diff --git a/paddle/fluid/eager/accumulation/accumulation_node.cc b/paddle/fluid/eager/accumulation/accumulation_node.cc index 9c4089af092e418d6845864671124917c6498cf1..3a2ec403c0a59aaa23decc72fb9581b5a7f78343 100644 --- a/paddle/fluid/eager/accumulation/accumulation_node.cc +++ b/paddle/fluid/eager/accumulation/accumulation_node.cc @@ -24,7 +24,7 @@ #include "paddle/fluid/platform/errors.h" #include "glog/logging.h" -DECLARE_bool(retain_grad_for_all_tensor); + namespace egr { static void CopyOrAddTensor(paddle::experimental::Tensor* tensor, @@ -39,8 +39,8 @@ static void CopyOrAddTensor(paddle::experimental::Tensor* tensor, } std::vector> GradNodeAccumulation:: -operator()(const std::vector>& grads, - bool create_graph) { +operator()( + const std::vector>& grads) { VLOG(3) << "Running Eager Backward Node: GradNodeAccumulation"; PADDLE_ENFORCE(grads.size() == 1, paddle::platform::errors::Fatal( @@ -62,7 +62,7 @@ operator()(const std::vector>& grads, grad_out = grads[0][0]; } - if (!weak_grad_.expired() && FLAGS_retain_grad_for_all_tensor) { + if (!weak_grad_.expired()) { auto grad = weak_grad_.lock(); CopyOrAddTensor(grad.get(), grad_out); } diff --git a/paddle/fluid/eager/accumulation/accumulation_node.h b/paddle/fluid/eager/accumulation/accumulation_node.h index a91a0b6e34c0d9440e3645d1a6982748c4315962..07fa40165167ce2352018c0e1b1cb08222d5a181 100644 --- a/paddle/fluid/eager/accumulation/accumulation_node.h +++ b/paddle/fluid/eager/accumulation/accumulation_node.h @@ -35,15 +35,8 @@ class GradNodeAccumulation : public GradNodeBase { // Functor: perform backward computations virtual std::vector> operator()( - const std::vector>& grads, - bool create_graph = false) override; - - void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; } - - bool IsTensorWrappersCleared() override { - VLOG(6) << "Do nothing here now"; - return false; - } + const std::vector>& grads) + override; std::string name() { return "GradNodeAccumulation"; } diff --git a/paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.cc b/paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.cc index 0bc998a03a80b7b8a1e486ad68f1575c130d2c1b..5a2595b9103e4d49845fa8938ee3577b6b3f3f06 100644 --- a/paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.cc +++ b/paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.cc @@ -145,8 +145,8 @@ void GradNodeScale::SetTensorWrappers_X( void GradNodeScale::SetAttributes_scale(float scale) { scale_ = scale; } std::vector> GradNodeScale:: -operator()(const std::vector>& grads, - bool create_graph) { +operator()( + const std::vector>& grads) { // 1. Check Output Size PADDLE_ENFORCE( ((grads.size() == 1) && (grads[0].size() == 1)), diff --git a/paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h b/paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h index e263f73a6b8a4a1f9ce23d9b5ca383fd6828016b..247fde6ed1f869542969b068cdae9f59cedd732a 100644 --- a/paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h +++ b/paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h @@ -39,15 +39,8 @@ class GradNodeScale : public GradNodeBase { // Functor: perform backward computations virtual std::vector> operator()( - const std::vector>& grads, - bool create_graph = false) override; - - void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; } - - bool IsTensorWrappersCleared() override { - VLOG(6) << "Do nothing here now"; - return false; - } + const std::vector>& grads) + override; void SetTensorWrappers_X( const std::vector& tensors); diff --git a/paddle/fluid/eager/auto_code_generator/eager_generator.cc b/paddle/fluid/eager/auto_code_generator/eager_generator.cc index d9f201dc9f1e8b9a0296288917b82f3e2903330e..bf838b27615028167e35a8e85e7636dd4c834016 100644 --- a/paddle/fluid/eager/auto_code_generator/eager_generator.cc +++ b/paddle/fluid/eager/auto_code_generator/eager_generator.cc @@ -2074,8 +2074,7 @@ static std::string GenerateGradNodeCCContents( const char* GRAD_FUNCTION_TEMPLATE = "std::vector> " "GradNode%s::operator()(const " - "std::vector>& grads, " - "bool create_graph) {\n%s\n}"; + "std::vector>& grads) {\n%s\n}"; std::string grad_function_str = paddle::string::Sprintf( GRAD_FUNCTION_TEMPLATE, fwd_op_type, generated_grad_function_body); @@ -2110,28 +2109,18 @@ static std::string GenerateGradNodeHeaderContents( "\n" " virtual std::vector> " "operator()(const " - "std::vector>& grads, const " - "bool create_graph = false) " + "std::vector>& grads) " "override;\n" "\n" - " void ClearTensorWrappers() override { \n" - "%s\n" - " is_tensor_wrappers_cleared = true;\n" - " }\n" " std::string name() override { return \" GradNode%s \"; } \n " "\n" " // SetX, SetY, ...\n" "%s\n" " // SetAttrMap\n" "%s\n" - " bool IsTensorWrappersCleared() override { \n" - " return is_tensor_wrappers_cleared;\n" - " }\n" " private:\n" " // TensorWrappers\n" "%s\n" - " bool is_tensor_wrappers_cleared = false;\n" - "\n" " // Attribute Map\n" "%s\n" "};"; @@ -2165,7 +2154,6 @@ static std::string GenerateGradNodeHeaderContents( std::string set_tensor_wrappers_str = ""; std::string tensor_wrapper_members_str = ""; - std::string clear_tensor_wrappers_str = ""; for (const auto& iter : op_base_infos) { const std::map& grad_ins_fwd_slotname_map = iter.GetGradInsFwdSlotnameMap(); @@ -2197,13 +2185,6 @@ static std::string GenerateGradNodeHeaderContents( SET_TENSOR_WRAPPER_BODY_TEMPLATE, tensor_wrapper_name, struct_tensor_wrapper_name); - const char* CLEAR_TENSOR_WRAPPER_TEMPLATE = - "for (auto tw: %s) {\n" - " tw.clear();\n" - " }\n"; - clear_tensor_wrappers_str += paddle::string::Sprintf( - CLEAR_TENSOR_WRAPPER_TEMPLATE, struct_tensor_wrapper_name); - } else { const char* ATTR_TENSOR_WRAPPER_ARG_TEMPLATE = "const paddle::experimental::Tensor& %s"; @@ -2216,14 +2197,10 @@ static std::string GenerateGradNodeHeaderContents( TENSOR_WRAPPER_MEMBER_TEMPLATE, struct_tensor_wrapper_name); const char* SET_TENSOR_WRAPPER_BODY_TEMPLATE = - "%s = egr::TensorWrapper(%s, %s /*full_reserved*/);\n"; + "%s = egr::TensorWrapper(%s, %s /*full_reserved*/);"; tensor_wrapper_body_str = paddle::string::Sprintf( SET_TENSOR_WRAPPER_BODY_TEMPLATE, struct_tensor_wrapper_name, tensor_wrapper_name, full_reserved_str); - - const char* CLEAR_TENSOR_WRAPPER_TEMPLATE = " %s.clear();\n"; - clear_tensor_wrappers_str += paddle::string::Sprintf( - CLEAR_TENSOR_WRAPPER_TEMPLATE, struct_tensor_wrapper_name); } std::string full_reserved_signature_str = "bool full_reserved"; const char* SET_TENSOR_WRAPPER_TEMPLATE = @@ -2238,8 +2215,8 @@ static std::string GenerateGradNodeHeaderContents( std::string grad_node_str = paddle::string::Sprintf( GRAD_NODE_TEMPLATE, op_type, op_type, op_type, op_type, op_type, op_type, - op_type, clear_tensor_wrappers_str, op_type, set_tensor_wrappers_str, - set_attr_map_str, tensor_wrapper_members_str, attr_members_str); + op_type, op_type, set_tensor_wrappers_str, set_attr_map_str, + tensor_wrapper_members_str, attr_members_str); return grad_node_str; } diff --git a/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py b/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py index 4c1e5b00cbaf6fd0688663c9dac756832e44dc4a..d2d699e154f91d21e94e9d2dac3f703069d041e5 100644 --- a/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py +++ b/paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py @@ -478,7 +478,6 @@ def GenerateNodeDeclaration(fwd_api_name, backward_fwd_input_map, # SetTensorWrapper Methods & TensorWrapper Members set_tensor_wrapper_methods_str = "" tensor_wrapper_members_str = "" - clear_tensor_wrapper_str = "" for tname, (ttype, is_fwd_input, _) in backward_fwd_input_map.items(): if tname in no_need_buffer_set: no_need_buffer = "true" @@ -500,13 +499,6 @@ def GenerateNodeDeclaration(fwd_api_name, backward_fwd_input_map, """ tensor_wrapper_members_str += PLAIN_TENSOR_MEMBER_TEMPLATE.format( tensor_wrapper_name) - - CLEAR_TENSOR_WRAPPERS_TEMPLATE = """ - {}.clear(); -""" - clear_tensor_wrapper_str += CLEAR_TENSOR_WRAPPERS_TEMPLATE.format( - tensor_wrapper_name) - else: assert IsVectorTensorType(ttype) SET_VECTOR_TENSOR_WRAPPER_TEMPLATE = """ @@ -524,15 +516,6 @@ def GenerateNodeDeclaration(fwd_api_name, backward_fwd_input_map, """ tensor_wrapper_members_str += VECTOR_TENSOR_MEMBER_TEMPLATE.format( tensor_wrapper_name) - - CLEAR_TENSOR_WRAPPERS_TEMPLATE = """ - for (auto tw: {}) { - tw.clear(); - }; -""" - clear_tensor_wrapper_str += CLEAR_TENSOR_WRAPPERS_TEMPLATE.format( - tensor_wrapper_name) - # End: SetTensorWrapper Methods & TensorWrapper Members # SetAttributes & Attribute Members @@ -541,7 +524,7 @@ def GenerateNodeDeclaration(fwd_api_name, backward_fwd_input_map, for aname, atype, default_val, _ in backward_attrs_list: saved_attr_name = GetSavedName(aname) SET_ATTR_METHOD_TEMPLATE = """ - void SetAttribute{}({} {}) {{ + void SetAttribute{}({} {}) {{ {} = {}; }} """ @@ -572,37 +555,25 @@ class {} : public egr::GradNodeBase {{ ~{}() override = default; virtual std::vector> operator()( - const std::vector>& grads, bool create_graph = false) override; + const std::vector>& grads) override; std::string name() override {{ return \" {} \"; }} - - void ClearTensorWrappers() override {{ - {} - is_tensor_wrappers_cleared = true; - }} - // SetTensorWrapperX, SetTensorWrapperY, ... {} // SetAttributes {} - - bool IsTensorWrappersCleared() override {{ - return is_tensor_wrappers_cleared; - }} private: // TensorWrappers {} - bool is_tensor_wrappers_cleared = false; - // Attributes {} }}; """ node_declaration_str = NODE_DECLARATION_TEMPLATE.format( grad_node_name, grad_node_name, grad_node_name, grad_node_name, - grad_node_name, clear_tensor_wrapper_str, - set_tensor_wrapper_methods_str, set_attribute_methods_str, - tensor_wrapper_members_str, attribute_members_str) + grad_node_name, set_tensor_wrapper_methods_str, + set_attribute_methods_str, tensor_wrapper_members_str, + attribute_members_str) return node_declaration_str @@ -666,7 +637,7 @@ def GenerateNodeDefinition(fwd_api_name, bwd_api_name, backward_fwd_input_map, grad_api_namespace = f"paddle::experimental" FUNCTION_TEMPLATE = """ -std::vector> {}::operator()(const std::vector>& grads, bool create_graph) {{ +std::vector> {}::operator()(const std::vector>& grads) {{ // Call grad_api function auto grad_api_returns = {}::{}({}); {} diff --git a/paddle/fluid/eager/backward.cc b/paddle/fluid/eager/backward.cc index f2d5f338bd4af6ce1f9858d35485a0b23dc5f61c..1987d024d8f3e34121f54962c45f0f8c1e91b723 100644 --- a/paddle/fluid/eager/backward.cc +++ b/paddle/fluid/eager/backward.cc @@ -39,21 +39,12 @@ std::unordered_map getInDegreeMap( // Copy nodes std::queue queue = init_queue; std::unordered_set visited; - size_t potential_startup_ops_cnt = queue.size(); - size_t cnt = 0; // Visit each node exactly once in any order while (!queue.empty()) { GradNodeBase* node = queue.front(); queue.pop(); - if (cnt < potential_startup_ops_cnt) { - if (!node_in_degree_map.count(node)) { - node_in_degree_map[node] = 0; - } - cnt += 1; - } - if (visited.count(node)) { continue; } @@ -85,248 +76,23 @@ std::unordered_map getInDegreeMap( return node_in_degree_map; } -// Remove some nodes those doesn't need to be -// stored in potential_stop_nodes、potential_startup_nodes -void UpdateGraphInfo( - std::unordered_map* - target_nodes_inputmeta_map, - std::unordered_map>* - depending_nodes, - std::unordered_set* potential_stop_nodes, - std::unordered_set* potential_startup_nodes) { - // Updated potential_sotp_nodes by depending_nodes, - // make sure the path from root to target_node is ok - std::unordered_set _startup_ops; - VLOG(6) << "Running in UpdateGraphInfo"; - std::queue queue; - for (auto& target_nodes_inputmeta_pair : *target_nodes_inputmeta_map) { - queue.emplace(target_nodes_inputmeta_pair.first); - } - - while (!queue.empty()) { - auto* target_node = queue.front(); - queue.pop(); - if (!(*depending_nodes)[target_node].empty()) { - auto precedding_nodes = (*depending_nodes)[target_node]; - for (auto pre_nodes : precedding_nodes) { - queue.emplace(pre_nodes); - if (potential_stop_nodes->find(pre_nodes) != - potential_stop_nodes->end()) { - potential_stop_nodes->erase(pre_nodes); - } - } - } else { // startup_ops have no precedding nodes - VLOG(6) << "Emplace _startup_ops"; - _startup_ops.emplace(target_node); - } - } - // Purify potential_startup_nodes again, remove some - // potential startup_nodes that unreach to input target nodes - if (!_startup_ops.empty()) { - std::unordered_set potential_startup_nodes_to_be_erased; - for (auto node : *potential_startup_nodes) { - if (_startup_ops.count(node) == 0) { - VLOG(6) << "Set up potential_startup_nodes_to_be_erased"; - potential_startup_nodes_to_be_erased.emplace(node); - } - } - if (!potential_startup_nodes_to_be_erased.empty()) { - for (auto node : potential_startup_nodes_to_be_erased) { - VLOG(6) << "Erase nodes in potential_startup_nodes_to_be_erased"; - potential_startup_nodes->erase(node); - } - } - } -} - -// Get Graph Info Betweent input target gradnode and outputs, -// record depending_nodes、 potential_stop_nodes、potential_startup_nodes -void GetGraphInfoBetweenTargets( - const std::queue& init_queue, - std::unordered_map* - input_target_nodes_inputmeta_map, - std::unordered_map>* - depending_nodes, - std::unordered_set* potential_stop_nodes, - std::unordered_set* potential_startup_nodes) { - if (input_target_nodes_inputmeta_map->empty()) return; - - VLOG(6) << "Runing In GetGraphInfoBetweenTargets"; - - // Calculate in_degree for each node - std::unordered_map node_in_degree_map; - - // Copy nodes - std::queue queue = init_queue; - std::unordered_set visited; - - // Visit each node exactly once in any order - while (!queue.empty()) { - GradNodeBase* node = queue.front(); - queue.pop(); - - if (visited.count(node)) { - continue; - } - visited.insert(node); - - // Check node is target_nodes or not, if node is not target_node, - // all the next_node will be marked in potential_stop_nodes - bool is_potential_stop_nodes = - input_target_nodes_inputmeta_map->count(node); - - // Find and append next nodes - const std::vector>& edges = node->GetEdges(); - for (const auto& edge_list : edges) { - for (const Edge& edge : edge_list) { - GradNodeBase* next_node = edge.GetMutableGradNode().get(); - - // Next node could be nullptr if it is leaf tensor with no - // AccumulationNode attached - // Or it could also originated from dispensable inputs - if (!next_node) continue; - - // if node not in input_target_nodes, - // all the next_nodes of current node will be inserted to - // potential_stop_node - if (is_potential_stop_nodes) { - potential_stop_nodes->emplace(next_node); - } - - // Update in_degree - if (!node_in_degree_map.count(next_node)) - node_in_degree_map[next_node] = 0; - node_in_degree_map[next_node]++; - - // Record depending relationship - (*depending_nodes)[next_node].emplace(node); - queue.push(next_node); - } - } - } - // Update Graph Info, remove some stop_node in potential_stop_nodes - UpdateGraphInfo(input_target_nodes_inputmeta_map, depending_nodes, - potential_stop_nodes, potential_startup_nodes); -} - -void GetTargetNodesInfo(const std::vector& inputs, - std::unordered_map* - target_nodes_inputmeta_map) { - VLOG(6) << "Running in GetTargetNodesInfo"; - if (!inputs.empty()) { - VLOG(6) << "Inputs are not empty"; - size_t num_inputs = inputs.size(); - for (size_t i = 0; i < num_inputs; i++) { - AutogradMeta* auto_grad_meta = - EagerUtils::unsafe_autograd_meta(inputs[i]); - auto target_node = auto_grad_meta->GetMutableGradNode().get(); - - PADDLE_ENFORCE_NOT_NULL(target_node, - paddle::platform::errors::Fatal( - "There is no grad op for input:%d or it's" - "stop_gradient=True", - i)); - (*target_nodes_inputmeta_map)[target_node] = auto_grad_meta; - } - } -} - -std::vector GetResults( - const std::vector& inputs, - std::unordered_map* - results_map, - bool allow_unused, bool create_graph) { - VLOG(6) << "Running in GetResults"; - if (inputs.empty()) return {}; - - std::vector results; - results.reserve(inputs.size()); - - for (size_t i = 0; i < inputs.size(); ++i) { - auto& input = inputs[i]; - AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(input); - auto target_node = auto_grad_meta->GetMutableGradNode().get(); - - auto iter = results_map->find(target_node); - if (iter != results_map->end()) { - // set StopGradient = !create_graph - AutogradMeta* tensor_auto_grad_meta = - EagerUtils::autograd_meta(&(iter->second)); - tensor_auto_grad_meta->SetStopGradient(!create_graph); - results.emplace_back(iter->second); - } else { - PADDLE_ENFORCE_EQ(allow_unused, true, - paddle::platform::errors::InvalidArgument( - "The %d-th input does not appear in the backward " - "graph. Please check the input variable or set " - "allow_unused=True to get None result.", - i)); - results.emplace_back(); - } - } - return results; -} - -// Enforce GradNode has TensorWrappers as Input -void EnforceGradNodeHasInput(GradNodeBase* node) { - VLOG(6) << "Running in EnforceGradNodeHasInput"; - PADDLE_ENFORCE_NE( - node->IsTensorWrappersCleared(), true, - paddle::platform::errors::Fatal( - "The TensorWrappers of %s do not exist. This may be because:\n" - "You calculate backward twice for the same subgraph without " - "setting retain_graph=True. Please set retain_graph=True in the " - "first backward/grad call.