLATE = " \n ( grad_y , [%s]), ";
std::string output_grad_y_str = paddle::string::Sprintf(
TENSOR_GRAD_Y_TEMPLATE, egr::EagerUtils::TensorStr(grad_y));
output_str += output_grad_y_str;
const char* TENSOR_GRAD_GRAD_OUT_TEMPLATE = " \n ( grad_grad_out , [%s]), ";
std::string output_grad_grad_out_str =
paddle::string::Sprintf(TENSOR_GRAD_GRAD_OUT_TEMPLATE,
egr::EagerUtils::TensorStr(grad_grad_out));
output_str += output_grad_grad_out_str;
VLOG(4) << paddle::string::Sprintf(
INPUT_PRINT_TEMPLATE, input_str, output_str);
}
// Return
if (NeedComplexToRealConversion()) HandleComplexGradToRealGrad(&returns);
return returns;
}
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
MultiplyTripleGradNode::operator()(
paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>& grads,
bool create_graph,
bool is_new_grad) {
VLOG(3) << "Running AD API GRAD: "
<< "multiply_triple_grad";
// Fill Zero For GradIn Tensors
const auto& input_metas = this->InputMeta();
egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&grads[0][0],
input_metas[0][0]);
egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&grads[1][0],
input_metas[1][0]);
egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&grads[2][0],
input_metas[2][0]);
// Apply Gradient Hooks
auto hooked_grads = ApplyGradientHooks(grads);
// Collect GradIn Tensors, Attrs and Recovered TensorWrappers
auto x = egr::EagerUtils::RecoverTensorWrapper(&this->x_);
auto y = egr::EagerUtils::RecoverTensorWrapper(&this->y_);
auto fwd_grad_out =
egr::EagerUtils::RecoverTensorWrapper(&this->fwd_grad_out_);
auto fwd_grad_grad_x =
egr::EagerUtils::RecoverTensorWrapper(&this->fwd_grad_grad_x_);
paddle::optional<paddle::Tensor> fwd_grad_grad_x_optional;
if (fwd_grad_grad_x.impl())
fwd_grad_grad_x_optional =
paddle::make_optional<paddle::Tensor>(fwd_grad_grad_x);
auto fwd_grad_grad_y =
egr::EagerUtils::RecoverTensorWrapper(&this->fwd_grad_grad_y_);
paddle::optional<paddle::Tensor> fwd_grad_grad_y_optional;
if (fwd_grad_grad_y.impl())
fwd_grad_grad_y_optional =
paddle::make_optional<paddle::Tensor>(fwd_grad_grad_y);
auto& grad_x_grad = hooked_grads[0][0];
paddle::optional<paddle::Tensor> grad_x_grad_optional;
if (grad_x_grad.initialized())
grad_x_grad_optional = paddle::make_optional<paddle::Tensor>(grad_x_grad);
auto& grad_y_grad = hooked_grads[1][0];
paddle::optional<paddle::Tensor> grad_y_grad_optional;
if (grad_y_grad.initialized())
grad_y_grad_optional = paddle::make_optional<paddle::Tensor>(grad_y_grad);
auto& grad_grad_out_grad = hooked_grads[2][0];
paddle::optional<paddle::Tensor> grad_grad_out_grad_optional;
if (grad_grad_out_grad.initialized())
grad_grad_out_grad_optional =
paddle::make_optional<paddle::Tensor>(grad_grad_out_grad);
auto& axis = this->axis_;
// Prepare Grad function call
const auto& out_metas = OutputMeta();
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
returns(5);
for (int i = 0; i < 5; ++i) {
out_metas[i].size() == 0 ? returns[i].resize(1)
: returns[i].resize(out_metas[i].size());
}
auto* api_output_0 =
(out_metas[0].empty() || out_metas[0][0].IsStopGradient())
? nullptr
: &returns[0][0];
auto* api_output_1 =
(out_metas[1].empty() || out_metas[1][0].IsStopGradient())
? nullptr
: &returns[1][0];
auto* api_output_2 =
(out_metas[2].empty() || out_metas[2][0].IsStopGradient())
