Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4cade607
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4cade607
编写于
12月 26, 2017
作者:
武
武毅
提交者:
GitHub
12月 26, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #6983 from typhoonzero/fix_sendrecv_ut
Fix sendrecv ut
上级
49437f1a
d2ded51a
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
55 addition
and
31 deletion
+55
-31
paddle/framework/operator.h
paddle/framework/operator.h
+3
-0
paddle/operators/detail/send_recv_impl.h
paddle/operators/detail/send_recv_impl.h
+2
-0
paddle/operators/recv_op.cc
paddle/operators/recv_op.cc
+19
-6
paddle/operators/send_op.cc
paddle/operators/send_op.cc
+12
-6
paddle/operators/send_recv_op_test.cc
paddle/operators/send_recv_op_test.cc
+16
-18
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+3
-1
未找到文件。
paddle/framework/operator.h
浏览文件 @
4cade607
...
...
@@ -89,6 +89,9 @@ class OperatorBase {
/// Net will call this function to Run an op.
virtual
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
=
0
;
// FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
virtual
void
Stop
()
{}
virtual
bool
IsNetOp
()
const
{
return
false
;
}
virtual
bool
SupportGPU
()
const
{
return
false
;
}
...
...
paddle/operators/detail/send_recv_impl.h
浏览文件 @
4cade607
...
...
@@ -62,6 +62,8 @@ class SendRecvServerImpl final : public SendRecvService::Service {
const
TensorWithName
Get
()
{
return
this
->
var_recv_queue_
.
Pop
();
}
void
Push
(
const
TensorWithName
&
msg
)
{
this
->
var_recv_queue_
.
Push
(
msg
);
}
private:
// received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue
<
TensorWithName
>
var_recv_queue_
;
...
...
paddle/operators/recv_op.cc
浏览文件 @
4cade607
...
...
@@ -28,6 +28,8 @@ limitations under the License. */
#include "paddle/operators/detail/send_recv_impl.h"
#include "paddle/operators/detail/simple_block_queue.h"
#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV"
namespace
paddle
{
namespace
operators
{
...
...
@@ -39,7 +41,7 @@ void RunServer(Server **rpc_server,
builder
.
RegisterService
(
service
.
get
());
std
::
unique_ptr
<
Server
>
server
(
builder
.
BuildAndStart
());
*
rpc_server
=
server
.
get
();
LOG
(
INFO
)
<<
"Server listening on "
<<
server_address
<<
std
::
endl
;
LOG
(
INFO
)
<<
"Server listening on "
<<
server_address
;
server
->
Wait
();
}
...
...
@@ -57,7 +59,10 @@ class RecvOp : public framework::OperatorBase {
}
}
virtual
~
RecvOp
()
{
void
Stop
()
override
{
detail
::
TensorWithName
term_msg
;
term_msg
.
first
=
LISTEN_TERMINATE_MESSAGE
;
rpc_service_
->
Push
(
term_msg
);
rpc_server_
->
Shutdown
();
server_thread_
->
join
();
}
...
...
@@ -83,13 +88,18 @@ class RecvOp : public framework::OperatorBase {
size_t
param_count
=
param_list
.
size
();
rpc_service_
->
Reset
();
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
while
(
true
)
{
bool
exit_flag
=
false
;
while
(
!
exit_flag
)
{
// Get from multiple trainers, we don't care about order in which
// the gradient arrives, just add suffix 0~n then average the gradient.
for
(
size_t
i
=
0
;
i
<
param_count
*
trainer_count
;
++
i
)
{
// blocking get one var from client.
const
detail
::
TensorWithName
&
v
=
rpc_service_
->
Get
();
auto
grad_var_name
=
v
.
first
;
if
(
grad_var_name
==
LISTEN_TERMINATE_MESSAGE
)
{
exit_flag
=
true
;
break
;
}
auto
it
=
std
::
find
(
grad_list
.
begin
(),
grad_list
.
end
(),
grad_var_name
);
std
::
string
param_var_name
;
if
(
it
!=
grad_list
.
end
())
{
...
...
