Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4d42f4fa
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d42f4fa
编写于
3月 10, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
263b4773
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
874 addition
and
913 deletion
+874
-913
paddle/fluid/operators/lu_op.h
paddle/fluid/operators/lu_op.h
+10
-7
paddle/fluid/operators/set_value_op.h
paddle/fluid/operators/set_value_op.h
+6
-4
paddle/fluid/operators/slice_op.cc
paddle/fluid/operators/slice_op.cc
+9
-6
paddle/fluid/operators/slice_op.h
paddle/fluid/operators/slice_op.h
+0
-1
paddle/phi/kernels/cpu/slice_grad_kernel.cc
paddle/phi/kernels/cpu/slice_grad_kernel.cc
+1
-2
paddle/phi/kernels/funcs/slice_utils.h
paddle/phi/kernels/funcs/slice_utils.h
+3
-0
paddle/phi/kernels/gpu/slice_grad_kernel.cu
paddle/phi/kernels/gpu/slice_grad_kernel.cu
+0
-33
paddle/phi/kernels/gpu/slice_kernel.cu.cc
paddle/phi/kernels/gpu/slice_kernel.cu.cc
+2
-1
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
+123
-116
paddle/phi/kernels/impl/slice_kernel_impl.h
paddle/phi/kernels/impl/slice_kernel_impl.h
+4
-4
python/paddle/fluid/tests/unittests/test_slice_op.py
python/paddle/fluid/tests/unittests/test_slice_op.py
+716
-739
未找到文件。
paddle/fluid/operators/lu_op.h
浏览文件 @
4d42f4fa
...
...
@@ -41,9 +41,12 @@ void SetValueCompute(const framework::ExecutionContext& ctx,
auto
dtype
=
framework
::
TransToProtoVarType
(
in
->
dtype
());
auto
in_dims
=
in
->
dims
();
CheckAndUpdateSliceAttrs
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
&
steps
);
auto
slice_dims
=
GetSliceDims
(
in_dims
,
axes
,
*
starts
,
*
ends
,
&
steps
);
auto
decrease_slice_dims
=
GetDecreasedDims
(
slice_dims
,
decrease_axes
);
phi
::
funcs
::
CheckAndUpdateSliceAttrs
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
&
steps
);
auto
slice_dims
=
phi
::
funcs
::
GetSliceDims
(
in_dims
,
axes
,
*
starts
,
*
ends
,
&
steps
);
auto
decrease_slice_dims
=
phi
::
funcs
::
GetDecreasedDims
(
slice_dims
,
decrease_axes
);
auto
slice_dims_for_assign
=
decrease_slice_dims
;
if
(
!
none_axes
.
empty
())
{
...
...
@@ -281,10 +284,10 @@ void SliceCompute(const framework::ExecutionContext& ctx,
}
}
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
GetSliceDims
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
out_dims
=
GetDecreasedDims
(
slice_dims
,
decrease_axis
);
phi
::
funcs
::
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
phi
::
funcs
::
GetSliceDims
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
out_dims
=
phi
::
funcs
::
GetDecreasedDims
(
slice_dims
,
decrease_axis
);
// 2.2 Get output
auto
offsets
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
...
...
paddle/fluid/operators/set_value_op.h
浏览文件 @
4d42f4fa
...
...
@@ -25,10 +25,10 @@
#include "paddle/fluid/operators/assign_value_op.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/slice_utils.h"
#include "paddle/fluid/operators/strided_slice_op.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -188,9 +188,11 @@ class SetValueKernel : public framework::OpKernel<T> {
}
auto
in_dims
=
in
->
dims
();
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
,
&
steps
);
auto
slice_dims
=
GetSliceDims
(
in_dims
,
axes
,
starts
,
ends
,
&
steps
);
auto
decrease_slice_dims
=
GetDecreasedDims
(
slice_dims
,
decrease_axes
);
phi
::
funcs
::
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
,
&
steps
);
auto
slice_dims
=
phi
::
funcs
::
GetSliceDims
(
in_dims
,
axes
,
starts
,
ends
,
&
steps
);
auto
decrease_slice_dims
=
phi
::
funcs
::
GetDecreasedDims
(
slice_dims
,
decrease_axes
);
auto
slice_dims_for_assign
=
decrease_slice_dims
;
if
(
!
none_axes
.
empty
())
{
...
...
paddle/fluid/operators/slice_op.cc
浏览文件 @
4d42f4fa
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/phi/kernels/funcs/slice_utils.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -101,15 +102,17 @@ class SliceOp : public framework::OperatorWithKernel {
"The size of ends must be equal to the size of axes."
));
}
CheckAndUpdateSliceAttrs
<
int
>
(
in_dims
,
axes
,
&
starts
,
&
ends
,
nullptr
,
&
infer_flags
);
phi
::
funcs
::
CheckAndUpdateSliceAttrs
<
int
>
(
in_dims
,
axes
,
&
starts
,
&
ends
,
nullptr
,
&
infer_flags
);
auto
slice_dims
=
GetSliceDims
<
int
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
&
infer_flags
);
auto
slice_dims
=
phi
::
funcs
::
GetSliceDims
<
int
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
&
infer_flags
);
if
(
ctx
->
IsRuntime
())
{
out_dims
=
GetDecreasedDims
<
int
>
(
slice_dims
,
decrease_axis
,
&
infer_flags
);
out_dims
=
phi
::
funcs
::
GetDecreasedDims
<
int
>
(
slice_dims
,
decrease_axis
,
&
infer_flags
);
}
else
{
out_dims
=
GetDecreasedDims
<
int
>
(
slice_dims
,
decrease_axis
,
nullptr
);
out_dims
=
phi
::
funcs
::
GetDecreasedDims
<
int
>
(
slice_dims
,
decrease_axis
,
nullptr
);
}
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
...
...
paddle/fluid/operators/slice_op.h
浏览文件 @
4d42f4fa
...
...
@@ -18,7 +18,6 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/slice_utils.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/phi/kernels/funcs/math_function.h"
...
...
paddle/phi/kernels/cpu/slice_grad_kernel.cc
浏览文件 @
4d42f4fa
...
...
@@ -29,5 +29,4 @@ PD_REGISTER_KERNEL(slice_grad,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
float16
)
{}
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/funcs/slice_utils.h
浏览文件 @
4d42f4fa
...