? nullptr
: &returns[2][0];
auto* api_output_3 =
(out_metas[3].empty() || out_metas[3][0].IsStopGradient())
? nullptr
: &returns[3][0];
auto* api_output_4 =
(out_metas[4].empty() || out_metas[4][0].IsStopGradient())
? nullptr
: &returns[4][0];
// Runtime check if we need next grad
bool trace_backward = egr::Controller::Instance().HasGrad() && create_graph;
// Inplace Check
// Inplace Strategy
VLOG(5) << "Running C++ API: "
<< "multiply_triple_grad";
// Before log info
if (VLOG_IS_ON(3)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s]} ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_GRAD_X_GRAD_TEMPLATE = " \n( grad_x_grad , [%s]), ";
std::string input_grad_x_grad_str = paddle::string::Sprintf(
TENSOR_GRAD_X_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(grad_x_grad));
input_str += input_grad_x_grad_str;
const char* TENSOR_GRAD_Y_GRAD_TEMPLATE = " \n( grad_y_grad , [%s]), ";
std::string input_grad_y_grad_str = paddle::string::Sprintf(
TENSOR_GRAD_Y_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(grad_y_grad));
input_str += input_grad_y_grad_str;
const char* TENSOR_GRAD_GRAD_OUT_GRAD_TEMPLATE =
" \n( grad_grad_out_grad , [%s]), ";
std::string input_grad_grad_out_grad_str =
paddle::string::Sprintf(TENSOR_GRAD_GRAD_OUT_GRAD_TEMPLATE,
egr::EagerUtils::TensorStr(grad_grad_out_grad));
input_str += input_grad_grad_out_grad_str;
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_FWD_GRAD_OUT_TEMPLATE = " \n( fwd_grad_out , [%s]), ";
std::string input_fwd_grad_out_str = paddle::string::Sprintf(
TENSOR_FWD_GRAD_OUT_TEMPLATE, egr::EagerUtils::TensorStr(fwd_grad_out));
input_str += input_fwd_grad_out_str;
const char* TENSOR_FWD_GRAD_GRAD_X_TEMPLATE =
" \n( fwd_grad_grad_x , [%s]), ";
std::string input_fwd_grad_grad_x_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_GRAD_X_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_x));
input_str += input_fwd_grad_grad_x_str;
const char* TENSOR_FWD_GRAD_GRAD_Y_TEMPLATE =
" \n( fwd_grad_grad_y , [%s]), ";
std::string input_fwd_grad_grad_y_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_GRAD_Y_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_y));
input_str += input_fwd_grad_grad_y_str;
VLOG(3) << paddle::string::Sprintf(INPUT_PRINT_TEMPLATE, input_str);
}
// Call grad_api function
paddle::experimental::multiply_triple_grad(x,
y,
fwd_grad_out,
fwd_grad_grad_x_optional,
fwd_grad_grad_y_optional,
grad_x_grad_optional,
grad_y_grad_optional,
grad_grad_out_grad_optional,
axis,
api_output_0,
api_output_1,
api_output_2,
api_output_3,
api_output_4);
// Check NaN and Inf id needed
if (FLAGS_check_nan_inf) {
try {
egr::CheckTensorHasNanOrInf("multiply_triple_grad", returns);
} catch (...) {
LOG(WARNING) << "There are nan/inf in (multiply_triple_grad)";
std::rethrow_exception(std::current_exception());
}
}
// Get GradOut autograd_meta
auto& x_grad = returns[0][0];
egr::AutogradMeta* x_grad_autograd_meta =
returns[0][0].initialized() ? egr::EagerUtils::autograd_meta(&x_grad)
: nullptr;
if (x_grad_autograd_meta) x_grad_autograd_meta->SetStopGradient(false);
auto& y_grad = returns[1][0];
egr::AutogradMeta* y_grad_autograd_meta =
returns[1][0].initialized() ? egr::EagerUtils::autograd_meta(&y_grad)
: nullptr;
if (y_grad_autograd_meta) y_grad_autograd_meta->SetStopGradient(false);