\n", - node->name())); -} - -// Purify potential_startup_nodes, remove nodes those are the same as -// input_target_nodes -void PurifyPotentialStartUpNodes( - std::unordered_set* potential_startup_nodes, - std::unordered_map* - input_target_nodes_inputmeta_map) { - VLOG(6) << "Running in PurifyPotentialStartUpNodes"; - if (input_target_nodes_inputmeta_map->empty()) return; - std::unordered_set potential_startup_nodes_to_be_erased; - for (auto startup_op : *potential_startup_nodes) { - auto iter = input_target_nodes_inputmeta_map->find(startup_op); - if (iter != input_target_nodes_inputmeta_map->end()) { - potential_startup_nodes_to_be_erased.emplace(iter->first); - } - } - if (!potential_startup_nodes_to_be_erased.empty()) { - for (auto nodes : potential_startup_nodes_to_be_erased) { - potential_startup_nodes->erase(nodes); - } - } -} +void RunBackward(const std::vector& tensors, + const std::vector& grad_tensors, + bool retain_graph) { + paddle::platform::RecordEvent backward_record_event( + "backward", paddle::platform::TracerEventType::Operator, 1); -std::vector RunBackward( - const std::vector& tensors, // output - const std::vector& grad_tensors, - bool retain_graph, bool create_graph = false, - const std::vector& inputs = {}, - bool allow_unused = false, - const std::vector& no_grad_vars = {}) { VLOG(6) << "Start Backward"; // *Gradient Hook should happen at node-level // *Inplace version check should perform at node-level // *Cross-batch accumulation happens at forward pass - std::unordered_map - no_grad_var_nodes_inputmeta_map; - // Get no_grad_vars's GradNodes and InputMeta Info - GetTargetNodesInfo(no_grad_vars, &no_grad_var_nodes_inputmeta_map); - /* --- Initialization --- */ // 1. Init queue with starting nodes // 2. Prepare initial input buffers std::queue queue; std::unordered_map> node_input_buffers_dict; - std::unordered_set potential_startup_nodes; for (size_t i = 0; i < tensors.size(); i++) { const paddle::experimental::Tensor& tensor = tensors[i]; @@ -366,17 +132,8 @@ std::vector RunBackward( "size = 0 or same size as tensors")); // Feed given tensor if it's provided VLOG(6) << "Fill grad input tensor " << i << "with give grad tensor"; - - if (grad_tensors[i].is_initialized()) { - // Deep copy - paddle::experimental::Tensor tmp_tensor; - tmp_tensor.copy_(grad_tensors[i], true); - node_input_buffers_dict[grad_node]->add(input_info.first, - input_info.second, tmp_tensor); - } else { - node_input_buffers_dict[grad_node]->add( - input_info.first, input_info.second, grad_tensors[i]); - } + node_input_buffers_dict[grad_node]->add( + input_info.first, input_info.second, grad_tensors[i]); } else { VLOG(6) << "Fill grad input tensor " << i << " with 1.0"; @@ -389,9 +146,8 @@ std::vector RunBackward( input_info.first, input_info.second, tensor, true /*fill_one=true*/); } - // Prepare queue, potential startup_nodes + // Prepare queue queue.push(grad_node); - potential_startup_nodes.emplace(grad_node); } VLOG(6) << "Update In degree Map for backward"; @@ -399,74 +155,25 @@ std::vector RunBackward( std::unordered_map node_in_degree_map = getInDegreeMap(queue); - // Get input's GradNodes and InputMeta Info - std::unordered_map - input_target_nodes_inputmeta_map; - GetTargetNodesInfo(inputs, &input_target_nodes_inputmeta_map); - - // Purify potential_startup_ops, remove those nodes that are the same as - // input_target_nodes - PurifyPotentialStartUpNodes(&potential_startup_nodes, - &input_target_nodes_inputmeta_map); - - // Get Graph Info Betweent input target gradnode and outputs - // Record the depending_nodes and potential_stop_nodes - std::unordered_map /* father node */> - depending_nodes; - std::unordered_set potential_stop_nodes; - // std::unordered_set startup_ops; - - GetGraphInfoBetweenTargets(queue, &input_target_nodes_inputmeta_map, - &depending_nodes, &potential_stop_nodes, - &potential_startup_nodes); - - // ready_queue store all startup nodes - std::queue ready_queue; - // startup op's indegree should be 0 - for (auto node : potential_startup_nodes) { - if (node_in_degree_map[node] == 0) { - ready_queue.emplace(node); - } - } - - VLOG(1) << " startup_ops' size is :" << ready_queue.size(); - - std::unordered_map results_map; - - // read_queue is empty only when 1.input equals to output. 2.input can not - // reach to output. - if (ready_queue.size() == 0) { - for (auto input_target_node : input_target_nodes_inputmeta_map) { - // out rank_info of forward op - auto rank_info = input_target_node.second->OutRankInfo(); - if (node_input_buffers_dict[input_target_node.first]) { - auto& target_result = - node_input_buffers_dict[input_target_node.first] - ->Buffers()[rank_info.first][rank_info.second]; - // save the target result - results_map[input_target_node.first] = target_result; - } - } - } - /* --- Topological Visit --- */ // 1. Pop queue // 2. Run node - // |- Check and capture target result // |- node(grads) // |- Prepare for next node // 3. Update queue VLOG(6) << "Run Backward"; - while (!ready_queue.empty()) { - GradNodeBase* node = ready_queue.front(); - VLOG(6) << "Running GradNode:" << node->name(); - ready_queue.pop(); + while (!queue.empty()) { + GradNodeBase* node = queue.front(); paddle::platform::RecordEvent node_record_event( std::string(typeid(*node).name()) + " grad_node", paddle::platform::TracerEventType::Operator, 1); + if (queue.size() > 1 && node_in_degree_map[node] != 0) { + queue.pop(); + continue; + } + queue.pop(); // Run node: This is where Hook happens PADDLE_ENFORCE( node_input_buffers_dict.count(node), @@ -477,45 +184,10 @@ std::vector RunBackward( std::unique_ptr node_input_buffer = std::move(node_input_buffers_dict[node]); - // get target grad_var from node_input_buffer by inputmeta - if (input_target_nodes_inputmeta_map.find(node) != - input_target_nodes_inputmeta_map.end()) { - VLOG(6) << "Get target result by by inputmeta"; - // out rank_info of forward op - auto rank_info = input_target_nodes_inputmeta_map[node]->OutRankInfo(); - // rank_info is a pair, first means slot_id, second means rank. - auto& target_result = - node_input_buffer->Buffers()[rank_info.first][rank_info.second]; - // save the target result - results_map[node] = target_result; - } - - // no_grad_vars - if (no_grad_var_nodes_inputmeta_map.find(node) != - no_grad_var_nodes_inputmeta_map.end()) { - VLOG(6) << "Change the input buffer[slot][rank] by Zeros"; - auto rank_info = no_grad_var_nodes_inputmeta_map[node]->OutRankInfo(); - node_input_buffer->SetBufferSlotRankZeros(rank_info.first, - rank_info.second); - } - - VLOG(6) << "Running GradNode:" << node->name(); - - // check input - EnforceGradNodeHasInput(node); - VLOG(6) << "Run Backward Kernel with GradTensorHolder"; // Run Pre Backward Node and get outputs std::vector> grad_output_tensors = - (*node)(node_input_buffer->Buffers(), create_graph); - - // retain_grad or not - if (!retain_graph) { - VLOG(6) - << "retain_graph is false, need to clear the TensorWrapper of nodes."; - node->ClearTensorWrappers(); - } - + (*node)(node_input_buffer->Buffers()); // TODO(jiabin): Should we erase it or find a more efficient way. node_input_buffers_dict.erase(node); @@ -580,44 +252,18 @@ std::vector RunBackward( // Update queue node_in_degree_map[next_node]--; - PADDLE_ENFORCE( node_in_degree_map[next_node] >= 0, paddle::platform::errors::Fatal( "Detected in-degree value smaller than zero. For Node: %s" "Node's in-degree cannot