From 4b41edd6bb627961837dd0ffc1a84f7c0a71eb74 Mon Sep 17 00:00:00 2001 From: Wei Shengyu Date: Mon, 5 Sep 2022 20:41:56 +0800 Subject: [PATCH] fix doc of max_pool_2d (#45604) * fix doc of max_pool_2d * dbg * fix format --- python/paddle/nn/functional/pooling.py | 69 +++++++++++++------------- 1 file changed, 34 insertions(+), 35 deletions(-) diff --git a/python/paddle/nn/functional/pooling.py b/python/paddle/nn/functional/pooling.py index f5c2976a47b..637b192207e 100755 --- a/python/paddle/nn/functional/pooling.py +++ b/python/paddle/nn/functional/pooling.py @@ -1047,6 +1047,7 @@ def max_pool2d(x, """ This API implements max pooling 2d operation. See more details in :ref:`api_nn_pooling_MaxPool2d` . + Args: x (Tensor): The input tensor of pooling operator which is a 4-D tensor with shape [N, C, H, W]. The format of input tensor is `"NCHW"` or @@ -1077,31 +1078,26 @@ def max_pool2d(x, Returns: Tensor: The output tensor of pooling result. The data type is same as input tensor. - Raises: + Raises: ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is "VALID", but `ceil_mode` is True. ShapeError: If the output's shape calculated is not greater than 0. Examples: .. code-block:: python - import paddle - import paddle.nn.functional as F - import numpy as np - # max pool2d - x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32)) - out = F.max_pool2d(x, - kernel_size=2, - stride=2, padding=0) - # output.shape [1, 3, 16, 16] - # for return_mask=True - out, max_indices = F.max_pool2d(x, - kernel_size=2, - stride=2, - padding=0, - return_mask=True) - # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16], + import paddle + import paddle.nn.functional as F + + # max pool2d + x = paddle.uniform([1, 3, 32, 32], paddle.float32) + out = F.max_pool2d(x, kernel_size=2, stride=2, padding=0) + # output.shape [1, 3, 16, 16] + # for return_mask=True + out, max_indices = F.max_pool2d(x, kernel_size=2, stride=2, padding=0, return_mask=True) + # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16], """ + kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size') if stride is None: stride = kernel_size @@ -1193,6 +1189,7 @@ def max_pool3d(x, """ This API implements max pooling 2d operation. See more details in :ref:`api_nn_pooling_MaxPool3d` . + Args: x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively. @@ -1221,33 +1218,35 @@ def max_pool3d(x, Returns: Tensor: The output tensor of pooling result. The data type is same as input tensor. - + Raises: ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is "VALID", but `ceil_mode` is True. ShapeError: If the output's shape calculated is not greater than 0. - + Examples: .. code-block:: python - import paddle - import paddle.nn.functional as F + import paddle + import paddle.nn.functional as F - # max pool3d - x = paddle.uniform([1, 3, 32, 32, 32]) - output = F.max_pool3d(x, - kernel_size=2, - stride=2, padding=0) - # output.shape [1, 3, 16, 16, 16] - # for return_mask=True - x = paddle.uniform([1, 3, 32, 32, 32]) - output, max_indices = paddle.nn.functional.max_pool3d(x, - kernel_size = 2, - stride = 2, - padding=0, - return_mask=True) - # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16] + # max pool3d + x = paddle.uniform([1, 3, 32, 32, 32]) + output = F.max_pool3d(x, + kernel_size=2, + stride=2, padding=0) + # output.shape [1, 3, 16, 16, 16] + # for return_mask=True + x = paddle.uniform([1, 3, 32, 32, 32]) + output, max_indices = paddle.nn.functional.max_pool3d(x, + kernel_size=2, + stride=2, + padding=0, + return_mask=True) + + # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16] """ + kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size') if stride is None: stride = kernel_size -- GitLab