auto& fwd_grad_out_grad = returns[2][0];
egr::AutogradMeta* fwd_grad_out_grad_autograd_meta =
returns[2][0].initialized()
? egr::EagerUtils::autograd_meta(&fwd_grad_out_grad)
: nullptr;
if (fwd_grad_out_grad_autograd_meta)
fwd_grad_out_grad_autograd_meta->SetStopGradient(false);
auto& fwd_grad_grad_x_grad = returns[3][0];
egr::AutogradMeta* fwd_grad_grad_x_grad_autograd_meta =
returns[3][0].initialized()
? egr::EagerUtils::autograd_meta(&fwd_grad_grad_x_grad)
: nullptr;
if (fwd_grad_grad_x_grad_autograd_meta)
fwd_grad_grad_x_grad_autograd_meta->SetStopGradient(false);
auto& fwd_grad_grad_y_grad = returns[4][0];
egr::AutogradMeta* fwd_grad_grad_y_grad_autograd_meta =
returns[4][0].initialized()
? egr::EagerUtils::autograd_meta(&fwd_grad_grad_y_grad)
: nullptr;
if (fwd_grad_grad_y_grad_autograd_meta)
fwd_grad_grad_y_grad_autograd_meta->SetStopGradient(false);
// Create Grad Node
if (trace_backward) {
PADDLE_THROW(phi::errors::Unavailable(
"The Op multiply_triple_grad doesn't have any grad"
"op. If you don't intend calculating higher order"
"derivatives, please set `create_graph`to False."));
}
VLOG(4) << "Finish AD API GRAD: multiply_triple_grad";
// LOG IF DEBUG
if (VLOG_IS_ON(4)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s], \n Output: [%s] } ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_GRAD_X_GRAD_TEMPLATE = " \n( grad_x_grad , [%s]), ";
std::string input_grad_x_grad_str = paddle::string::Sprintf(
TENSOR_GRAD_X_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(grad_x_grad));
input_str += input_grad_x_grad_str;
const char* TENSOR_GRAD_Y_GRAD_TEMPLATE = " \n( grad_y_grad , [%s]), ";
std::string input_grad_y_grad_str = paddle::string::Sprintf(
TENSOR_GRAD_Y_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(grad_y_grad));
input_str += input_grad_y_grad_str;
const char* TENSOR_GRAD_GRAD_OUT_GRAD_TEMPLATE =
" \n( grad_grad_out_grad , [%s]), ";
std::string input_grad_grad_out_grad_str =
paddle::string::Sprintf(TENSOR_GRAD_GRAD_OUT_GRAD_TEMPLATE,
egr::EagerUtils::TensorStr(grad_grad_out_grad));
input_str += input_grad_grad_out_grad_str;
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_FWD_GRAD_OUT_TEMPLATE = " \n( fwd_grad_out , [%s]), ";
std::string input_fwd_grad_out_str = paddle::string::Sprintf(
TENSOR_FWD_GRAD_OUT_TEMPLATE, egr::EagerUtils::TensorStr(fwd_grad_out));
input_str += input_fwd_grad_out_str;
const char* TENSOR_FWD_GRAD_GRAD_X_TEMPLATE =
" \n( fwd_grad_grad_x , [%s]), ";
std::string input_fwd_grad_grad_x_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_GRAD_X_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_x));
input_str += input_fwd_grad_grad_x_str;
const char* TENSOR_FWD_GRAD_GRAD_Y_TEMPLATE =
" \n( fwd_grad_grad_y , [%s]), ";
std::string input_fwd_grad_grad_y_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_GRAD_Y_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_y));
input_str += input_fwd_grad_grad_y_str;
const char* TENSOR_X_GRAD_TEMPLATE = " \n ( x_grad , [%s]), ";
std::string output_x_grad_str = paddle::string::Sprintf(
TENSOR_X_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(x_grad));
output_str += output_x_grad_str;
const char* TENSOR_Y_GRAD_TEMPLATE = " \n ( y_grad , [%s]), ";
std::string output_y_grad_str = paddle::string::Sprintf(