...
@@ -19,6 +19,8 @@ limitations under the License. */
namespace
phi
{
namespace
funcs
{
template
<
typename
T
=
int64_t
>
inline
void
CheckAndUpdateSliceAttrs
(
const
DDim
in_dims
,
const
std
::
vector
<
T
>&
axes
,
...
...
@@ -161,4 +163,5 @@ inline DDim GetDecreasedDims(const DDim slice_dims,
return
decreased_dims
;
}
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/gpu/slice_grad_kernel.cu
已删除
100644 → 0
浏览文件 @
263b4773
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/impl/slice_grad_kernel_impl.h"
#include "paddle/phi/kernels/slice_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
slice_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
SliceGradRawKernel
,
bool
,
int
,
int64_t
,
float
,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/gpu/slice_kernel.cu.cc
浏览文件 @
4d42f4fa
...
...
@@ -29,4 +29,5 @@ PD_REGISTER_KERNEL(slice,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
,
phi
::
dtype
::
bfloat16
)
{}
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
浏览文件 @
4d42f4fa
...
...
@@ -66,136 +66,143 @@ void EigenPaddingCompute(
// if dimension less than 3, cannot reduce dimension
LaunchEigenPadding
<
T
,
Context
,
D
>
(
context
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
}
// } else { // else we can reduce dimension
// // count not-zero padding number, and record the dimension
// int need_pad_num = 0, pad_dim = -1;
// for (size_t i = 0; i < D; i++) {
// if (paddings[i].first != 0 || paddings[i].second != 0) {
// need_pad_num++;
// pad_dim = i;
// }
// }
}
else
{
// else we can reduce dimension
// count not-zero padding number, and record the dimension
int
need_pad_num
=
0
,
pad_dim
=
-
1
;
for
(
size_t
i
=
0
;
i
<
D
;
i
++
)
{
if
(
paddings
[
i
].
first
!=
0
||
paddings
[
i
].
second
!=
0
)
{
need_pad_num
++
;
pad_dim
=
i
;
}
}
//
if (need_pad_num == 1) {
//
// only need padding one dimension, we can reduce dimension.
//
// only the padding dimension is available for us.
//
// How to reduce dimension(5 to 3 for example):
//
// before(D=5):
//
// in_dims: [x1, x2, x3, x4, x5]
//
// padding.first: [0, 0, a, 0, 0]
//
// padding.second: [0, 0, b, 0, 0]
//
// | |
//
// V V
//
// after(D=3):
//
// reshaped_in_dims: [x1*x2, x3, x4*x5]
//
// reshaped_padding.first: [0, a, 0]
//
// reshaped_padding.second: [0, b, 0]
if
(
need_pad_num
==
1
)
{
// only need padding one dimension, we can reduce dimension.
// only the padding dimension is available for us.
// How to reduce dimension(5 to 3 for example):
// before(D=5):
// in_dims: [x1, x2, x3, x4, x5]
// padding.first: [0, 0, a, 0, 0]
// padding.second: [0, 0, b, 0, 0]
// | |
// V V
// after(D=3):
// reshaped_in_dims: [x1*x2, x3, x4*x5]
// reshaped_padding.first: [0, a, 0]
// reshaped_padding.second: [0, b, 0]
//
if (pad_dim == D - 1) {
//
// only last dimension need padding,
//
// reshape the dimension of tensor in 2: [preceding, padding]
//
std::vector<int64_t> in_tore_shape(2, 1), out_tore_shape(2, 1);
//
Eigen::array<std::pair<int64_t, int64_t>, 2> reshaped_padding;
if
(
pad_dim
==
D
-
1
)
{
// only last dimension need padding,
// reshape the dimension of tensor in 2: [preceding, padding]
std
::
vector
<
int64_t
>
in_tore_shape
(
2
,
1
),
out_tore_shape
(
2
,
1
);
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
2
>
reshaped_padding
;
//
// first dimension is the accumulate of preceding dimension
//
for (int i = 0; i < pad_dim; i++) {
//
in_tore_shape[0] *= in_dims[i];
//
out_tore_shape[0] *= out_dims[i];
//
}
//
// second dimension is the padding dimension
//
in_tore_shape[1] = in_dims[pad_dim];
//
out_tore_shape[1] = out_dims[pad_dim];
// first dimension is the accumulate of preceding dimension
for
(
int
i
=
0
;
i
<
pad_dim
;
i
++
)
{
in_tore_shape
[
0
]
*=
in_dims
[
i
];
out_tore_shape
[
0
]
*=
out_dims
[
i
];
}
// second dimension is the padding dimension
in_tore_shape
[
1
]
=
in_dims
[
pad_dim
];
out_tore_shape
[
1
]
=
out_dims
[
pad_dim
];
//
// convert array from std::vector to DDim
//
DDim reshaped_in_dims = make_ddim(in_tore_shape);
//
DDim reshaped_out_dims = make_ddim(out_tore_shape);
// convert array from std::vector to DDim
DDim
reshaped_in_dims
=
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
make_ddim
(
out_tore_shape
);
//
// after reshape: the first dimension do not need padding,
//
// set padding[0] zero
//
reshaped_padding[0].first = reshaped_padding[0].second = 0;
//
// the second dimension is the previous padding dimension
//
reshaped_padding[1].first = paddings[pad_dim].first;
//
reshaped_padding[1].second = paddings[pad_dim].second;
// after reshape: the first dimension do not need padding,
// set padding[0] zero
reshaped_padding
[
0
].
first
=
reshaped_padding
[
0
].
second
=
0
;
// the second dimension is the previous padding dimension
reshaped_padding
[
1
].
first
=
paddings
[
pad_dim
].
first
;
reshaped_padding
[
1
].
second
=
paddings
[
pad_dim
].