be negative", next_node->name())); - - bool is_potential_stop_node = potential_stop_nodes.count(next_node); - - if (node_in_degree_map[next_node] == 0 && !is_potential_stop_node) { - ready_queue.emplace(std::move(next_node)); + if (node_in_degree_map[next_node] == 0) { + queue.emplace(std::move(next_node)); } } } } - - return GetResults(inputs, &results_map, allow_unused, create_graph); } -void Backward( - const std::vector& tensors, // output - const std::vector& grad_tensors, - bool retain_graph) { - VLOG(6) << "Run in Backward"; - paddle::platform::RecordEvent backward_record_event( - "backward", paddle::platform::TracerEventType::Operator, 1); - RunBackward(tensors, grad_tensors, retain_graph); -} - -std::vector Grad( - const std::vector& tensors, // output - const std::vector& inputs, - const std::vector& grad_tensors, - bool retain_graph, bool create_graph, bool only_inputs, bool allow_unused, - const std::vector& no_grad_vars) { - VLOG(6) << "Run in Grad"; - return RunBackward(tensors, grad_tensors, retain_graph, create_graph, inputs, - allow_unused, no_grad_vars); -} } // namespace egr diff --git a/paddle/fluid/eager/backward.h b/paddle/fluid/eager/backward.h index bebe664838e6c1f98219ceee6e6733b49c319b3c..2856d9fb87f34b1066bb59eb38bcaee786d2a260 100644 --- a/paddle/fluid/eager/backward.h +++ b/paddle/fluid/eager/backward.h @@ -19,20 +19,12 @@ namespace egr { -// Backward(): +// run_backward(): // tensors corresponds to those lived in the backward graph // each grad_tensors[i] keeps the value for its corresponding tensors[i] -void Backward(const std::vector& tensors, - const std::vector& grad_tensors, - bool retain_graph = false); - -std::vector Grad( - const std::vector& tensors, - const std::vector& inputs, - const std::vector& grad_tensors = {}, - bool retain_graph = false, bool create_graph = false, - bool only_inputs = false, bool allow_unused = false, - const std::vector& no_grad_vars = {}); +void RunBackward(const std::vector &tensors, + const std::vector &grad_tensors, + bool retain_graph = false); // Reserved for gradient() diff --git a/paddle/fluid/eager/custom_operator/custom_operator_node.cc b/paddle/fluid/eager/custom_operator/custom_operator_node.cc index 72af1cc4b068679e72ae6bdc5e09fab8f56bac04..48ac8c8358afd68cee9d22b8ea0a4e8fd7c3c92e 100644 --- a/paddle/fluid/eager/custom_operator/custom_operator_node.cc +++ b/paddle/fluid/eager/custom_operator/custom_operator_node.cc @@ -20,8 +20,8 @@ namespace egr { std::vector> RunCustomOpNode:: -operator()(const std::vector>& grads, - bool create_graph) { +operator()( + const std::vector>& grads) { paddle::CustomOpKernelContext ctx; auto grad_inputs_name = paddle::framework::OpMetaInfoHelper::GetInputs( egr::Controller::Instance().GetOpMetaInfoMap().at(op_type_)[1]); diff --git a/paddle/fluid/eager/custom_operator/custom_operator_node.h b/paddle/fluid/eager/custom_operator/custom_operator_node.h index 6ece2658575c795856438904c2716d61f0985879..e5ddef9c062149282d790a5fd6bf31b25a20cf5a 100644 --- a/paddle/fluid/eager/custom_operator/custom_operator_node.h +++ b/paddle/fluid/eager/custom_operator/custom_operator_node.h @@ -37,8 +37,8 @@ class RunCustomOpNode : public GradNodeBase { // Functor: perform backward computations virtual std::vector> operator()( - const std::vector>& grads, - bool create_graph) override; + const std::vector>& grads) + override; std::string name() { return paddle::string::Sprintf("RunCustomOpNode: %s_grad", op_type_); @@ -62,12 +62,6 @@ class RunCustomOpNode : public GradNodeBase { return res; } - void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; } - bool IsTensorWrappersCleared() override { - VLOG(6) << "Do nothing here now"; - return false; - } - void SetAttrs(const std::vector& attr) { attrs_ = attr; } public: diff --git a/paddle/fluid/eager/grad_node_info.h b/paddle/fluid/eager/grad_node_info.h index 168e1bcca77ca85eb6fa90a23350d1f62f63dc8e..16513f05e0777a8e57f54c925d68867dda656612 100644 --- a/paddle/fluid/eager/grad_node_info.h +++ b/paddle/fluid/eager/grad_node_info.h @@ -95,12 +95,8 @@ class GradNodeBase { * is better choice to fit this format. * **/ virtual std::vector> operator()( - const std::vector>& grads, - bool create_graph = false) = 0; + const std::vector>& grads) = 0; - virtual void ClearTensorWrappers() = 0; - - virtual bool IsTensorWrappersCleared() = 0; /** * AddEdges is designed to set input tensors' backward Node as current * node's Edges. diff --git a/paddle/fluid/eager/grad_tensor_holder.cc b/paddle/fluid/eager/grad_tensor_holder.cc index 163d25e85ce8c085087331c6e3273075aed5e5f4..69fc7df2f1420382735cf59fbe85f7e2207d0f77 100644 --- a/paddle/fluid/eager/grad_tensor_holder.cc +++ b/paddle/fluid/eager/grad_tensor_holder.cc @@ -21,11 +21,6 @@ namespace egr { -void GradTensorHolder::SetBufferSlotRankZeros(size_t slot_id, size_t rank) { - buffer_[slot_id][rank] = - paddle::experimental::zeros_like(buffer_[slot_id][rank]); -} - void GradTensorHolder::add(size_t slot_id, size_t rank, const paddle::experimental::Tensor& t, bool fill_one) { diff --git a/paddle/fluid/eager/grad_tensor_holder.h b/paddle/fluid/eager/grad_tensor_holder.h index 9059b403607461cc980a58d345fe1542aa4b1903..d66a81fe8285980bad4159d5414985dc9c744549 100644 --- a/paddle/fluid/eager/grad_tensor_holder.h +++ b/paddle/fluid/eager/grad_tensor_holder.h @@ -56,8 +56,6 @@ class GradTensorHolder { return buffer_; } - void SetBufferSlotRankZeros(size_t slot_id, size_t rank); - private: std::vector> buffer_; }; diff --git a/paddle/fluid/eager/tensor_wrapper.h b/paddle/fluid/eager/tensor_wrapper.h index 0e11444b81526de1904b72fc983814314d834a45..31aaa93c41643f565836c536d7001c01d2a0826d 100644 --- a/paddle/fluid/eager/tensor_wrapper.h +++ b/paddle/fluid/eager/tensor_wrapper.h @@ -98,8 +98,6 @@ class TensorWrapper { } } - void clear() { intermidiate_tensor_.reset(); } - private: bool full_reserved_ = false; std::pair out_rank_info_; diff --git a/paddle/fluid/eager/tests/data_structure_tests/grad_node_test.h b/paddle/fluid/eager/tests/data_structure_tests/grad_node_test.h index 0b167203735d65683b0f978fa34fe7f457aae4f2..535c93ac53b1751d9634476e47f32dc0cbe22708 100644 --- a/paddle/fluid/eager/tests/data_structure_tests/grad_node_test.h +++ b/paddle/fluid/eager/tests/data_structure_tests/grad_node_test.h @@ -32,8 +32,8 @@ class GradTestNode : public egr::GradNodeBase { GradTestNode() : GradNodeBase() { val_ = 1.0; } std::string name() override { return "GradTestNode"; } std::vector> operator()( - const std::vector>& grads, - bool create_graph = false) override { + const std::vector>& grads) + override { val_ = std::dynamic_pointer_cast(grads[0][0].impl()) ->data()[0]; phi::DenseTensorMeta meta = @@ -49,11 +49,6 @@ class GradTestNode : public egr::GradNodeBase { std::vector> res = {{et1}}; return res; } - void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; } - bool IsTensorWrappersCleared() override { - VLOG(6) << "Do nothing here now"; - return false; - } float val_; }; } // namespace eager_test diff --git a/paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc b/paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc index 887ea3e3acfd50a15206f3e84ab45e16707f80af..769bd7f687f4584d44bbfa30b73611a3128289bf 100644 --- a/paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc +++ b/paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc @@ -58,7 +58,7 @@ void benchmark_eager_scale(const paddle::experimental::Tensor& tensor, } std::vector target_tensors = {input_tensor}; - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); if (accuracy_check) { // Examine Forward Grad (w.r.t max_num_runs = 10) @@ -80,7 +80,7 @@ void benchmark_eager_matmul(const paddle::experimental::Tensor& X, } std::vector target_tensors = {input_tensor0}; - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); if (accuracy_check) { // Examine Forward Grad (w.r.t max_num_runs = 2) @@ -106,7 +106,7 @@ void benchmark_eager_intermediate_matmul(const paddle::experimental::Tensor& X, } std::vector target_tensors = {input_tensor0}; - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); if (accuracy_check) { // Examine Forward Grad (w.r.t max_num_runs = 2) @@ -137,7 +137,7 @@ void benchmark_eager_intermediate_mlp( reduce_sum_dygraph_function(input0, {{"reduce_all", true}}); std::vector