TENSOR_Y_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(y_grad));
output_str += output_y_grad_str;
const char* TENSOR_FWD_GRAD_OUT_GRAD_TEMPLATE =
" \n ( fwd_grad_out_grad , [%s]), ";
std::string output_fwd_grad_out_grad_str =
paddle::string::Sprintf(TENSOR_FWD_GRAD_OUT_GRAD_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_out_grad));
output_str += output_fwd_grad_out_grad_str;
const char* TENSOR_FWD_GRAD_GRAD_X_GRAD_TEMPLATE =
" \n ( fwd_grad_grad_x_grad , [%s]), ";
std::string output_fwd_grad_grad_x_grad_str = paddle::string::Sprintf(
TENSOR_FWD_GRAD_GRAD_X_GRAD_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_x_grad));
output_str += output_fwd_grad_grad_x_grad_str;
const char* TENSOR_FWD_GRAD_GRAD_Y_GRAD_TEMPLATE =
" \n ( fwd_grad_grad_y_grad , [%s]), ";
std::string output_fwd_grad_grad_y_grad_str = paddle::string::Sprintf(
TENSOR_FWD_GRAD_GRAD_Y_GRAD_TEMPLATE,
egr::EagerUtils::TensorStr(fwd_grad_grad_y_grad));
output_str += output_fwd_grad_grad_y_grad_str;
VLOG(4) << paddle::string::Sprintf(
INPUT_PRINT_TEMPLATE, input_str, output_str);
}
// Return
if (NeedComplexToRealConversion()) HandleComplexGradToRealGrad(&returns);
return returns;
}
namespace sparse {
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
MultiplyGradNode::operator()(
paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>& grads,
bool create_graph,
bool is_new_grad) {
VLOG(3) << "Running AD API GRAD: "
<< "multiply_grad";
// Fill Zero For GradIn Tensors
const auto& input_metas = this->InputMeta();
egr::EagerUtils::FillZeroForEmptyGradInput(&grads[0][0], input_metas[0][0]);
// Apply Gradient Hooks
auto hooked_grads = ApplyGradientHooks(grads);
// Collect GradIn Tensors, Attrs and Recovered TensorWrappers
auto x = egr::EagerUtils::RecoverTensorWrapper(&this->x_);
auto y = egr::EagerUtils::RecoverTensorWrapper(&this->y_);
auto& out_grad = hooked_grads[0][0];
// Prepare Grad function call
const auto& out_metas = OutputMeta();
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
returns(2);
for (int i = 0; i < 2; ++i) {
out_metas[i].size() == 0 ? returns[i].resize(1)
: returns[i].resize(out_metas[i].size());
}
auto* api_output_0 =
(out_metas[0].empty() || out_metas[0][0].IsStopGradient())
? nullptr
: &returns[0][0];
auto* api_output_1 =
(out_metas[1].empty() || out_metas[1][0].IsStopGradient())
? nullptr
: &returns[1][0];
// Runtime check if we need next grad
bool trace_backward = egr::Controller::Instance().HasGrad() && create_graph;
// Inplace Check
// Inplace Strategy
VLOG(5) << "Running C++ API: "
<< "multiply_grad";
// Before log info
if (VLOG_IS_ON(3)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s]} ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_OUT_GRAD_TEMPLATE = " \n( out_grad , [%s]), ";
std::string input_out_grad_str = paddle::string::Sprintf(
TENSOR_OUT_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(out_grad));
input_str += input_out_grad_str;
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
VLOG(3) << paddle::string::Sprintf(INPUT_PRINT_TEMPLATE, input_str);
}
// Call grad_api function
paddle::experimental::sparse::multiply_grad(
x, y, out_grad, api_output_0, api_output_1);
// Check NaN and Inf id needed
if (FLAGS_check_nan_inf) {
try {
egr::CheckTensorHasNanOrInf("multiply_grad", returns);