second
;
// LaunchEigenPadding<T, Context, D>(context, d_input, reshaped_in_dims,
// d_out,
// reshaped_out_dims, reshaped_padding);
// } else if (pad_dim == 0) {
// // only first dimension need padding,
// // reshape the dimension of tensor in 2: [padding, succeeding]
// // similar to (D - 1)
// std::vector<int64_t> in_tore_shape(2, 1), out_tore_shape(2, 1);
// Eigen::array<std::pair<int64_t, int64_t>, 2> reshaped_padding;
LaunchEigenPadding
<
T
,
Context
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
}
else
if
(
pad_dim
==
0
)
{
// only first dimension need padding,
// reshape the dimension of tensor in 2: [padding, succeeding]
// similar to (D - 1)
std
::
vector
<
int64_t
>
in_tore_shape
(
2
,
1
),
out_tore_shape
(
2
,
1
);
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
2
>
reshaped_padding
;
//
// first dimension is the padding dimension
//
in_tore_shape[0] = in_dims[pad_dim];
//
out_tore_shape[0] = out_dims[pad_dim];
//
// sencond dimension is the accumulate of succeeding dimension
//
for (size_t i = pad_dim + 1; i < D; i++) {
//
in_tore_shape[1] *= in_dims[i];
//
out_tore_shape[1] *= out_dims[i];
//
}
// first dimension is the padding dimension
in_tore_shape
[
0
]
=
in_dims
[
pad_dim
];
out_tore_shape
[
0
]
=
out_dims
[
pad_dim
];
// sencond dimension is the accumulate of succeeding dimension
for
(
size_t
i
=
pad_dim
+
1
;
i
<
D
;
i
++
)
{
in_tore_shape
[
1
]
*=
in_dims
[
i
];
out_tore_shape
[
1
]
*=
out_dims
[
i
];
}
//
// convert array from std::vector to DDim
//
DDim reshaped_in_dims = make_ddim(in_tore_shape);
//
DDim reshaped_out_dims = make_ddim(out_tore_shape);
// convert array from std::vector to DDim
DDim
reshaped_in_dims
=
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
make_ddim
(
out_tore_shape
);
//
// after reshape:
//
// the first dimension is the previous padding dimension
//
reshaped_padding[0].first = paddings[pad_dim].first;
//
reshaped_padding[0].second = paddings[pad_dim].second;
//
// the second dimension do not need padding, set padding[1] zero
//
reshaped_padding[1].first = reshaped_padding[1].second = 0;
// after reshape:
// the first dimension is the previous padding dimension
reshaped_padding
[
0
].
first
=
paddings
[
pad_dim
].
first
;
reshaped_padding
[
0
].
second
=
paddings
[
pad_dim
].
second
;
// the second dimension do not need padding, set padding[1] zero
reshaped_padding
[
1
].
first
=
reshaped_padding
[
1
].
second
=
0
;
// LaunchEigenPadding<T, Context, D>(context, d_input, reshaped_in_dims,
// d_out,
// reshaped_out_dims, reshaped_padding);
// } else {
// // other dimension need padding
// // reshape the dimension of tensor in 3:
// // [preceding, padding, succeeding]
// std::vector<int64_t> in_tore_shape(3, 1), out_tore_shape(3, 1);
// Eigen::array<std::pair<int64_t, int64_t>, 3> reshaped_padding;
LaunchEigenPadding
<
T
,
Context
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
}
else
{
// other dimension need padding
// reshape the dimension of tensor in 3:
// [preceding, padding, succeeding]
std
::
vector
<
int64_t
>
in_tore_shape
(
3
,
1
),
out_tore_shape
(
3
,
1
);
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
3
>
reshaped_padding
;
//
// first dimension is the accumulate of preceding dimension
//
for (int i = 0; i < pad_dim; i++) {
//
in_tore_shape[0] *= in_dims[i];
//
out_tore_shape[0] *= out_dims[i];
//
}
//
// second dimension is the padding dimension
//
in_tore_shape[1] = in_dims[pad_dim];
//
out_tore_shape[1] = out_dims[pad_dim];
//
// third dimension is the accumulate of succeeding dimension
//
for (size_t i = pad_dim + 1; i < D; i++) {
//
in_tore_shape[2] *= in_dims[i];
//
out_tore_shape[2] *= out_dims[i];
//
}
// first dimension is the accumulate of preceding dimension
for
(
int
i
=
0
;
i
<
pad_dim
;
i
++
)
{
in_tore_shape
[
0
]
*=
in_dims
[
i
];
out_tore_shape
[
0
]
*=
out_dims
[
i
];
}
// second dimension is the padding dimension
in_tore_shape
[
1
]
=
in_dims
[
pad_dim
];
out_tore_shape
[
1
]
=
out_dims
[
pad_dim
];
// third dimension is the accumulate of succeeding dimension
for
(
size_t
i
=
pad_dim
+
1
;
i
<
D
;
i
++
)
{
in_tore_shape
[
2
]
*=
in_dims
[
i
];
out_tore_shape
[
2
]
*=
out_dims
[
i
];
}
//
// convert array from std::vector to DDim
//
DDim reshaped_in_dims = make_ddim(in_tore_shape);
//
DDim reshaped_out_dims = make_ddim(out_tore_shape);
// convert array from std::vector to DDim
DDim
reshaped_in_dims
=
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
make_ddim
(
out_tore_shape
);
//
// after reshape:
//
// the first dimension do not need padding, set padding[0] zero
//
reshaped_padding[0].first = reshaped_padding[2].second = 0;
//
// the second dimension is the previous padding dimension
//
reshaped_padding[1].first = paddings[pad_dim].first;
//
reshaped_padding[1].second = paddings[pad_dim].second;
//
// the third dimension do not need padding, set padding[2] zero
//
reshaped_padding[2].first = reshaped_padding[2].second = 0;
// after reshape:
// the first dimension do not need padding, set padding[0] zero
reshaped_padding
[
0
].
first
=
reshaped_padding
[
2
].
second
=
0
;
// the second dimension is the previous padding dimension
reshaped_padding
[
1
].
first
=
paddings
[
pad_dim
].
first
;
reshaped_padding
[
1
].
second
=
paddings
[
pad_dim
].
second
;
// the third dimension do not need padding, set padding[2] zero
reshaped_padding
[
2
].
first
=
reshaped_padding
[
2
].
second
=
0
;
// LaunchEigenPadding<T, Context, D>(context, d_input, reshaped_in_dims,
// d_out,
// reshaped_out_dims, reshaped_padding);
// }
// } else {
// // need padding at many dimension, cannot reduce dimension
// LaunchEigenPadding<T, Context, D>(context, d_input, in_dims, d_out,
// out_dims,
// paddings);
// }
// }
LaunchEigenPadding
<
T
,
Context
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
}
}
else
{
// need padding at many dimension, cannot reduce dimension
LaunchEigenPadding
<
T
,
Context
>
(
context
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
}
}
}
template
<
typename
T
,
typename
Context
,
size_t
D
>
...
