Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4cf499c0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4cf499c0
编写于
10月 18, 2019
作者:
B
bingyanghuang
提交者:
Tao Luo
10月 18, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick PR#20640 to release 1.6, test=release/1.6 (#20706)
上级
33a58e58
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
303 addition
and
200 deletion
+303
-200
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
+253
-200
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+50
-0
未找到文件。
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
浏览文件 @
4cf499c0
...
...
@@ -29,32 +29,34 @@ using mkldnn::stream;
using
platform
::
to_void_cast
;
using
platform
::
GetMKLDNNFormat
;
constexpr
int
same_scale_mask
=
0
;
constexpr
int
o_slice_mask
=
1
<<
0
;
// 1
constexpr
int
g_slice_mask
=
1
<<
1
;
// 2
constexpr
int
g_o_slice_mask
=
g_slice_mask
|
o_slice_mask
;
// 3
static
int
ComputeMask
(
bool
is_multi_channel
,
int
multi_channel_mask
)
{
return
is_multi_channel
?
multi_channel_mask
:
same_scale_mask
;
}
static
int
ComputeWeightsMask
(
int
is_multi_channel
,
int
g
)
{
int
multi_channel_mask
=
g
>
1
?
g_o_slice_mask
:
o_slice_mask
;
return
ComputeMask
(
is_multi_channel
,
multi_channel_mask
);
}
static
int
ComputeBiasMask
(
int
is_multi_channel
)
{
return
ComputeMask
(
is_multi_channel
,
o_slice_mask
);
}
inline
void
GetWeightsTz
(
std
::
vector
<
int
>&
weights_tz
,
int
groups
)
{
// NOLINT
inline
void
GetWeightsTz
(
std
::
vector
<
int
>&
weights_tz
,
int
groups
,
// NOLINT
bool
is_conv3d
)
{
if
(
groups
>
1
)
{
// if (is_conv3d) [o, i, dimension, h, w]->[g, o/g, i, dimension, h, w]
// else [o, i, h, w] -> [g, o/g, i, h, w]
weights_tz
.
push_back
(
0
);
std
::
rotate
(
weights_tz
.
begin
(),
weights_tz
.
end
()
-
1
,
weights_tz
.
end
());
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
weights_tz
[
1
]
/
groups
;
if
(
is_conv3d
)
{
int
output
=
weights_tz
[
0
];
int
input
=
weights_tz
[
1
];
int
dimension
=
weights_tz
[
2
];
int
height
=
weights_tz
[
3
];
int
width
=
weights_tz
[
4
];
weights_tz
.
resize
(
6
);
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
output
/
groups
;
weights_tz
[
2
]
=
input
;
weights_tz
[
3
]
=
dimension
;
weights_tz
[
4
]
=
height
;
weights_tz
[
5
]
=
width
;
}
else
{
int
output
=
weights_tz
[
0
];
int
input
=
weights_tz
[
1
];
int
height
=
weights_tz
[
2
];
int
width
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
output
/
groups
;
weights_tz
[
2
]
=
input
;
weights_tz
[
3
]
=
height
;
weights_tz
[
4
]
=
width
;
}
}
}
...
...
@@ -67,59 +69,28 @@ inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
}
}
static
std
::
vector
<
float
>
ComputeOutputShiftScale
(
const
float
scale_out_data
,
const
float
scale_in_data
,
const
std
::
vector
<
float
>&
scale_weights_data
)
{
int
count
=
scale_weights_data
.
size
();
std
::
vector
<
float
>
output_shift_scale
(
count
);
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
count
;
i
++
)
{
if
(
scale_weights_data
[
i
]
==
0.0
)
{
output_shift_scale
[
i
]
=
scale_out_data
;
}
else
{
output_shift_scale
[
i
]
=
static_cast
<
float
>
(
static_cast
<
double
>
(
scale_out_data
)
/
(
static_cast
<
double
>
(
scale_in_data
)
*
static_cast
<
double
>
(
scale_weights_data
[
i
])));
}
}
return
output_shift_scale
;
}
static
std
::
vector
<
float
>
ComputeBiasScale
(
const
float
scale_in_data
,
const
std
::
vector
<
float
>&
scale_weights_data
)
{
int
count
=
scale_weights_data
.