target_tensors = {Out}; - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); if (accuracy_check) { std::unordered_map result = diff --git a/paddle/fluid/eager/tests/task_tests/CMakeLists.txt b/paddle/fluid/eager/tests/task_tests/CMakeLists.txt index 52dba6b9218c7be8a29ae1aff619facd25a6f3b6..c65ad4641cf2206cc0f97d91f1fb24e50b7b63cd 100644 --- a/paddle/fluid/eager/tests/task_tests/CMakeLists.txt +++ b/paddle/fluid/eager/tests/task_tests/CMakeLists.txt @@ -5,7 +5,6 @@ cc_test(test_egr_task_backward SRCS backward_test.cc DEPS ${eager_deps} ${fluid_ cc_test(test_egr_task_hook SRCS hook_test.cc DEPS ${eager_deps} ${fluid_deps} eager_scale scale_node) cc_test(test_egr_task_cross_batch SRCS cross_batch_accumulation_test.cc DEPS ${eager_deps} ${fluid_deps} eager_scale scale_node) cc_test(test_egr_task_fwd_bwd_joint SRCS fwd_bwd_joint_test.cc DEPS ${eager_deps} ${fluid_deps} eager_scale scale_node) -cc_test(test_egr_task_grad SRCS grad_test.cc DEPS ${eager_deps} ${fluid_deps} eager_scale scale_node) if(NOT ((NOT WITH_PYTHON) AND ON_INFER)) cc_test(test_egr_task_hook_intermidiate SRCS hook_test_intermidiate.cc DEPS ${eager_deps} ${fluid_deps} ${generated_deps} dygraph_node) diff --git a/paddle/fluid/eager/tests/task_tests/backward_test.cc b/paddle/fluid/eager/tests/task_tests/backward_test.cc index 87f8f6eca1f88fe9a54583ee19586dd75c7e231e..0c894ed267fcdd08d44d4df08bfaf0554874aebf 100644 --- a/paddle/fluid/eager/tests/task_tests/backward_test.cc +++ b/paddle/fluid/eager/tests/task_tests/backward_test.cc @@ -33,7 +33,6 @@ #include "paddle/phi/core/kernel_registry.h" PD_DECLARE_KERNEL(full, CPU, ALL_LAYOUT); -PD_DECLARE_KERNEL(copy, CPU, ALL_LAYOUT); namespace egr { @@ -80,7 +79,7 @@ TEST(Backward, SingleNodeEmptyGrad) { } std::vector outs = {target_tensor}; // Run Backward - Backward(outs, {}); + RunBackward(outs, {}); // Check Output Value eager_test::CompareGradTensorWithValue(leaf_tensor, 5.0); @@ -139,7 +138,7 @@ TEST(Backward, SingleNodeCustomGrad) { } // Run Backward - Backward(target_tensors, grad_tensors); + RunBackward(target_tensors, grad_tensors); // Check Output Value eager_test::CompareGradTensorWithValue(leaf_tensor, 50.0); @@ -212,7 +211,7 @@ TEST(Backward, LinearNodes) { } // Use Empty Grad Tensor - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); // Check Output Value eager_test::CompareGradTensorWithValue(leaf_tensor, 50.0); @@ -316,7 +315,7 @@ TEST(Backward, WithAccumulation) { node2_ptr->AddEdges(&res2, 0); } - Backward(target_tensors, grad_tensors); + RunBackward(target_tensors, grad_tensors); eager_test::CompareGradTensorWithValue(leaf_tensor, 2500.0); } diff --git a/paddle/fluid/eager/tests/task_tests/cross_batch_accumulation_test.cc b/paddle/fluid/eager/tests/task_tests/cross_batch_accumulation_test.cc index 8b0759c17ed3712079e8954df60e35afaaf02a9e..36594f1aac8cdb131bb77f1396dca19a0c2e8cc0 100644 --- a/paddle/fluid/eager/tests/task_tests/cross_batch_accumulation_test.cc +++ b/paddle/fluid/eager/tests/task_tests/cross_batch_accumulation_test.cc @@ -71,12 +71,12 @@ TEST(CrossBatchAccumulation, SingleScaleNode) { std::vector res = {meta}; scale_node_ptr->AddEdges(&res, 0); - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); eager_test::CompareGradTensorWithValue(target_tensor, 1.0); eager_test::CompareGradTensorWithValue(leaf_tensor, 5.0); - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); eager_test::CompareGradTensorWithValue(target_tensor, 1.0); eager_test::CompareGradTensorWithValue(leaf_tensor, 10.0); diff --git a/paddle/fluid/eager/tests/task_tests/fwd_bwd_joint_test.cc b/paddle/fluid/eager/tests/task_tests/fwd_bwd_joint_test.cc index 882695e98d109e09340223e21322a02d1b48c6ea..f7fa642ea8dd17d20816e74c9bfb4cd92b184b4a 100644 --- a/paddle/fluid/eager/tests/task_tests/fwd_bwd_joint_test.cc +++ b/paddle/fluid/eager/tests/task_tests/fwd_bwd_joint_test.cc @@ -86,7 +86,7 @@ TEST(FwdBwdJoint, SingleNode) { std::vector outs = {out}; // 4. Run Backward - Backward(outs, {}); + RunBackward(outs, {}); VLOG(7) << "Target Grad is: " << std::static_pointer_cast( @@ -137,7 +137,7 @@ TEST(FwdBwdJoint, LinearNodes) { std::vector outs = {out1}; // 4. Run Backward - Backward(outs, {}); + RunBackward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 10.0); @@ -203,7 +203,7 @@ TEST(FwdBwdJoint, BranchedNodes) { // 4. Run Backward std::vector outs = {out1, out2}; - Backward(outs, {}); + RunBackward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 30.0); @@ -260,7 +260,7 @@ TEST(FwdBwdJoint, GradientHook) { // 4. Run Backward std::vector outs = {out1, out2}; - Backward(outs, {}); + RunBackward(outs, {}); // Examine Backward Grad // leaf grad @@ -318,13 +318,13 @@ TEST(FwdBwdJoint, CrossBatchAccumulation) { // 4. Run Backward std::vector outs = {out1, out2}; - Backward(outs, {}); + RunBackward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 30.0); // Cross Batch Accumulation - Backward(outs, {}); + RunBackward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 60.0); @@ -356,7 +356,7 @@ TEST(FwdBwdJoint, SingleNodeCUDA) { std::vector outs = {out}; // 4. Run Backward - Backward(outs, {}); + RunBackward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 2.0); @@ -412,7 +412,7 @@ TEST(FwdBwdJoint, BranchedNodesCUDA) { // TODO(jiabin): fix this with add functor // 4. Run Backward std::vector outs = {out1, out2}; - Backward(outs, {}); + RunBackward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 30.0); diff --git a/paddle/fluid/eager/tests/task_tests/generated_test.cc b/paddle/fluid/eager/tests/task_tests/generated_test.cc index 68820443a2d5a68c73c0d5ebb855519fddbbf3d2..2a5ad53204a6201149bec0b3dac0fa3baf441f2e 100644 --- a/paddle/fluid/eager/tests/task_tests/generated_test.cc +++ b/paddle/fluid/eager/tests/task_tests/generated_test.cc @@ -57,7 +57,7 @@ TEST(Generated, Sigmoid) { std::vector target_tensors = {output_tensor}; VLOG(6) << "Runing Backward"; - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); VLOG(6) << "Finish Backward"; eager_test::CompareGradTensorWithValue(tensor, 0.25); @@ -89,7 +89,7 @@ TEST(Generated, Matmul_v2) { eager_test::CompareTensorWithValue(output_tensor, 96); std::vector target_tensors = {output_tensor}; - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); eager_test::CompareGradTensorWithValue(X, 2.0 * 20); eager_test::CompareGradTensorWithValue(Y, 3.0 * 4); @@ -120,7 +120,7 @@ TEST(Generated, ElementwiseAdd) { eager_test::CompareTensorWithValue(output_tensor, 5); std::vector target_tensors = {output_tensor}; - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); eager_test::CompareGradTensorWithValue(X, 1.0); eager_test::CompareGradTensorWithValue(Y, 1.0); diff --git a/paddle/fluid/eager/tests/task_tests/grad_test.cc b/paddle/fluid/eager/tests/task_tests/grad_test.cc deleted file mode 100644 index 6b03799c48659c579938df6efc0f7cf57bbc0bec..0000000000000000000000000000000000000000 --- a/paddle/fluid/eager/tests/task_tests/grad_test.cc +++ /dev/null @@ -1,339 +0,0 @@ -// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include - -#include "glog/logging.h" -#include "gtest/gtest.h" - -#include "paddle/fluid/eager/accumulation/accumulation_node.h" -#include "paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h" -#include "paddle/fluid/eager/api/utils/tensor_utils.h" -#include "paddle/fluid/eager/autograd_meta.h" -#include "paddle/fluid/eager/backward.h" -#include "paddle/fluid/eager/grad_node_info.h" -#include "paddle/fluid/eager/tests/test_utils.h" - -#include "paddle/fluid/eager/api/all.h" - -#include "paddle/phi/core/dense_tensor.h" -#include "paddle/phi/core/kernel_registry.h" -#include "paddle/phi/core/tensor_meta.h" - -PD_DECLARE_KERNEL(full, CPU, ALL_LAYOUT); -PD_DECLARE_KERNEL(copy, CPU, ALL_LAYOUT); -namespace egr { - -TEST(Grad, SingleNodeEmptyGrad) { - // Prepare Device Contexts - eager_test::InitEnv(paddle::platform::CPUPlace()); - - // Prepare Inputs - paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); - - // Create Target Tensor (output) - paddle::experimental::Tensor output_tensor = - egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); - - // Create input tensor - const paddle::experimental::Tensor leaf_tensor = - egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 