...
paddle/phi/kernels/impl/slice_kernel_impl.h
浏览文件 @
4d42f4fa
...
...
@@ -60,10 +60,10 @@ void SliceCompute(const Context& ctx,
}
}
CheckAndUpdateSliceAttrs
<
int64_t
>
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
GetSliceDims
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
out_dims
=
GetDecreasedDims
<
int64_t
>
(
slice_dims
,
decrease_axis
);
funcs
::
CheckAndUpdateSliceAttrs
<
int64_t
>
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
funcs
::
GetSliceDims
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
out_dims
=
funcs
::
GetDecreasedDims
<
int64_t
>
(
slice_dims
,
decrease_axis
);
// 2.2 Get output
auto
offsets
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
...
...
python/paddle/fluid/tests/unittests/test_slice_op.py
浏览文件 @
4d42f4fa
...
...
@@ -55,745 +55,722 @@ class TestSliceOp(OpTest):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestCase1
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:]
class
TestCase2
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
# 1.2 with attr(decrease)
class
TestSliceOp_decs_dim
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestSliceOp_decs_dim_2
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
,
2
:
4
,
:]
class
TestSliceOp_decs_dim_3
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
1
,
0
,
2
]
self
.
ends
=
[
1000000
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
1
,
0
,
2
:
4
,
:]
class
TestSliceOp_decs_dim_4
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
7
]).
astype
(
"float64"
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
class
TestSliceOp_decs_dim_5
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
1
]
self
.
ends
=
[
1000000
]
self
.
axes
=
[
3
]
self
.
decrease_axis
=
[
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[:,
:,
:,
-
1
]
class
TestSliceOp_decs_dim_6
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class
TestSliceOp_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int64'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
self
.
starts_infer
=
[
-
1
,
0
,
-
1
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
self
.
starts_infer
=
[
1
,
-
1
,
2
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestSliceOp_decs_dim_5_starts_ListTensor
(
TestSliceOp_decs_dim_starts_ListTensor
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
1
]
self
.
ends
=
[
1000000
]
self
.
axes
=
[
3
]
self
.
decrease_axis
=
[
3
]
self
.
infer_flags
=
[
-
1
]
self
.
out
=
self
.
input
[:,
:,
:,
-
1
]
self
.
starts_infer
=
[
-
1
]
# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 4: starts(tensor), ends(tensor)
# without attr(decrease)
class
TestSliceOp_starts_OneTensor_ends_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int64"
),
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends_infer,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 5: starts(tensor), ends(tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_and_ends_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
,
0
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class
TestSliceOp_starts_OneTensor_ends_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"y"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
'EndsTensorList'
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends_infer
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
self
.
ends_infer
=
[
-
1
,
3
,
4
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Test CUDA float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFP16
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
dtype
=
"float16"
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
def
test_check_grad_normal
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFP16_2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
dtype
=
"float16"
self
.
input
=
np
.
random
.
random
([
3
,
4
,
10
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
0
]
self
.
ends
=
[
1
]
self
.
axes
=
[
1
]
self
.
out
=
self
.
input
[:,
0
:
1
,
:]
self
.
infer_flags
=
[
1
]
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
def
test_check_grad_normal
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
,
numeric_grad_delta
=
0.5
)
class
TestBF16
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
convert_float_to_uint16
(
self
.
input
)}
self
.
outputs
=
{
'Out'
:
convert_float_to_uint16
(
self
.
out
)}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
dtype
=
np
.
uint16
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
np
.
float32
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
)
# Test python API
class
TestSliceAPI
(
unittest
.
TestCase
):
def
test_1
(
self
):
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
minus_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
-
1
)
minus_3
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
-
3
)
starts
=
fluid
.
layers
.
data
(
name
=
'starts'
,
shape
=
[
1
,
3
],
append_batch_size
=
False
)
ends
=
fluid
.
layers
.
data
(
name
=
'ends'
,
shape
=
[
3
],
append_batch_size
=
False
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
3
,
4
,
5
,
6
],
append_batch_size
=
False
,
dtype
=
"float64"
)
# value_int64 is greater than 2147483647 which is the max of int32
value_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
2147483648
)
out_1
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
[
-
3
,
0
,
2
],
ends
=
[
value_int64
,
100
,
-
1
])
out_2
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
])
out_3
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
minus_1
])
out_4
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
)
out_5
=
x
[
-
3
:
3
,
0
:
100
,
2
:
-
1
]
out_6
=
x
[
minus_3
:
3
,
0
:
100
,
:,
2
:
-
1
]
out_7
=
x
[
minus_1
,
0
:
100
,
:,
2
:
minus_1
]
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
input
,
'starts'
:
np
.
array
([
-
3
,
0
,
2
]).
astype
(
"int32"
),
'ends'
:
np
.
array
([
3
,
100
,
-
1
]).
astype
(
"int32"
)
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
])
assert
np
.
array_equal
(
res_1
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_2
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_3
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_4
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_5
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_6
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_7
,
input
[
-
1
,
0
:
100
,
:,
2
:
-
1
])
class
TestSliceApiWithTensor
(
unittest
.