size
();
std
::
vector
<
float
>
scale_bias_data
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
)
{
scale_bias_data
[
i
]
=
scale_in_data
*
scale_weights_data
[
i
];
}
return
scale_bias_data
;
}
static
mkldnn
::
memory
::
data_type
GetDstType
(
bool
is_int8
,
bool
force_fp32_output
,
std
::
string
fuse_activation
,
bool
fuse_residual_conn
,
const
Tensor
*
residual_param
)
{
auto
dst_dt
=
mkldnn
::
memory
::
data_type
::
f32
;
// uint8_t, int8_t, float
if
(
is_int8
&&
!
force_fp32_output
)
{
if
(
is_int8
)
{
dst_dt
=
(
fuse_activation
==
"relu"
||
fuse_activation
==
"relu6"
)
?
mkldnn
::
memory
::
data_type
::
u8
:
mkldnn
::
memory
::
data_type
::
s8
;
if
(
force_fp32_output
)
{
dst_dt
=
mkldnn
::
memory
::
data_type
::
f32
;
}
if
(
fuse_residual_conn
&&
residual_param
)
{
// when residual exists, dst_dt will follow the residual_param type,
// but output will to be set to u8 if relu exists
auto
residual_dt
=
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
dst_dt
=
residual_dt
;
}
else
{
// when residual does not exist, if (b)relu exist s8 else s8
dst_dt
=
(
fuse_activation
==
"relu"
||
fuse_activation
==
"relu6"
)
?
mkldnn
::
memory
::
data_type
::
u8
:
mkldnn
::
memory
::
data_type
::
s8
;
if
(
dst_dt
!=
residual_dt
)
dst_dt
=
residual_dt
;
}
}
return
dst_dt
;
}
template
<
typename
T
>
template
<
typename
T
,
typename
K
>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -215,7 +186,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
auto
weights_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
...
...
@@ -297,8 +268,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
PADDLE_ENFORCE
_NE
(
residual_param_data
,
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
...
...
@@ -358,7 +329,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
template
<
typename
T_out
>
void
ComputeINT8
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
{
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
...
...
@@ -417,11 +387,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bool
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
bool
unsigned_output
=
(
fuse_activation
==
"relu"
||
fuse_activation
==
"relu6"
);
auto
scale_in_data
=
ctx
.
Attr
<
float
>
(
"Scale_in"
);
auto
scale_in_eltwise_data
=
ctx
.
Attr
<
float
>
(
"Scale_in_eltwise"
);
auto
scale_weights_data
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"Scale_weights"
);
auto
scale_out_data
=
force_fp32_output
?
1.0
f
:
ctx
.
Attr
<
float
>
(
"Scale_out"
);
PADDLE_ENFORCE
(
!
fuse_residual_conn
||
!
force_fp32_output
,
"residual fusion does not support force output with fp32"
);
...
...
@@ -442,7 +407,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
auto
weights_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
mkldnn
::
memory
::
data_type
src_dt
=
...
...
@@ -451,143 +417,229 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
string
key
=
platform
::
CreateKey
(
src_tz
,
src_dt
,
ctx
.
op
().
Input
(
"Input"
)
+
ctx
.
op
().
Input
(
"Filter"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
bool
need_s8_to_u8
=
false
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
user_src_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
std
::
vector
<
primitive
>
pipeline
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
,
user_residual_memory_p
;
const
float
*
filter_data
=
filter
->
data
<
float
>
();
bool
is_multi_channel
=
scale_weights_data
.
size
()
>
1
;
auto
output_shift_scale
=
ComputeOutputShiftScale
(
scale_out_data
,
scale_in_data
,
scale_weights_data
);
float
scale_residual
=
fuse_residual_conn
?
scale_out_data
/
scale_in_eltwise_data
:
1.0
f
;
auto
user_src_md
=
platform
::
MKLDNNMemDesc
({
src_tz
},
src_dt
,
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
((
g
)
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
src_dt
,
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
s8
,
chosen_memory_format
);
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T_out
>
(),
chosen_memory_format
);
platform
::
ConvMKLDNNHandler
handler
(
dev_ctx
,
mkldnn_engine
,
key
);
auto
propagation
=
is_test
?
mkldnn
::
prop_kind
::
forward_scoring
:
mkldnn
::
prop_kind
::
forward_training
;
std
::
vector
<
int
>
bias_tz
;
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
mkldnn
::
memory
::
format
::
x
);
conv_pd
=
handler
.
AcquireConvolutionPrimitiveDescriptor
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_activation
,
fuse_alpha
,
fuse_beta
,
fuse_residual_conn
,
propagation
,
output_shift_scale
,
scale_residual
);
}
else
{
conv_pd
=
handler
.