} catch (...) {
LOG(WARNING) << "There are nan/inf in (multiply_grad)";
std::rethrow_exception(std::current_exception());
}
}
// Get GradOut autograd_meta
auto& x_grad = returns[0][0];
egr::AutogradMeta* x_grad_autograd_meta =
returns[0][0].initialized() ? egr::EagerUtils::autograd_meta(&x_grad)
: nullptr;
if (x_grad_autograd_meta) x_grad_autograd_meta->SetStopGradient(false);
auto& y_grad = returns[1][0];
egr::AutogradMeta* y_grad_autograd_meta =
returns[1][0].initialized() ? egr::EagerUtils::autograd_meta(&y_grad)
: nullptr;
if (y_grad_autograd_meta) y_grad_autograd_meta->SetStopGradient(false);
// Create Grad Node
if (trace_backward) {
PADDLE_THROW(phi::errors::Unavailable(
"The Op multiply_grad doesn't have any grad"
"op. If you don't intend calculating higher order"
"derivatives, please set `create_graph`to False."));
}
VLOG(4) << "Finish AD API GRAD: multiply_grad";
// LOG IF DEBUG
if (VLOG_IS_ON(4)) {
const char* INPUT_PRINT_TEMPLATE = "{ Input: [%s], \n Output: [%s] } ";
std::string input_str = "";
std::string output_str = "";
const char* TENSOR_OUT_GRAD_TEMPLATE = " \n( out_grad , [%s]), ";
std::string input_out_grad_str = paddle::string::Sprintf(
TENSOR_OUT_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(out_grad));
input_str += input_out_grad_str;
const char* TENSOR_X_TEMPLATE = " \n( x , [%s]), ";
std::string input_x_str = paddle::string::Sprintf(
TENSOR_X_TEMPLATE, egr::EagerUtils::TensorStr(x));
input_str += input_x_str;
const char* TENSOR_Y_TEMPLATE = " \n( y , [%s]), ";
std::string input_y_str = paddle::string::Sprintf(
TENSOR_Y_TEMPLATE, egr::EagerUtils::TensorStr(y));
input_str += input_y_str;
const char* TENSOR_X_GRAD_TEMPLATE = " \n ( x_grad , [%s]), ";
std::string output_x_grad_str = paddle::string::Sprintf(
TENSOR_X_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(x_grad));
output_str += output_x_grad_str;
const char* TENSOR_Y_GRAD_TEMPLATE = " \n ( y_grad , [%s]), ";
std::string output_y_grad_str = paddle::string::Sprintf(
TENSOR_Y_GRAD_TEMPLATE, egr::EagerUtils::TensorStr(y_grad));
output_str += output_y_grad_str;
VLOG(4) << paddle::string::Sprintf(
INPUT_PRINT_TEMPLATE, input_str, output_str);
}
// Return
if (NeedComplexToRealConversion()) HandleComplexGradToRealGrad(&returns);
return returns;
}
} // namespace sparse
......@@ -205,6 +205,177 @@ class AddNGradNodeFinal : public egr::GradNodeBase {
// Attributes
};
class MultiplyGradNode : public egr::GradNodeBase {
public:
MultiplyGradNode() : egr::GradNodeBase() {}
MultiplyGradNode(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
: egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
~MultiplyGradNode() override = default;
virtual paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>
operator()(paddle::small_vector<std::vector<paddle::Tensor>, // NOLINT
egr::kSlotSmallVectorSize>& grads, // NOLINT
bool create_graph = false,
bool is_new_grad = false) override;
std::string name() override { return "MultiplyGradNode"; }
void ClearTensorWrappers() override {
x_.clear();
y_.clear();
SetIsTensorWrappersCleared(true);
}
std::shared_ptr<GradNodeBase> Copy() const override {
auto copied_node =
std::shared_ptr<MultiplyGradNode>(new MultiplyGradNode(*this));
return copied_node;
}
// SetTensorWrapperX, SetTensorWrapperY, ...