TestCase
):
def
test_starts_ends_is_tensor
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
():
a
=
paddle
.
rand
(
shape
=
[
4
,
5
,
6
],
dtype
=
'float32'
)
axes
=
[
0
,
1
,
2
]
starts
=
[
-
3
,
0
,
2
]
ends
=
[
3
,
2
,
4
]
a_1
=
paddle
.
slice
(
a
,
axes
=
axes
,
starts
=
paddle
.
to_tensor
(
starts
,
dtype
=
'int32'
),
ends
=
paddle
.
to_tensor
(
ends
,
dtype
=
'int32'
))
a_2
=
paddle
.
slice
(
a
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
)
self
.
assertTrue
(
np
.
array_equal
(
a_1
.
numpy
(),
a_2
.
numpy
()))
def
test_bool_tensor
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
():
array
=
(
np
.
arange
(
60
).
reshape
([
3
,
4
,
5
])
%
3
).
astype
(
'bool'
)
tt
=
paddle
.
to_tensor
(
array
)
tt
.
stop_gradient
=
False
starts
=
[
0
,
1
,
2
]
ends
=
[
3
,
5
,
4
]
axes
=
[
0
,
1
,
2
]
y_paddle
=
paddle
.
slice
(
tt
,
axes
,
starts
,
ends
)
y_np
=
tt
[
0
:
3
,
1
:
5
,
2
:
4
]
self
.
assertTrue
(
paddle
.
bool
==
y_paddle
.
dtype
)
self
.
assertTrue
(
np
.
array_equal
(
y_paddle
.
numpy
(),
y_np
))
class
TestSliceApiWithLoDTensorArray
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
shape
=
(
3
,
4
)
self
.
data
=
np
.
random
.
random
(
size
=
self
.
shape
).
astype
(
'float32'
)
self
.
idx
=
0
self
.
start
=
0
self
.
end
=
2
self
.
axis
=
1
self
.
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
self
.
exe
=
fluid
.
Executor
(
self
.
place
)
def
set_program_and_run
(
self
,
main_program
,
case_num
):
with
fluid
.
program_guard
(
main_program
):
x
=
[
fluid
.
data
(
name
=
'x0'
,
shape
=
self
.
shape
,
dtype
=
"float32"
),
fluid
.
data
(
name
=
'x1'
,
shape
=
self
.
shape
,
dtype
=
"float32"
),
fluid
.
data
(
name
=
'x2'
,
shape
=
self
.
shape
,
dtype
=
"float32"
)
]
for
each_x
in
x
:
each_x
.
stop_gradient
=
False
arr
=
layers
.
create_array
(
dtype
=
"float32"
)
for
i
in
range
(
3
):
idx
=
layers
.
array_length
(
arr
)
arr
=
layers
.
array_write
(
x
=
x
[
i
],
i
=
idx
,
array
=
arr
)
if
case_num
==
1
:
self
.
sliced_arr
=
output
=
arr
[
0
]
elif
case_num
==
2
:
end
=
fluid
.
layers
.
array_length
(
arr
)
-
1
# dtype of end is int64
self
.
sliced_arr
=
slice_arr
=
arr
[
self
.
start
:
end
]
output
,
_
=
fluid
.
layers
.
tensor_array_to_tensor
(
slice_arr
,
axis
=
self
.
axis
,
use_stack
=
True
)
elif
case_num
==
3
:
value_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
2147483648
)
self
.
sliced_arr
=
slice_arr
=
arr
[
self
.
start
:
value_int64
]
output
,
_
=
fluid
.
layers
.
tensor_array_to_tensor
(
slice_arr
,
axis
=
self
.
axis
,
use_stack
=
True
)
loss
=
fluid
.
layers
.
reduce_sum
(
output
)
fluid
.
backward
.
append_backward
(
loss
)
g_vars
=
list
(
map
(
main_program
.
global_block
().
var
,
[
each_x
.
name
+
"@GRAD"
for
each_x
in
x
]))
self
.
out
,
self
.
g_x0
,
self
.
g_x1
,
self
.
g_x2
=
\
self
.
exe
.
run
(
main_program
,
feed
=
{
'x0'
:
self
.
data
,
'x1'
:
self
.
data
,
'x2'
:
self
.
data
},
fetch_list
=
[
output
]
+
g_vars
)
def
test_case_1
(
self
):
main_program
=
fluid
.
Program
()
self
.
set_program_and_run
(
main_program
,
1
)
self
.
assertTrue
(
self
.
sliced_arr
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
self
.
assertEqual
(
self
.
sliced_arr
.
shape
,
self
.
shape
)
self
.
assertTrue
(
np
.
array_equal
(
self
.
out
,
self
.
data
))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x0
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x1
,
np
.
zeros_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x2
,
np
.
zeros_like
(
self
.
data
)))
def
test_case_2
(
self
):
main_program
=
fluid
.
Program
()
self
.
set_program_and_run
(
main_program
,
2
)
self
.
assertTrue
(
self
.
sliced_arr
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
)
self
.
assertEqual
(
self
.
sliced_arr
.
shape
,
self
.
shape
)
self
.
assertTrue
(
np
.
array_equal
(
self
.
out
,
np
.
stack
(
[
self
.
data
,
self
.
data
],
axis
=
self
.
axis
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x0
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x1
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x2
,
np
.
zeros_like
(
self
.
data
)))
def
test_case_3
(
self
):
main_program
=
fluid
.
Program
()
self
.
set_program_and_run
(
main_program
,
3
)
self
.
assertTrue
(
self
.
sliced_arr
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
)
self
.
assertEqual
(
self
.
sliced_arr
.
shape
,
self
.
shape
)
self
.
assertTrue
(
np
.
array_equal
(
self
.
out
,
np
.
stack
(
[
self
.
data
,
self
.
data
,
self
.
data
],
axis
=
self
.
axis
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x0
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x1
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x2
,
np
.
ones_like
(
self
.
data
)))
class
TestImperativeVarBaseGetItem
(
unittest
.
TestCase
):
def
test_getitem_with_long
(
self
):
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[:,
10
:,
:
var
.
shape
[
1
]]
# var.shape[1] is 80L here
self
.
assertEqual
(
sliced
.
shape
,
[
2
,
70
,
80
])
sliced
=
var
[:,
var
.
shape
[
0
]:,
var
.
shape
[
0
]:
var
.
shape
[
1
]]
self
.
assertEqual
(
sliced
.
shape
,
[
2
,
78
,
78
])
def
test_getitem_with_float
(
self
):
def
test_float_in_slice_item
():
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[:,
1.1
:,
:
var
.
shape
[
1
]]
self
.
assertRaises
(
Exception
,
test_float_in_slice_item
)
def
test_float_in_index
():
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[
1.1
]
self
.
assertRaises
(
Exception
,
test_float_in_index
)
class
TestInferShape
(
unittest
.