AcquireConvolutionPrimitiveDescriptor
(
src_md
,
weights_md
,
boost
::
none
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_activation
,
fuse_alpha
,
fuse_beta
,
fuse_residual_conn
,
propagation
,
output_shift_scale
,
scale_residual
);
std
::
shared_ptr
<
platform
::
ConvMKLDNNHandler
>
handler
;
// This is workaround for hacky implementation
// of conv int8 mkl-dnn. Once conv fp32 and conv int8
// are merged/unified, this will disappear
std
::
string
key_tid
=
""
;
if
(
platform
::
get_cur_mkldnn_session_id
()
==
platform
::
kMKLDNNSessionID_Default
)
{
key_tid
=
"-t:"
+
platform
::
ThreadIDasStr
();
}
// create mkldnn memory from input tensors (data/weights)
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
auto
prim_key
=
key
+
key_tid
+
"@conv_p"
;
auto
dst_key
=
key
+
key_tid
+
"@dst_mem_p"
;
auto
src_key
=
key
+
key_tid
+
"@src_mem_p"
;
auto
user_src_key
=
key
+
key_tid
+
"@user_src_mem_p"
;
auto
src_reorder_key
=
key
+
key_tid
+
"@src_mem_preorder_p"
;
auto
residual_reorder_key
=
key
+
key_tid
+
"@residual_data_mem_preorder_p"
;
conv_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
>
(
dev_ctx
.
GetBlob
(
prim_key
));
if
(
conv_p
==
nullptr
||
!
is_test
)
{
const
K
*
filter_data
=
filter
->
data
<
K
>
();
auto
scale_in_data
=
ctx
.
Attr
<
float
>
(
"Scale_in"
);
auto
scale_in_eltwise_data
=
ctx
.
Attr
<
float
>
(
"Scale_in_eltwise"
);
auto
scale_weights_data
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"Scale_weights"
);
auto
scale_out_data
=
force_fp32_output
?
1.0
f
:
ctx
.
Attr
<
float
>
(
"Scale_out"
);
float
sum_scale
=
fuse_residual_conn
?
scale_out_data
/
scale_in_eltwise_data
:
1.0
f
;
bool
is_multi_channel
=
scale_weights_data
.
size
()
>
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
(
weights_tz
)[
1
]
*
(
weights_tz
)[
0
]
:
(
weights_tz
)[
0
])
:
1
;
std
::
vector
<
float
>
output_shift_scale
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
)
{
if
(
scale_weights_data
[
i
]
==
0.0
)
output_shift_scale
[
i
]
=
scale_out_data
;
// weights data will contain 0
// in some models, then weights
// scale couldn't be calculated
else
output_shift_scale
[
i
]
=
static_cast
<
float
>
(
static_cast
<
double
>
(
scale_out_data
)
/
(
static_cast
<
double
>
(
scale_in_data
)
*
static_cast
<
double
>
(
scale_weights_data
[
i
])));
}
int
mask_reorder
=
ComputeWeightsMask
(
is_multi_channel
,
g
);
auto
user_src_md
=
platform
::
MKLDNNMemDesc
({
src_tz
},
src_dt
,
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
K
>
(),
((
g
)
==
1
)
?
MKLDNNMemoryFormat
::
oihw
:
MKLDNNMemoryFormat
::
goihw
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
std
::
vector
<
int
>
bias_tz
;
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
src_dt
,
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
s8
,
chosen_memory_format
);
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T_out
>
(),
chosen_memory_format
);
handler
.
reset
(
new
platform
::
ConvMKLDNNHandler
(
dev_ctx
,
mkldnn_engine
,
key
));
// create a conv primitive descriptor and save it for usage in backward
auto
propagation
=
is_test
?
mkldnn
::
prop_kind
::
forward_scoring
:
mkldnn
::
prop_kind
::
forward_training
;
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
,
true
,
scale_weights_data
,
mask_reorder
);
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
MKLDNNMemoryFormat
::
x
);
conv_pd
=
handler
->
AcquireConvolutionPrimitiveDescriptor
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_activation
,
fuse_alpha
,
fuse_beta
,
fuse_residual_conn
,
propagation
,
output_shift_scale
,
sum_scale
);
}
else
{
conv_pd
=
handler
->
AcquireConvolutionPrimitiveDescriptor
(
src_md
,
weights_md
,
boost
::
none
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_activation
,
fuse_alpha
,
fuse_beta
,
fuse_residual_conn
,
propagation
,
output_shift_scale
,
sum_scale
);
}
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T_out
>
();
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
if
(
residual_param
->
format
()
!=
handler
.