1.0 /*value*/, true /*is_leaf*/); - - { - // Create Scale Node - auto node0_ptr = std::make_shared(1, 1); - node0_ptr->SetAttributes_scale(5.0 /*scale*/); - - // Set grad in/out meta - node0_ptr->SetDefaultGradInOutMeta(); - - // Output_tensor set GradNode、OutRank、StopGradient propertis - AutogradMeta* auto_grad_meta = EagerUtils::autograd_meta(&output_tensor); - auto_grad_meta->SetGradNode( - std::dynamic_pointer_cast(node0_ptr)); - auto_grad_meta->SetSingleOutRankWithSlot(0, 0); - auto_grad_meta->SetStopGradient(false); - - // Get autograd_meta from input tensor - AutogradMeta* auto_grad_meta1 = - EagerUtils::unsafe_autograd_meta(leaf_tensor); - - // Connect Tensor and AccumulationNode via AutoGradMeta - auto acc_node_ptr = - std::make_shared(auto_grad_meta1); - - // input tensor set GradNode、OutRank、StopGradient propertis - auto_grad_meta1->SetGradNode( - std::dynamic_pointer_cast(acc_node_ptr)); - auto_grad_meta1->SetSingleOutRankWithSlot(0, 0); - auto_grad_meta1->SetStopGradient(false); - - // grad_node Add Edges - std::vector res = {auto_grad_meta1}; - node0_ptr->AddEdges(&res, 0); - } - std::vector outs = {output_tensor}; - - // Run Grad - auto result = Grad(outs, {leaf_tensor}, {}); - // Check Output Value - eager_test::CompareTensorWithValue(result[0], 5.0); -} - -TEST(Grad, SingleNodeCustomGrad) { - // Prepare Device Contexts - eager_test::InitEnv(paddle::platform::CPUPlace()); - - // Prepare Inputs - std::vector target_tensors; - paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); - - // Create Target Tensor - paddle::experimental::Tensor tensor = egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); - target_tensors.emplace_back(std::move(tensor)); - - std::vector grad_tensors; - // Create Grad Tensor - paddle::experimental::Tensor grad_tensor = - egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 10.0 /*value*/, false /*is_leaf*/); - grad_tensors.emplace_back(std::move(grad_tensor)); - - paddle::experimental::Tensor leaf_tensor = - egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 1.0 /*value*/, true /*is_leaf*/); - - { - // Create Scale Node - auto node0_ptr = std::make_shared(1, 1); - node0_ptr->SetAttributes_scale(5.0 /*scale*/); - - // Set grad in/out meta - node0_ptr->SetDefaultGradInOutMeta(); - - // Connect Tensor and Node via AutoGradMeta - AutogradMeta* auto_grad_meta = - EagerUtils::autograd_meta(&(target_tensors[0])); - auto_grad_meta->SetGradNode( - std::dynamic_pointer_cast(node0_ptr)); - auto_grad_meta->SetSingleOutRankWithSlot(0, 0); - auto_grad_meta->SetStopGradient(false); - - AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor); - // Connect Tensor and AccumulationNode via AutoGradMeta - auto acc_node_ptr = - std::make_shared(auto_grad_meta1); - - auto_grad_meta1->SetGradNode( - std::dynamic_pointer_cast(acc_node_ptr)); - auto_grad_meta1->SetSingleOutRankWithSlot(0, 0); - auto_grad_meta1->SetStopGradient(false); - std::vector res = {auto_grad_meta1}; - node0_ptr->AddEdges(&res, 0); - } - - auto result = Grad(target_tensors, {leaf_tensor}, grad_tensors); - - // Check Output Value - eager_test::CompareTensorWithValue(result[0], 50.0); -} - -/* -Node1 - | -Node0 - | - { } // empty grad tensor -*/ -TEST(Grad, LinearNodes) { - // Prepare Device Contexts - eager_test::InitEnv(paddle::platform::CPUPlace()); - - // Prepare Target Tensor - std::vector target_tensors; - paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); - - // Create Target Tensor - paddle::experimental::Tensor tensor = egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); - target_tensors.emplace_back(std::move(tensor)); - - paddle::experimental::Tensor leaf_tensor = - egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 1.0 /*value*/, true /*is_leaf*/); - { - // Create Node0 - auto node0_ptr = std::make_shared(1, 1); - node0_ptr->SetAttributes_scale(5.0 /*scale*/); - - // Set grad in/out meta for node0 - node0_ptr->SetDefaultGradInOutMeta(); - - // Create Node1 - auto node1_ptr = std::make_shared(1, 1); - node1_ptr->SetAttributes_scale(10.0 /*scale*/); - - // Set grad in/out meta for node1 - node1_ptr->SetDefaultGradInOutMeta(); - - // Connect Input Tensor and Node0 via AutoGradMeta - AutogradMeta* auto_grad_meta = - EagerUtils::autograd_meta(&(target_tensors[0])); - auto_grad_meta->SetGradNode( - std::dynamic_pointer_cast(node0_ptr)); - auto_grad_meta->SetSingleOutRankWithSlot(0, 0); - auto_grad_meta->SetStopGradient(false); - // Connect Node0 -> Node1 via Edge - auto meta0 = egr::AutogradMeta(); - meta0.SetStopGradient(false); - meta0.SetSingleOutRankWithSlot(0, 0); - meta0.SetGradNode(node1_ptr); - std::vector res0 = {&meta0}; - node0_ptr->AddEdges(&res0, 0); - - AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor); - // Connect Tensor and AccumulationNode via AutoGradMeta - auto acc_node_ptr = - std::make_shared(auto_grad_meta1); - - auto_grad_meta1->SetGradNode( - std::dynamic_pointer_cast(acc_node_ptr)); - auto_grad_meta1->SetSingleOutRankWithSlot(0, 0); - - auto_grad_meta1->SetStopGradient(false); - std::vector res1 = {auto_grad_meta1}; - node1_ptr->AddEdges(&res1, 0); - } - - // Use Empty Grad Tensor - auto result = Grad(target_tensors, {leaf_tensor}, {}); - - // Check Output Value - eager_test::CompareTensorWithValue(result[0], 50.0); -} - -/* - Node2 - | | -Node0 Node1 - | | - in0 in1 -*/ -TEST(Grad, WithAccumulation) { - // Prepare Device Contexts - eager_test::InitEnv(paddle::platform::CPUPlace()); - - // Prepare Inputs - paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); - - // Create Target Tensor - std::vector target_tensors; - paddle::experimental::Tensor tensor0 = egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); - paddle::experimental::Tensor tensor1 = egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); - target_tensors.emplace_back(std::move(tensor0)); - target_tensors.emplace_back(std::move(tensor1)); - - // Create Grad Tensor - std::vector grad_tensors; - paddle::experimental::Tensor grad_tensor0 = - egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 5.0 /*value*/, false /*is_leaf*/); - paddle::experimental::Tensor grad_tensor1 = - egr_utils_api::CreateTensorWithValue( - ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, - phi::DataLayout::NCHW, 10.0 /*value*/, false /*is_leaf*/); - grad_tensors.emplace_back(std::move(grad_tensor0)); - grad_tensors.emplace_back(std::move(grad_tensor1)); - - paddle::experimental::Tensor leaf_tensor; - { - // Create Node0 - auto node0_ptr = std::make_shared(1, 1); - node0_ptr->SetAttributes_scale(5.0 /*scale*/); - node0_ptr->SetDefaultGradInOutMeta(); - - // Create Node1 - auto node1_ptr = std::make_shared(1, 1); - node1_ptr->SetAttributes_scale(10.0 /*scale*/); - node1_ptr->SetDefaultGradInOutMeta(); - // Create Node2 - auto node2_ptr = std::make_shared(1, 1); - node2_ptr->SetAttributes_scale(20.0 /*scale*/); - node2_ptr->SetDefaultGradInOutMeta(); - // Connect Inp0 and Node0 via AutoGradMeta - AutogradMeta* auto_grad_meta0 = - EagerUtils::autograd_meta(&(target_tensors[0])); - auto_grad_meta0->SetGradNode( - std::dynamic_pointer_cast(node0_ptr)); - auto_grad_meta0->SetSingleOutRankWithSlot(0, 0); - auto_grad_meta0->SetStopGradient(false); - // Connect Inp1 and Node1 via AutoGradMeta - AutogradMeta* auto_grad_meta1 = - EagerUtils::autograd_meta(&(target_tensors[1])); - auto_grad_meta1->SetGradNode( - std::dynamic_pointer_cast(node1_ptr)); - auto_grad_meta1->SetSingleOutRankWithSlot(0, 0); - auto_grad_meta1->SetStopGradient(false); - - // Connect Node0 -> Node2 via Edge - auto meta0 = egr::AutogradMeta(); - meta0.SetStopGradient(false); - meta0.SetSingleOutRankWithSlot(0, 0); - meta0.SetGradNode(node2_ptr); - std::vector res0 = {&meta0}; - node0_ptr->AddEdges(&res0, 0); - - // Connect Node1 -> Node2 via Edge - auto meta1 = egr::AutogradMeta(); - meta1.SetStopGradient(false); - meta1.SetSingleOutRankWithSlot(0, 0); - meta1.SetGradNode(node2_ptr); - std::vector res1 = {&meta1}; - node1_ptr->AddEdges(&res1, 0); - - AutogradMeta* auto_grad_meta2 = EagerUtils::autograd_meta(&leaf_tensor); - // Connect Tensor and AccumulationNode via AutoGradMeta - auto acc_node_ptr = - std::make_shared(auto_grad_meta2); - - auto_grad_meta2->SetGradNode( - std::dynamic_pointer_cast(acc_node_ptr)); - auto_grad_meta2->SetSingleOutRankWithSlot(0, 