TestCase
):
def
test
(
self
):
x
=
paddle
.
ones
(
shape
=
[
3
,
4
,
5
])
x
.
desc
.
set_shape
([
3
,
-
1
,
5
])
self
.
assertEqual
(
x
.
shape
,
(
3
,
-
1
,
5
))
out0
=
paddle
.
slice
(
x
,
axes
=
[
1
],
starts
=
[
0
],
ends
=
[
3
])
self
.
assertEqual
(
out0
.
shape
,
(
3
,
3
,
5
))
def
test_axis_less_than_zero
(
self
):
# Using paddle.disable_static will make other unittests fail.
with
fluid
.
dygraph
.
guard
():
x_arr
=
np
.
arange
(
0
,
24
,
dtype
=
np
.
float32
).
reshape
([
2
,
3
,
4
])
x
=
paddle
.
to_tensor
(
x_arr
)
pp_slice
=
paddle
.
slice
(
x
,
[
100
,
],
[
0
],
[
1
])
np_slice
=
x_arr
[:,
:,
0
:
1
]
self
.
assertTrue
(
np
.
array_equal
(
pp_slice
,
np_slice
))
pp_slice
=
paddle
.
slice
(
x
,
(
-
100
,
),
[
0
],
[
1
])
np_slice
=
x_arr
[
0
:
1
]
self
.
assertTrue
(
np
.
array_equal
(
pp_slice
,
np_slice
))
x_arr
=
np
.
array
([],
dtype
=
np
.
float32
)
x
=
paddle
.
to_tensor
(
np
.
reshape
(
x_arr
,
(
0
,
0
,
0
)))
starts
=
paddle
.
to_tensor
(
np
.
reshape
(
np
.
array
(
[],
dtype
=
np
.
int32
),
(
0
,
)))
ends
=
paddle
.
to_tensor
(
np
.
reshape
(
np
.
array
(
[],
dtype
=
np
.
int32
),
(
0
,
)))
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[
-
1000000
],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[
1000000
],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
0
,
starts
,
ends
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestImperativeCUDAPinnedInput
(
unittest
.
TestCase
):
def
test_input_cuda_pinned_var
(
self
):
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
core
.
VarBase
(
value
=
data
,
name
=
''
,
persistable
=
False
,
place
=
fluid
.
CUDAPinnedPlace
(),
zero_copy
=
False
)
sliced
=
var
[:,
10
:,
:
var
.
shape
[
1
]]
self
.
assertEqual
(
sliced
.
shape
,
[
2
,
70
,
80
])
# class TestCase1(TestSliceOp):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-3, 0, 2]
# self.ends = [3, 100, -1]
# self.axes = [0, 1, 2]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[-3:3, 0:100, 2:-1, :]
# class TestCase2(TestSliceOp):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-3, 0, 2]
# self.ends = [3, 100, -1]
# self.axes = [0, 1, 3]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[-3:3, 0:100, :, 2:-1]
# # 1.2 with attr(decrease)
# class TestSliceOp_decs_dim(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {'Input': self.input}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags,
# 'decrease_axis': self.decrease_axis,
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 3, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[1, 0:3, 2:4, :]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 1, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0, 1]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[1, 0, 2:4, :]
# class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-1, 0, 2]
# self.ends = [1000000, 1, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0, 1]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[-1, 0, 2:4, :]
# class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 7]).astype("float64")
# self.starts = [0, 1, 2, 3]
# self.ends = [1, 2, 3, 4]
# self.axes = [0, 1, 2, 3]
# self.decrease_axis = [0, 1, 2, 3]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[0, 1, 2, 3:4]
# class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-1]
# self.ends = [1000000]
# self.axes = [3]
# self.decrease_axis = [3]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[:, :, :, -1]
# class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [0, 1, 2, 3]
# self.ends = [1, 2, 3, 4]
# self.axes = [0, 1, 2, 3]
# self.decrease_axis = [0, 1, 2, 3]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[0, 1, 2, 3:4]
# # Situation 2: starts(list, have tensor), ends(list, no tensor)
# # without attr(decrease)
# class TestSliceOp_starts_ListTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# starts_tensor = []
# for index, ele in enumerate(self.starts):
# starts_tensor.append(("x" + str(index), np.ones(
# (1)).astype('int64') * ele))
# self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts_infer,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [3, 3, 4]
# self.axes = [0, 1, 2]
# self.infer_flags = [-1, 1, -1]
# self.out = self.input[1:3, 0:3, 2:4, :]
# self.starts_infer = [-1, 0, -1]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Situation 2: starts(list, have tensor), ends(list, no tensor)
# # with attr(decrease)
# class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# starts_tensor = []
# for index, ele in enumerate(self.starts):
# starts_tensor.append(("x" + str(index), np.ones(
# (1)).astype('int32') * ele))
# self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts_infer,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags,
# 'decrease_axis': self.decrease_axis,
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 3, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0]
# self.infer_flags = [1, -1, 1]
# self.out = self.input[1, 0:3, 2:4, :]
# self.starts_infer = [1, -1, 2]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# class TestSliceOp_decs_dim_5_starts_ListTensor(
# TestSliceOp_decs_dim_starts_ListTensor):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-1]
# self.ends = [1000000]
# self.axes = [3]
# self.decrease_axis = [3]
# self.infer_flags = [-1]
# self.out = self.input[:, :, :, -1]
# self.starts_infer = [-1]
# # Situation 3: starts(tensor), ends(list, no tensor)
# # with attr(decrease)
# class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {
# 'Input': self.input,
# "StartsTensor": np.array(
# self.starts, dtype="int32")
# }
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# #'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags,
# 'decrease_axis': self.decrease_axis,
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 3, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0]
# self.infer_flags = [-1, -1, -1]
# self.out = self.input[1, 0:3, 2:4, :]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Situation 4: starts(tensor), ends(tensor)
# # without attr(decrease)
# class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {
# 'Input': self.input,
# "StartsTensor": np.array(
# self.starts, dtype="int64"),
# "EndsTensor": np.array(
# self.ends, dtype="int32")
# }
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# #'starts': self.starts,