GetDstFormat
())
{
auto
residual_data_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
residual_param
->
dims
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_dt
,
residual_param
->
format
());
// create mkldnn memory from input tensors (data/weights)
user_src_memory_p
=
handler
->
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
->
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
K
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
src_memory_p
=
handler
->
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
int
mask_reorder
=
is_multi_channel
?
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
weights_memory_p
=
handler
->
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
,
true
,
scale_weights_data
,
mask_reorder
);
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
if
(
residual_param
->
format
()
!=
handler
->
GetDstFormat
())
{
auto
residual_data_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
residual_param
->
dims
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_dt
,
residual_param
->
format
());
dst_memory_p
=
platform
::
SetDstMemory
<
T_out
>
(
ctx
,
output
,
residual_param
,
user_residual_md
,
handler
,
&
pipeline
);
}
else
{
output
->
ShareDataWith
(
*
residual_param
);
dst_memory_p
=
platform
::
SetDstMemory
<
T_out
>
(
ctx
,
output
,
handler
);
}
need_s8_to_u8
=
(
platform
::
MKLDNNGetDataType
<
T_out
>
()
==
memory
::
data_type
::
s8
)
&&
unsigned_output
;
}
else
{
dst_memory_p
=
platform
::
SetDstMemory
<
T_out
>
(
ctx
,
output
,
handler
);
}
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
T_out
>
(
residual_param_data
));
// create convolution op primitive
auto
scale_bias_key
=
key
+
"@scale_bias"
;
if
(
bias
)
{
const
K
*
bias_data
=
bias
->
data
<
K
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
K
>
(),
MKLDNNMemoryFormat
::
x
);
auto
user_bias_memory_p
=
handler
->
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
K
>
(
bias_data
));
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
(
weights_tz
)[
1
]
*
(
weights_tz
)[
0
]
:
(
weights_tz
)[
0
])
:
1
;
std
::
vector
<
float
>
scale_bias_data
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
)
{
scale_bias_data
[
i
]
=
scale_in_data
*
scale_weights_data
[
i
];
}
bias_memory_p
=
handler
->
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
true
,
scale_bias_data
,
mask_reorder
);
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
}
else
{
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
dst_memory_p
);
}
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
}
else
{
auto
src_memory_reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
src_reorder_key
));
src_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
src_key
));
if
(
src_memory_reorder_p
)
{
user_src_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
user_src_key
));
user_src_memory_p
->
set_data_handle
(
to_void_cast
<
T
>
(
input_data
));
}
else
if
(
src_memory_p
)
{
src_memory_p
->
set_data_handle
(
to_void_cast
<
T
>
(
input_data
));
}
T_out
*
output_data
=
output
->
mutable_data
<
T_out
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
T_out
>
(
output_data
),
pipeline
);
dst_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
dst_key
));
conv_pd
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
dev_ctx
.
GetBlob
(
key_conv_pd
));
if
(
conv_pd
)
{
handler
.
reset
(
new
platform
::
ConvMKLDNNHandler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
));
}
}
else
{
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
output
->
ShareDataWith
(
*
residual_param
);
auto
output_data
=
output
->
mutable_data
<
T_out
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T_out
>
(
output_data
))
;
need_s8_to_u8
=
(
platform
::
MKLDNNGetDataType
<
T_out
>
()
==
memory
::
data_type
::
s8
)
&&
unsigned_output
;
}
}
else
{
T_out
*
output_data
=
output
->
mutable_data
<
T_out
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T_out
>
(
output_data
));
}
platform
::
SetDstMemoryHandler
<
T_out
>
(
ctx
,
output
,
handler
,
dst_memory_p
);
// create convolution op primitive
if
(
bias
)
{
const
float
*
bias_data
=
bias
->
data
<
float
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
auto
user_bias_memory_p
=
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
auto
scale_bias_data
=
ComputeBiasScale
(
scale_in_data
,
scale_weights_data
);
int
mask_bias_reorder
=
ComputeBiasMask
(
is_multi_channel
);
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
true
,
scale_bias_data
,
mask_bias_reorder
);
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
}
else
{
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
dst_memory_p
);
}
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
if
(
src_memory_reorder_p
)
{
pipeline
.
push_back
(
*
src_memory_reorder_p
);
}
auto
residual_reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
residual_reorder_key
));
if
(
residual_reorder_p
)
{
pipeline
.
push_back
(
*
residual_reorder_p
);
}
pipeline
.
push_back
(
*
conv_p
);
}
// push primitive to stream and wait until it's executed
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
if
(
platform
::
MKLDNNGetDataType
<
T_out
>
()
==
memory
::
data_type
::
s8
&&
unsigned_output
)
{
if
(
need_s8_to_u8
)
{
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
}
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
...