@@ -114,8 +124,11 @@ class RecvOp : public framework::OperatorBase {
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
// FIXME(typhoonzero): do not copy
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Get
();
auto
&
dev_ctx
=
*
pool
.
Borrow
(
place
);
framework
::
CopyFrom
(
v
.
second
,
place
,
dev_ctx
,
tensor
);
auto
&
dev_ctx
=
*
pool
.
Borrow
(
dev_place
);
framework
::
CopyFrom
(
v
.
second
,
dev_place
,
dev_ctx
,
tensor
);
}
if
(
exit_flag
)
{
break
;
}
rpc_service_
->
Reset
();
...
...
@@ -123,7 +136,7 @@ class RecvOp : public framework::OperatorBase {
framework
::
proto
::
ProgramDesc
program_desc
;
program_desc
.
ParseFromString
(
program_str
);
framework
::
ProgramDesc
program
(
program_desc
);
framework
::
Executor
executor
(
place
);
framework
::
Executor
executor
(
dev_
place
);
// Run sub graph to get optimized tensor
try
{
executor
.
Run
(
program
,
&
recv_scope
,
0
,
/*global_block*/
...
...
paddle/operators/send_op.cc
浏览文件 @
4cade607
...
...
@@ -41,9 +41,11 @@ class SendOp : public framework::OperatorBase {
grpc
::
CreateChannel
(
ep
,
grpc
::
InsecureChannelCredentials
())));
}
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
const
platform
::
Place
&
dev_place
)
const
override
{
auto
ins
=
Inputs
(
"X"
);
auto
outs
=
Outputs
(
"Out"
);
std
::
vector
<
std
::
string
>
epmap
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
);
// TODO(typhoonzero): use async calls to send multiple variable asyncly.
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
...
...
@@ -54,10 +56,10 @@ class SendOp : public framework::OperatorBase {
}
// TODO(typhoonzero): support async optimization
client_map_
[
epmap
[
0
]]
->
Wait
();
for
(
size_t
i
=
0
;
i
<
in
s
.
size
();
++
i
)
{
bool
ret
=
client_map_
[
epmap
[
i
]]
->
GetVariable
(
scope
,
in
s
[
i
]);
for
(
size_t
i
=
0
;
i
<
out
s
.
size
();
++
i
)
{
bool
ret
=
client_map_
[
epmap
[
i
]]
->
GetVariable
(
scope
,
out
s
[
i
]);
if
(
!
ret
)
{
LOG
(
ERROR
)
<<
"GetVariable error: "
<<
in
s
[
i
];
LOG
(
ERROR
)
<<
"GetVariable error: "
<<
out
s
[
i
];
}
}
}
...
...
@@ -72,6 +74,8 @@ class SendOpMaker : public framework::OpProtoAndCheckerMaker {
SendOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) Input tensor to be send"
).
AsDuplicable
();
AddOutput
(
"Out"
,
"(Tensor) Output tensor to get from server"
)
.
AsDuplicable
();
AddComment
(
R"DOC(
Recv operator
...
...
@@ -79,11 +83,13 @@ This operator will recv tensor from send_op
)DOC"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"endpoints"
,
"(string vector, default 127.0.0.1:6164)"
"Server endpoints to send variables to."
);
"Server endpoints to send variables to."
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
,
"(string vector, default 127.0.0.1:6164)"
"Server endpoints in the order of input "
"variables for mapping"
);
"variables for mapping"
)
.
SetDefault
({});
}
};
...
...
paddle/operators/send_recv_op_test.cc
浏览文件 @
4cade607
...
...
@@ -12,9 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// TODO(typhoonzero): add python bindings for this test as
// a RemoteOptimizer.
#include <unistd.h>
#include <string>
#include <thread>
...
...
@@ -86,18 +83,19 @@ void StartServerNet() {
paddle
::
framework
::
ProgramDesc
program
;
paddle
::
framework
::
BlockDesc
*
block
=
program
.
MutableBlock
(
0
);
// X for server side tensors, RX for received tensers, must be of same shape.