# #'ends': self.ends_infer,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [3, 3, 4]
# self.axes = [0, 1, 2]
# self.infer_flags = [-1, -1, -1]
# self.out = self.input[1:3, 0:3, 2:4, :]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Situation 5: starts(tensor), ends(tensor)
# # with attr(decrease)
# class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {
# 'Input': self.input,
# "StartsTensor": np.array(
# self.starts, dtype="int32"),
# "EndsTensor": np.array(
# self.ends, dtype="int32")
# }
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# #'starts': self.starts,
# #'ends': self.ends,
# 'infer_flags': self.infer_flags,
# 'decrease_axis': self.decrease_axis,
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 1, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0, 1]
# self.infer_flags = [-1, -1, -1]
# self.out = self.input[1, 0, 2:4, :]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Situation 6: starts(tensor), ends(list, have tensor)
# # without attr(decrease)
# class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# ends_tensor = []
# for index, ele in enumerate(self.ends):
# ends_tensor.append(("y" + str(index), np.ones(
# (1)).astype('int32') * ele))
# self.inputs = {
# 'Input': self.input,
# "StartsTensor": np.array(
# self.starts, dtype="int32"),
# 'EndsTensorList': ends_tensor
# }
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# #'starts': self.starts,
# 'ends': self.ends_infer,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [3, 3, 4]
# self.axes = [0, 1, 2]
# self.infer_flags = [-1, -1, -1]
# self.out = self.input[1:3, 0:3, 2:4, :]
# self.ends_infer = [-1, 3, 4]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Test CUDA float16
# @unittest.skipIf(not core.is_compiled_with_cuda(),
# "core is not compiled with CUDA")
# class TestFP16(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {'Input': self.input}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.dtype = "float16"
# self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
# self.starts = [-3, 0, 2]
# self.ends = [3, 100, -1]
# self.axes = [0, 1, 3]
# self.out = self.input[-3:3, 0:100, :, 2:-1]
# self.infer_flags = [1, 1, 1]
# def test_check_output(self):
# place = core.CUDAPlace(0)
# if core.is_float16_supported(place):
# self.check_output_with_place(place, atol=1e-5)
# def test_check_grad_normal(self):
# place = core.CUDAPlace(0)
# if core.is_float16_supported(place):
# self.check_grad_with_place(
# place, ['Input'], 'Out', max_relative_error=0.006)
# @unittest.skipIf(not core.is_compiled_with_cuda(),
# "core is not compiled with CUDA")
# class TestFP16_2(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {'Input': self.input}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.dtype = "float16"
# self.input = np.random.random([3, 4, 10]).astype(self.dtype)
# self.starts = [0]
# self.ends = [1]
# self.axes = [1]
# self.out = self.input[:, 0:1, :]
# self.infer_flags = [1]
# def test_check_output(self):
# place = core.CUDAPlace(0)
# if core.is_float16_supported(place):
# self.check_output_with_place(place, atol=1e-5)
# def test_check_grad_normal(self):
# place = core.CUDAPlace(0)
# if core.is_float16_supported(place):
# self.check_grad_with_place(
# place, ['Input'],
# 'Out',
# max_relative_error=0.006,
# numeric_grad_delta=0.5)
# class TestBF16(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {'Input': convert_float_to_uint16(self.input)}
# self.outputs = {'Out': convert_float_to_uint16(self.out)}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.dtype = np.uint16
# self.input = np.random.random([3, 4, 5, 6]).astype(np.float32)
# self.starts = [-3, 0, 2]
# self.ends = [3, 100, -1]
# self.axes = [0, 1, 3]
# self.out = self.input[-3:3, 0:100, :, 2:-1]
# self.infer_flags = [1, 1, 1]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out')
# # Test python API
# class TestSliceAPI(unittest.TestCase):
# def test_1(self):
# input = np.random.random([3, 4, 5, 6]).astype("float64")
# minus_1 = fluid.layers.fill_constant([1], "int32", -1)
# minus_3 = fluid.layers.fill_constant([1], "int64", -3)
# starts = fluid.layers.data(
# name='starts', shape=[1, 3], append_batch_size=False)
# ends = fluid.layers.data(
# name='ends', shape=[3], append_batch_size=False)
# x = fluid.layers.data(
# name="x",
# shape=[3, 4, 5, 6],
# append_batch_size=False,
# dtype="float64")
# # value_int64 is greater than 2147483647 which is the max of int32
# value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)
# out_1 = fluid.layers.slice(
# x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1])
# out_2 = fluid.layers.slice(
# x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1])
# out_3 = fluid.layers.slice(
# x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1])
# out_4 = fluid.layers.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)
# out_5 = x[-3:3, 0:100, 2:-1]
# out_6 = x[minus_3:3, 0:100, :, 2:-1]
# out_7 = x[minus_1, 0:100, :, 2:minus_1]
# exe = fluid.Executor(place=fluid.CPUPlace())
# res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
# fluid.default_main_program(),
# feed={
# "x": input,
# 'starts': np.array([-3, 0, 2]).astype("int32"),
# 'ends': np.array([3, 100, -1]).astype("int32")
# },
# fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
# assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
# assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
# assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
# assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
# assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
# assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
# assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])
# class TestSliceApiWithTensor(unittest.TestCase):
# def test_starts_ends_is_tensor(self):
# with paddle.fluid.dygraph.guard():
# a = paddle.rand(shape=[4, 5, 6], dtype='float32')
# axes = [0, 1, 2]
# starts = [-3, 0, 2]
# ends = [3, 2, 4]
# a_1 = paddle.slice(
# a,
# axes=axes,
# starts=paddle.to_tensor(
# starts, dtype='int32'),
# ends=paddle.to_tensor(
# ends, dtype='int32'))
# a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)
# self.assertTrue(np.array_equal(a_1.numpy(), a_2.numpy()))
# def