void SetTensorWrapperx(const paddle::Tensor& x) {
x_ = egr::TensorWrapper(x, false);
}
void SetTensorWrappery(const paddle::Tensor& y) {
y_ = egr::TensorWrapper(y, false);
}
void SetTensorWrapperNoNeedBufferx(const paddle::Tensor& x) {
x_ = egr::TensorWrapper(x, true);
}
void SetTensorWrapperNoNeedBuffery(const paddle::Tensor& y) {
y_ = egr::TensorWrapper(y, true);
}
// SetAttributes
void SetAttributeaxis(const int& axis) { axis_ = axis; }
private:
// TensorWrappers
egr::TensorWrapper x_;
egr::TensorWrapper y_;
// Attributes
int axis_ = -1;
};
class MultiplyDoubleGradNode : public egr::GradNodeBase {
public:
MultiplyDoubleGradNode() : egr::GradNodeBase() {}
MultiplyDoubleGradNode(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
: egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
~MultiplyDoubleGradNode() override = default;
virtual paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>
operator()(paddle::small_vector<std::vector<paddle::Tensor>, // NOLINT
egr::kSlotSmallVectorSize>& grads, // NOLINT
bool create_graph = false,
bool is_new_grad = false) override;
std::string name() override { return "MultiplyDoubleGradNode"; }
void ClearTensorWrappers() override {
x_.clear();
y_.clear();
grad_out_.clear();
SetIsTensorWrappersCleared(true);
}
std::shared_ptr<GradNodeBase> Copy() const override {
auto copied_node = std::shared_ptr<MultiplyDoubleGradNode>(
new MultiplyDoubleGradNode(*this));
return copied_node;
}
// SetTensorWrapperX, SetTensorWrapperY, ...
void SetTensorWrapperx(const paddle::Tensor& x) {
x_ = egr::TensorWrapper(x, false);
}
void SetTensorWrappery(const paddle::Tensor& y) {
y_ = egr::TensorWrapper(y, false);
}
void SetTensorWrappergrad_out(const paddle::Tensor& grad_out) {
grad_out_ = egr::TensorWrapper(grad_out, false);
}
// SetAttributes
void SetAttributeaxis(const int& axis) { axis_ = axis; }
private:
// TensorWrappers
egr::TensorWrapper x_;
egr::TensorWrapper y_;
egr::TensorWrapper grad_out_;
// Attributes
int axis_ = -1;
};
class MultiplyTripleGradNode : public egr::GradNodeBase {
public:
MultiplyTripleGradNode() : egr::GradNodeBase() {}
MultiplyTripleGradNode(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
: egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
~MultiplyTripleGradNode() override = default;
virtual paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>
operator()(paddle::small_vector<std::vector<paddle::Tensor>, // NOLINT
egr::kSlotSmallVectorSize>& grads, // NOLINT
bool create_graph = false,
bool is_new_grad = false) override;
std::string name() override { return "MultiplyTripleGradNode"; }
void ClearTensorWrappers() override {
x_.clear();
y_.clear();
fwd_grad_out_.clear();
fwd_grad_grad_x_.clear();
fwd_grad_grad_y_.clear();
SetIsTensorWrappersCleared(true);
}
std::shared_ptr<GradNodeBase> Copy() const override {
auto copied_node = std::shared_ptr<MultiplyTripleGradNode>(
new MultiplyTripleGradNode(*this));
return copied_node;
}
// SetTensorWrapperX, SetTensorWrapperY, ...