AddOp
(
"sum"
,
{{
"X"
,
{
"x0"
,
"x1"
}}},
{{
"Out"
,
{
"
Out
"
}}},
{},
block
);
AddOp
(
"sum"
,
{{
"X"
,
{
"x0"
,
"x1"
}}},
{{
"Out"
,
{
"
x0
"
}}},
{},
block
);
paddle
::
framework
::
AttributeMap
attrs
;
attrs
.
insert
({
"endpoint"
,
std
::
string
(
"127.0.0.1:6174"
)});
attrs
.
insert
({
"ParamList"
,
std
::
vector
<
std
::
string
>
({
"x0"
})});
attrs
.
insert
({
"GradList"
,
std
::
vector
<
std
::
string
>
({
"x1"
})});
std
::
string
program_proto
;
PADDLE_ENFORCE
(
program
.
Proto
()
->
SerializeToString
(
&
program_proto
));
attrs
.
insert
({
"OptimizeProgram"
,
program_proto
});
recv_op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
"recv"
,
{{
"RX"
,
{
"x0"
,
"x1"
}}},
{{
"Out"
,
{
"Out"
}}},
attrs
);
paddle
::
platform
::
CPUDeviceContext
ctx
(
place
);
recv_op
->
Run
(
scope
,
ctx
);
recv_op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
"recv"
,
{{
"RX"
,
{
"x1"
}}},
{},
attrs
);
recv_op
->
Run
(
scope
,
place
);
}
TEST
(
SendRecvOp
,
CPU
)
{
...
...
@@ -109,25 +107,25 @@ TEST(SendRecvOp, CPU) {
InitTensorsInScope
(
scope
,
place
);
paddle
::
framework
::
AttributeMap
attrs
;
attrs
.
insert
({
"endpoint
"
,
std
::
string
(
"127.0.0.1:6174"
)});
attrs
.
insert
({
"endpoint
s"
,
std
::
vector
<
std
::
string
>
({
"127.0.0.1:6174"
}
)});
attrs
.
insert
({
"epmap"
,
std
::
vector
<
std
::
string
>
({
"127.0.0.1:6174"
})});
auto
send_op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
"send"
,
{{
"X"
,
{
"x0"
,
"x1"
}}},
{{
"Out"
,
{
"Out"
}}},
attrs
);
paddle
::
platform
::
CPUDeviceContext
ctx
(
place
);
send_op
->
Run
(
scope
,
ctx
);
"send"
,
{{
"X"
,
{
"x1"
}}},
{{
"Out"
,
{
"x0"
}}},
attrs
);
send_op
->
Run
(
scope
,
place
);
auto
in_var
=
scope
.
Var
(
"x
0
"
);
auto
in_var
=
scope
.
Var
(
"x
1
"
);
auto
tensor
=
in_var
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
float
*
expected
=
tensor
->
data
<
float
>
();
auto
out_var
=
scope
.
Var
(
"Out"
);
auto
out_var
=
scope
.
Var
(
"x0"
);
auto
target
=
out_var
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
//
send fail cause output is none.
//
x1 * 2 == x0
EXPECT_NE
(
target
->
memory_size
(),
size_t
(
0
));
float
*
actual
=
target
->
data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
target
->
numel
();
++
i
)
{
EXPECT_EQ
(
expected
[
i
]
*
2
,
actual
[
i
]);
}
recv_op
.
reset
();
// dtor can shutdown and join server thread.
recv_op
->
Stop
();
server_thread
.
join
();
// recv_op.reset();
}
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
4cade607
...
...
@@ -141,16 +141,18 @@ class DistributeTranspiler:
self
.
param_grad_map
=
split_method
(
params_and_grads
,
pserver_endpoints
)
send_op_ordered_inputs
=
[]
send_op_ordered_outputs
=
[]
epmap
=
[]
for
ep
,
v
in
self
.
param_grad_map
.
iteritems
():
send_op_ordered_inputs
.
extend
(
v
[
"grads"
])
send_op_ordered_outputs
.
extend
(
v
[
"params"
])
for
i
in
v
[
"grads"
]:
epmap
.
append
(
ep
)
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_op_ordered_inputs
},
# inputs is a list of tensors to be send
outputs
=
{},
outputs
=
{
"Out"
:
send_op_ordered_outputs
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"epmap"
:
epmap
})
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录