test_bool_tensor(self):
# with paddle.fluid.dygraph.guard():
# array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
# tt = paddle.to_tensor(array)
# tt.stop_gradient = False
# starts = [0, 1, 2]
# ends = [3, 5, 4]
# axes = [0, 1, 2]
# y_paddle = paddle.slice(tt, axes, starts, ends)
# y_np = tt[0:3, 1:5, 2:4]
# self.assertTrue(paddle.bool == y_paddle.dtype)
# self.assertTrue(np.array_equal(y_paddle.numpy(), y_np))
# class TestSliceApiWithLoDTensorArray(unittest.TestCase):
# def setUp(self):
# self.shape = (3, 4)
# self.data = np.random.random(size=self.shape).astype('float32')
# self.idx = 0
# self.start = 0
# self.end = 2
# self.axis = 1
# self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
# ) else fluid.CPUPlace()
# self.exe = fluid.Executor(self.place)
# def set_program_and_run(self, main_program, case_num):
# with fluid.program_guard(main_program):
# x = [
# fluid.data(
# name='x0', shape=self.shape, dtype="float32"), fluid.data(
# name='x1', shape=self.shape, dtype="float32"),
# fluid.data(
# name='x2', shape=self.shape, dtype="float32")
# ]
# for each_x in x:
# each_x.stop_gradient = False
# arr = layers.create_array(dtype="float32")
# for i in range(3):
# idx = layers.array_length(arr)
# arr = layers.array_write(x=x[i], i=idx, array=arr)
# if case_num == 1:
# self.sliced_arr = output = arr[0]
# elif case_num == 2:
# end = fluid.layers.array_length(
# arr) - 1 # dtype of end is int64
# self.sliced_arr = slice_arr = arr[self.start:end]
# output, _ = fluid.layers.tensor_array_to_tensor(
# slice_arr, axis=self.axis, use_stack=True)
# elif case_num == 3:
# value_int64 = fluid.layers.fill_constant([1], "int64",
# 2147483648)
# self.sliced_arr = slice_arr = arr[self.start:value_int64]
# output, _ = fluid.layers.tensor_array_to_tensor(
# slice_arr, axis=self.axis, use_stack=True)
# loss = fluid.layers.reduce_sum(output)
# fluid.backward.append_backward(loss)
# g_vars = list(
# map(main_program.global_block().var,
# [each_x.name + "@GRAD" for each_x in x]))
# self.out, self.g_x0, self.g_x1, self.g_x2 = \
# self.exe.run(main_program,
# feed = {'x0': self.data,
# 'x1': self.data,
# 'x2': self.data},
# fetch_list=[output] + g_vars)
# def test_case_1(self):
# main_program = fluid.Program()
# self.set_program_and_run(main_program, 1)
# self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
# self.assertEqual(self.sliced_arr.shape, self.shape)
# self.assertTrue(np.array_equal(self.out, self.data))
# self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x1, np.zeros_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))
# def test_case_2(self):
# main_program = fluid.Program()
# self.set_program_and_run(main_program, 2)
# self.assertTrue(
# self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
# self.assertEqual(self.sliced_arr.shape, self.shape)
# self.assertTrue(
# np.array_equal(
# self.out, np.stack(
# [self.data, self.data], axis=self.axis)))
# self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))
# def test_case_3(self):
# main_program = fluid.Program()
# self.set_program_and_run(main_program, 3)
# self.assertTrue(
# self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
# self.assertEqual(self.sliced_arr.shape, self.shape)
# self.assertTrue(
# np.array_equal(
# self.out,
# np.stack(
# [self.data, self.data, self.data], axis=self.axis)))
# self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x2, np.ones_like(self.data)))
# class TestImperativeVarBaseGetItem(unittest.TestCase):
# def test_getitem_with_long(self):
# with fluid.dygraph.guard():
# data = np.random.random((2, 80, 16128)).astype('float32')
# var = fluid.dygraph.to_variable(data)
# sliced = var[:, 10:, :var.shape[1]] # var.shape[1] is 80L here
# self.assertEqual(sliced.shape, [2, 70, 80])
# sliced = var[:, var.shape[0]:, var.shape[0]:var.shape[1]]
# self.assertEqual(sliced.shape, [2, 78, 78])
# def test_getitem_with_float(self):
# def test_float_in_slice_item():
# with fluid.dygraph.guard():
# data = np.random.random((2, 80, 16128)).astype('float32')
# var = fluid.dygraph.to_variable(data)
# sliced = var[:, 1.1:, :var.shape[1]]
# self.assertRaises(Exception, test_float_in_slice_item)
# def test_float_in_index():
# with fluid.dygraph.guard():
# data = np.random.random((2, 80, 16128)).astype('float32')
# var = fluid.dygraph.to_variable(data)
# sliced = var[1.1]
# self.assertRaises(Exception, test_float_in_index)
# class TestInferShape(unittest.TestCase):
# def test(self):
# x = paddle.ones(shape=[3, 4, 5])
# x.desc.set_shape([3, -1, 5])
# self.assertEqual(x.shape, (3, -1, 5))
# out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
# self.assertEqual(out0.shape, (3, 3, 5))
# def test_axis_less_than_zero(self):
# # Using paddle.disable_static will make other unittests fail.
# with fluid.dygraph.guard():
# x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
# x = paddle.to_tensor(x_arr)
# pp_slice = paddle.slice(x, [100, ], [0], [1])
# np_slice = x_arr[:, :, 0:1]
# self.assertTrue(np.array_equal(pp_slice, np_slice))
# pp_slice = paddle.slice(x, (-100, ), [0], [1])
# np_slice = x_arr[0:1]
# self.assertTrue(np.array_equal(pp_slice, np_slice))
# x_arr = np.array([], dtype=np.float32)
# x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))
# starts = paddle.to_tensor(
# np.reshape(
# np.array(
# [], dtype=np.int32), (0, )))
# ends = paddle.to_tensor(
# np.reshape(
# np.array(
# [], dtype=np.int32), (0, )))
# with self.assertRaises(ValueError):
# paddle.slice(x, [-1000000], starts, ends)
# with self.assertRaises(ValueError):
# paddle.slice(x, [1000000], starts, ends)
# with self.assertRaises(ValueError):
# paddle.slice(x, [], starts, ends)
# with self.assertRaises(ValueError):
# paddle.slice(x, 0, starts, ends)
# @unittest.skipIf(not core.is_compiled_with_cuda(),
# "core is not compiled with CUDA")
# class TestImperativeCUDAPinnedInput(unittest.TestCase):
# def test_input_cuda_pinned_var(self):
# with fluid.dygraph.guard():
# data = np.random.random((2, 80, 16128)).astype('float32')
# var = core.VarBase(
# value=data,
# name='',
# persistable=False,
# place=fluid.CUDAPinnedPlace(),
# zero_copy=False)
# sliced = var[:, 10:, :var.shape[1]]
# self.assertEqual(sliced.shape, [2, 70, 80])
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录