void SetTensorWrapperx(const paddle::Tensor& x) {
x_ = egr::TensorWrapper(x, false);
}
void SetTensorWrappery(const paddle::Tensor& y) {
y_ = egr::TensorWrapper(y, false);
}
void SetTensorWrapperfwd_grad_out(const paddle::Tensor& fwd_grad_out) {
fwd_grad_out_ = egr::TensorWrapper(fwd_grad_out, false);
}
void SetTensorWrapperfwd_grad_grad_x(const paddle::Tensor& fwd_grad_grad_x) {
fwd_grad_grad_x_ = egr::TensorWrapper(fwd_grad_grad_x, false);
}
void SetTensorWrapperfwd_grad_grad_y(const paddle::Tensor& fwd_grad_grad_y) {
fwd_grad_grad_y_ = egr::TensorWrapper(fwd_grad_grad_y, false);
}
// SetAttributes
void SetAttributeaxis(const int& axis) { axis_ = axis; }
private:
// TensorWrappers
egr::TensorWrapper x_;
egr::TensorWrapper y_;
egr::TensorWrapper fwd_grad_out_;
egr::TensorWrapper fwd_grad_grad_x_;
egr::TensorWrapper fwd_grad_grad_y_;
// Attributes
int axis_ = -1;
};
class SyncBatchNormGradNode : public egr::GradNodeBase {
public:
SyncBatchNormGradNode() : egr::GradNodeBase() {}
......@@ -374,4 +545,50 @@ class SyncBatchNormGradNode : public egr::GradNodeBase {
bool trainable_statistics_;
};
class MultiplyGradNode : public egr::GradNodeBase {
public:
MultiplyGradNode() : egr::GradNodeBase() {}
MultiplyGradNode(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
: egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
~MultiplyGradNode() override = default;
virtual paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>
operator()(paddle::small_vector<std::vector<paddle::Tensor>, // NOLINT
egr::kSlotSmallVectorSize>& grads, // NOLINT
bool create_graph = false,
bool is_new_grad = false) override;
std::string name() override { return "MultiplyGradNode"; }
void ClearTensorWrappers() override {
x_.clear();
y_.clear();
SetIsTensorWrappersCleared(true);
}
std::shared_ptr<GradNodeBase> Copy() const override {
auto copied_node =
std::shared_ptr<MultiplyGradNode>(new MultiplyGradNode(*this));
return copied_node;
}
// SetTensorWrapperX, SetTensorWrapperY, ...
void SetTensorWrapperx(const paddle::Tensor& x) {
x_ = egr::TensorWrapper(x, false);
}
void SetTensorWrappery(const paddle::Tensor& y) {
y_ = egr::TensorWrapper(y, false);
}
// SetAttributes
private:
// TensorWrappers
egr::TensorWrapper x_;
egr::TensorWrapper y_;
// Attributes
};
} // namespace sparse
......@@ -58,6 +58,8 @@ black_ops_list = [
"add_n",
"add_n_grad",
"sync_batch_norm_",
"multiply",
"multiply_grad",
]
......
......@@ -166,6 +166,7 @@ PYTHON_C_WRAPPER_TEMPLATE = """
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/pybind/op_function_common.h"
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
#include "paddle/fluid/eager/api/manual/eager_manual/dygraph_forward_api.h"
#include "paddle/fluid/pybind/eager_custom_python_api.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/eager/amp_utils.h"
......
......@@ -351,6 +351,7 @@ def eager_source_include():
return """
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
#include "paddle/fluid/eager/api/manual/eager_manual/dygraph_forward_api.h"
#include "paddle/fluid/prim/api/generated_prim/prim_generated_api.h"
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册