...
@@ -649,7 +701,7 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
auto
weights_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output_grad
->
dims
());
auto
src_format
=
input
->
format
();
MKLDNNMemoryFormat
weights_format
=
...
...
@@ -704,8 +756,8 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto
conv_pd
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
dev_ctx
.
GetBlob
(
key_conv_pd
));
PADDLE_ENFORCE
(
conv_pd
!=
nullptr
,
"Fail to find conv_pd in device context"
);
PADDLE_ENFORCE
_NE
(
conv_pd
,
nullptr
,
"Fail to find conv_pd in device context"
);
// create backward convolution weights primitive descriptor
auto
conv_bwd_weights_desc
=
mkldnn
::
convolution_backward_weights
::
desc
(
...
...
@@ -786,6 +838,7 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -794,17 +847,17 @@ namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv2d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kConvMKLDNNFP32
,
ops
::
ConvMKLDNNOpKernel
<
float
>
);
ops
::
ConvMKLDNNOpKernel
<
float
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv2d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
U8
,
ops
::
kConvMKLDNNINT8
,
ops
::
ConvMKLDNNOpKernel
<
uint8_t
>
);
ops
::
ConvMKLDNNOpKernel
<
uint8_t
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv2d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
S8
,
ops
::
kConvMKLDNNINT8
,
ops
::
ConvMKLDNNOpKernel
<
int8_t
>
);
ops
::
ConvMKLDNNOpKernel
<
int8_t
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv2d_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
...
...
@@ -814,7 +867,7 @@ REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv3d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kConvMKLDNNFP32
,
ops
::
ConvMKLDNNOpKernel
<
float
>
);
ops
::
ConvMKLDNNOpKernel
<
float
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv3d_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
4cf499c0
...
...
@@ -816,6 +816,15 @@ class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
)
{}
// TODO(jczaja): remove after conv int8 is adapted
ConvMKLDNNTemplateHandler
(
std
::
shared_ptr
<
typename
forward_t
::
primitive_desc
>
conv_pd
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
)
{
conv_pd_
=
conv_pd
;
}
ConvMKLDNNTemplateHandler
(
std
::
shared_ptr
<
typename
forward_t
::
primitive_desc
>
conv_pd
,
std
::
shared_ptr
<
typename
backward_data_t
::
primitive_desc
>
...
...
@@ -1136,6 +1145,47 @@ using ConvTransposeMKLDNNHandler =
mkldnn
::
deconvolution_backward_data
,
mkldnn
::
deconvolution_backward_weights
>
;
template
<
typename
T
>
static
std
::
shared_ptr
<
mkldnn
::
memory
>
SetDstMemory
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
Tensor
*
output
,
const
std
::
shared_ptr
<
ConvMKLDNNHandler
>&
handler
)
{
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
->
GetDstMemorySize
());
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
return
dst_memory_p
;
}
template
<
typename
T
>
static
std
::
shared_ptr
<
mkldnn
::
memory
>
SetDstMemory
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
Tensor
*
output
,
const
framework
::
Tensor
*
residual_param
,
const
mkldnn
::
memory
::
desc
&
user_residual_md
,
const
std
::
shared_ptr
<
ConvMKLDNNHandler
>&
handler
,
std
::
vector
<
mkldnn
::
primitive
>*
pipeline
)
{
const
T
*
residual_param_data
=
residual_param
->
data
<
T
>
();
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
std
::
shared_ptr
<
mkldnn
::
memory
>
user_residual_memory_p
=
handler
->
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
=
handler
->
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
*
pipeline
);
return
dst_memory_p
;
}
template
<
typename
T
>
static
void
SetDstMemoryHandler
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
Tensor
*
output
,
const
std
::
shared_ptr
<
ConvMKLDNNHandler
>&
handler
,
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
)
{
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
->
GetDstMemorySize
());
dst_memory_p
->
set_data_handle
(
to_void_cast
<
T
>
(
output_data
));
}
template
<
typename
T
>
static
void
SetDstMemoryQuantized
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
Tensor
*
output
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录