0); - - auto_grad_meta2->SetStopGradient(false); - std::vector res2 = {auto_grad_meta2}; - node2_ptr->AddEdges(&res2, 0); - } - - auto result = Grad(target_tensors, {leaf_tensor}, grad_tensors); - - eager_test::CompareTensorWithValue(result[0], 2500.0); -} - -} // namespace egr diff --git a/paddle/fluid/eager/tests/task_tests/hook_test.cc b/paddle/fluid/eager/tests/task_tests/hook_test.cc index 2c53fc89f650e36f1435c7e1e805453fe7822cf2..d546df4ed087a99a28096a5336fab3826991534a 100644 --- a/paddle/fluid/eager/tests/task_tests/hook_test.cc +++ b/paddle/fluid/eager/tests/task_tests/hook_test.cc @@ -132,7 +132,7 @@ TEST(RetainGrad, HookBeforeRetainGrad) { leaf_tensor); // result: 4.0*5.0 + 3.0 = 23.0 } - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); eager_test::CompareGradTensorWithValue(target_tensor, 4.0); eager_test::CompareGradTensorWithValue(leaf_tensor, 23.0); @@ -199,7 +199,7 @@ TEST(RetainGrad, HookAfterRetainGrad) { leaf_tensor, std::make_shared(hook_function)); } - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); eager_test::CompareGradTensorWithValue(target_tensor, 1.0); eager_test::CompareGradTensorWithValue(leaf_tensor, 23.0); } diff --git a/paddle/fluid/eager/tests/task_tests/hook_test_intermidiate.cc b/paddle/fluid/eager/tests/task_tests/hook_test_intermidiate.cc index 0ee171c73c6600b95b9b093ef7e818855f53002d..56813c498d2410caa452da7a334c393b230c65bf 100644 --- a/paddle/fluid/eager/tests/task_tests/hook_test_intermidiate.cc +++ b/paddle/fluid/eager/tests/task_tests/hook_test_intermidiate.cc @@ -108,7 +108,7 @@ void test_sigmoid(bool is_remove_gradient_hook) { } VLOG(6) << "Runing Backward"; - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); VLOG(6) << "Finish Backward"; eager_test::CompareGradTensorWithValue( @@ -166,7 +166,7 @@ void test_elementwiseAdd(bool is_remove_gradient_hook) { grad_node_tmp->RemoveGradientHook(hook_id); } - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); eager_test::CompareGradTensorWithValue(X, 1.0); eager_test::CompareGradTensorWithValue( @@ -224,7 +224,7 @@ void test_matmul(bool is_remove_gradient_hook) { grad_node_tmp->RemoveGradientHook(hook_id); } - Backward(target_tensors, {}); + RunBackward(target_tensors, {}); eager_test::CompareGradTensorWithValue(X, 2.0 * 20); eager_test::CompareGradTensorWithValue( diff --git a/paddle/fluid/eager/to_static/run_program_op_node.h b/paddle/fluid/eager/to_static/run_program_op_node.h index 4eaa64d3ac659ca0ec76083b70855d8b6b241556..d99624e49324853d513a20a725c1a3d12b6aaab5 100644 --- a/paddle/fluid/eager/to_static/run_program_op_node.h +++ b/paddle/fluid/eager/to_static/run_program_op_node.h @@ -370,8 +370,8 @@ class GradNodeRunProgram : public egr::GradNodeBase { ~GradNodeRunProgram() override = default; // Functor: perform backward computations virtual std::vector> operator()( - const std::vector> &grads, - bool create_graph) override { + const std::vector> &grads) + override { VLOG(3) << "Running Eager Backward Node: GradNodeRunProgram"; PADDLE_ENFORCE_EQ( grads.size(), 1, @@ -415,12 +415,6 @@ class GradNodeRunProgram : public egr::GradNodeBase { // return {x_grad, details::DereferenceTensors(params_grad_ptr)}; } - void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; } - bool IsTensorWrappersCleared() override { - VLOG(6) << "Do nothing here now"; - return false; - } - // SetAttrMap void SetAttrMap(const paddle::framework::AttributeMap &attrs) { attrs_ = attrs; diff --git a/paddle/fluid/pybind/eager_functions.cc b/paddle/fluid/pybind/eager_functions.cc index c9e80c7b4b407456fc962f508ae441a9c07914b2..e110432c67d395c865d934a47eaa4a803053db8b 100644 --- a/paddle/fluid/pybind/eager_functions.cc +++ b/paddle/fluid/pybind/eager_functions.cc @@ -122,33 +122,13 @@ static PyObject* eager_api_run_backward(PyObject* self, PyObject* args, EAGER_TRY auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0); auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1); - egr::Backward(tensors, grad_tensors, - CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2)); + egr::RunBackward(tensors, grad_tensors, + CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2)); Py_INCREF(Py_None); return Py_None; EAGER_CATCH_AND_THROW_RETURN_NULL } -static PyObject* eager_api_run_partial_grad(PyObject* self, PyObject* args, - PyObject* kwargs) { - EAGER_TRY - auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0); - auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1); - auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2); - auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3); - auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4); - auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5); - auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6); - auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7); - - std::vector result = - egr::Grad(tensors, inputs, grad_tensors, retain_graph, create_graph, - only_inputs, allow_unused, no_grad_vars); - VLOG(1) << " in eager_api_run_partial_grad, after runing egr::Grad"; - return ToPyObject(result, true /* return_py_none_if_not_initialize */); - EAGER_CATCH_AND_THROW_RETURN_NULL -} - static PyObject* eager_api_tensor_copy(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY @@ -472,9 +452,6 @@ PyMethodDef variable_functions[] = { METH_VARARGS | METH_KEYWORDS, NULL}, {"run_backward", (PyCFunction)(void (*)(void))eager_api_run_backward, METH_VARARGS | METH_KEYWORDS, NULL}, - {"run_partial_grad", - (PyCFunction)(void (*)(void))eager_api_run_partial_grad, - METH_VARARGS | METH_KEYWORDS, NULL}, {"_run_custom_op", (PyCFunction)(void (*)(void))eager_api_run_costum_op, METH_VARARGS | METH_KEYWORDS, NULL}, {"tensor_copy", (PyCFunction)(void (*)(void))eager_api_tensor_copy, diff --git a/paddle/fluid/pybind/eager_utils.cc b/paddle/fluid/pybind/eager_utils.cc index 97bb32630d71368de2dee205fbef186a8551d9c7..217edad0c0a105cc649c6c8c4433b0c8eab0119b 100644 --- a/paddle/fluid/pybind/eager_utils.cc +++ b/paddle/fluid/pybind/eager_utils.cc @@ -492,26 +492,20 @@ PyObject* ToPyObject(const std::vector& value) { return result; } -PyObject* ToPyObject(const std::vector& value, - bool return_py_none_if_not_initialize) { +PyObject* ToPyObject(const std::vector& value) { PyObject* result = PyList_New((Py_ssize_t)value.size()); for (size_t i = 0; i < value.size(); i++) { - if (!value[i].initialized() && return_py_none_if_not_initialize) { - Py_INCREF(Py_None); - PyList_SET_ITEM(result, static_cast(i), Py_None); + PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0); + if (obj) { + auto v = reinterpret_cast(obj); + new (&(v->tensor)) paddle::experimental::Tensor(); + v->tensor = value[i]; } else { - PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0); - if (obj) { - auto v = reinterpret_cast(obj); - new (&(v->tensor)) paddle::experimental::Tensor(); - v->tensor = value[i]; - } else { - PADDLE_THROW(platform::errors::Fatal( - "tp_alloc return null, can not new a PyObject.")); - } - PyList_SET_ITEM(result, static_cast(i), obj); + PADDLE_THROW(platform::errors::Fatal( + "tp_alloc return null, can not new a PyObject.")); } + PyList_SET_ITEM(result, static_cast(i), obj); } return result; diff --git a/paddle/fluid/pybind/eager_utils.h b/paddle/fluid/pybind/eager_utils.h index 1c4e2ab69a5ecba1209a11651c3c11972dff565c..2187555e1c3c7f64bd864e4212bfc6ebe1fb1684 100644 --- a/paddle/fluid/pybind/eager_utils.h +++ b/paddle/fluid/pybind/eager_utils.h @@ -68,8 +68,7 @@ PyObject* ToPyObject(const std::vector& value); PyObject* ToPyObject(const std::vector& value); PyObject* ToPyObject(const std::vector& value); PyObject* ToPyObject(const std::vector& value); -PyObject* ToPyObject(const std::vector& value, - bool return_py_none_if_not_initialize = false); +PyObject* ToPyObject(const std::vector& value); PyObject* ToPyObject(const platform::Place& value); PyObject* ToPyObject(const framework::LoDTensor* value); PyObject* ToPyObject(const paddle::framework::proto::VarType::Type& dtype); diff --git a/python/paddle/fluid/dygraph/base.py b/python/paddle/fluid/dygraph/base.py index 9439982858530e1e81156be4b32ef2d91dc4a33a..8149d69d36a27fadcefa8dc6b6ff1dd89792e29e 100644 --- a/python/paddle/fluid/dygraph/base.py +++ b/python/paddle/fluid/dygraph/base.py @@ -565,25 +565,16 @@ def grad(outputs, if isinstance(in_out_list, (list, tuple)): assert len(in_out_list) > 0, "{} cannot be empty".format(name) for each_var in in_out_list: - if core._in_eager_mode(): - assert isinstance( - each_var, core.eager. - Tensor), "Elements of {} must be Tensor".format(name) - else: - assert isinstance( - each_var, - core.VarBase), "Elements of {} must be Variable".format( - name) + assert isinstance( + each_var, + core.VarBase), "Elements of {} must be Variable".format( + name) return in_out_list else: - if core._in_eager_mode(): - assert isinstance( - in_out_list, core.eager. - Tensor), "{} must be Tensor or list of Tensor".format(name) - else: - assert isinstance( - in_out_list, core.VarBase - ), "{} must be Variable or list of Variable".format(name) + assert isinstance( + in_out_list, + core.VarBase), "{} must be Variable or list of Variable".format( + name) return [in_out_list] outputs = check_in_out(outputs, 'outputs') @@ -595,14 +586,9 @@ def grad(outputs, for each_var in grad_outputs: if each_var is not None: - if core._in_eager_mode(): - assert isinstance( - each_var, core.eager.Tensor - ), "grad_outputs must be None, a Variable or a list containing None or Variables" - else: - assert isinstance( - each_var, core.VarBase - ), "grad_outputs must be None, a Variable or a list containing None or Variables" + assert isinstance( + each_var, core.VarBase + ), "grad_outputs must be None, a Variable or a list containing None or Variables" else: grad_outputs = [] @@ -614,27 +600,14 @@ def grad(outputs, no_grad_vars = [] elif isinstance(no_grad_vars, core.VarBase): no_grad_vars = [no_grad_vars] - elif isinstance(no_grad_vars, core.eager.Tensor): - no_grad_vars = [no_grad_vars] elif isinstance(no_grad_vars, (list, tuple, set)): no_grad_vars = list(no_grad_vars) for var in no_grad_vars: - if core._in_eager_mode(): - assert isinstance( - var, - core.eager.Tensor), "no_grad_vars can only contains Tensor" - else: - assert isinstance( - var, - core.VarBase), "no_grad_vars can only contains Variable" + assert isinstance( + var, core.VarBase), "no_grad_vars can only contains Variable" else: - if core._in_eager_mode(): - raise AssertionError( - "no_grad_vars must be None, Tensor or list/tuple/set of Tensors") - else: - raise AssertionError( - "no_grad_vars must be None, Variable or list/tuple/set of Variables" - ) + raise AssertionError( + "no_grad_vars must be None, Variable or list/tuple/set of Variables") assert isinstance(create_graph, bool), "create_graph must be True or False" @@ -649,11 +622,6 @@ def grad(outputs, assert isinstance(only_inputs, bool), "only_inputs must be True or False" assert only_inputs, "only_inputs=False is not supported yet" - if core._in_eager_mode(): - return core.eager.run_partial_grad( - outputs, inputs, grad_outputs, retain_graph, create_graph, - only_inputs, allow_unused, no_grad_vars) - place = core.Place() place.set_place(framework._current_expected_place()) return core.dygraph_partial_grad(inputs, outputs, grad_outputs, diff --git a/python/paddle/fluid/tests/unittests/test_egr_python_api.py b/python/paddle/fluid/tests/unittests/test_egr_python_api.py index 98ef339e04535bb943add02b6cf6efe490f0354b..27aec284de4cdebb5ebb9191bfb67d48c1b327f5 100644 --- a/python/paddle/fluid/tests/unittests/test_egr_python_api.py +++ b/python/paddle/fluid/tests/unittests/test_egr_python_api.py @@ -52,7 +52,7 @@ class EagerScaleTestCase(unittest.TestCase): out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True) self.assertIsNone(data_eager.grad) out_eager.backward(grad_eager, False) - self.assertIsNotNone(data_eager.grad) + self.assertTrue(data_eager.grad._is_initialized()) self.assertTrue(np.array_equal(data_eager.grad.numpy(), input_data)) def test_retain_grad_and_run_backward_raises(self): diff --git a/python/paddle/fluid/tests/unittests/test_imperative_double_grad.py b/python/paddle/fluid/tests/unittests/test_imperative_double_grad.py index 7436e9eb7b12623296d7a714e742cc4212c4ca91..cd4ba5b054264afca65d4c4d8359eb1854fbb658 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_double_grad.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_double_grad.py @@ -1,4 +1,4 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,9 +19,6 @@ from paddle.vision.models import resnet50, resnet101 import unittest from unittest import TestCase import numpy as np -import paddle.compat as cpt -from paddle.fluid.framework import _test_eager_guard -import paddle.fluid.core as core def _dygraph_guard_(func): @@ -43,80 +40,6 @@ def random_var(size, low=-1, high=1, dtype='float32'): return fluid.dygraph.to_variable(x_np) -class TestEagerGrad(TestCase): - def func_simple_example_eager_grad(self): - np.random.seed(2021) - paddle.set_device('cpu') - np_x = np.random.random((3, 3)) - np_y = np.random.random((3, 1)) - x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False) - y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False) - out = paddle.matmul(x, y) - dx = fluid.dygraph.grad(out, x) - - dout = np.ones_like(np_y) - expected_dx = np.matmul(dout, np.transpose(np_y)) - - # stop_gradient = !create_graph, create_graph default false - self.assertEqual(dx[0].stop_gradient, True) - self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0])) - - def test_simple_example_eager_grad(self): - with _test_eager_guard(): - self.func_simple_example_eager_grad() - self.func_simple_example_eager_grad() - - def func_simple_example_eager_grad_allow_unused(self): - np.random.seed(2021) - paddle.set_device('cpu') - np_x = np.random.random((3, 3)) - np_y = np.random.random((3, 1)) - np_z = np.random.random((3, 1)) - x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False) - y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False) - z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False) - out_z = paddle.nn.functional.sigmoid(z) - out = paddle.matmul(x, y) - - dx = fluid.dygraph.grad(out, [x, z], allow_unused=True) - dout = np.ones_like(np_y) - expected_dx = np.matmul(dout, np.transpose(np_y)) - self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0])) - # stop_gradient = !create_graph, create_graph default false - self.assertEqual(dx[0].stop_gradient, True) - # x is unused input in the graph - self.assertEqual(dx[1], None) - - def test_simple_example_eager_grad_allow_unused(self): - with _test_eager_guard(): - self.func_simple_example_eager_grad_allow_unused() - self.func_simple_example_eager_grad_allow_unused() - - def func_simple_example_eager_grad_not_allow_unused(self): - np.random.seed(2021) - paddle.set_device('cpu') - np_x = np.random.random((3, 3)) - np_y = np.random.random((3, 1)) - np_z = np.random.random((3, 1)) - x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False) - y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False) - z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False) - out_z = paddle.nn.functional.sigmoid(z) - out = paddle.matmul(x, y) - - try: - # allow_unused is false in default - dx = fluid.dygraph.grad(out, [x, z]) - except ValueError as e: - error_msg = cpt.get_exception_message(e) - assert error_msg.find("allow_unused") > 0 - - def test_simple_example_eager_grad_not_allow_unused(self): - with _test_eager_guard(): - self.func_simple_example_eager_grad_not_allow_unused() - self.func_simple_example_eager_grad_not_allow_unused() - - class TestDygraphDoubleGrad(TestCase): def setUp(self): self.sort_sum_gradient = False @@ -141,7 +64,7 @@ class TestDygraphDoubleGrad(TestCase): allow_unused=allow_unused) @dygraph_guard - def func_exception(self): + def test_exception(self): with self.assertRaises(AssertionError): self.grad(None, None) @@ -170,13 +93,8 @@ class TestDygraphDoubleGrad(TestCase): with self.assertRaises(AssertionError): self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1) - def test_exception(self): - with _test_eager_guard(): - self.func_exception() - self.func_exception() - @dygraph_guard - def func_simple_example(self): + def test_simple_example(self): x = random_var(self.shape) x.stop_gradient = False y = x + 1 @@ -205,44 +123,8 @@ class TestDygraphDoubleGrad(TestCase): self.assertNotEqual(grad_with_none_and_not_none.stop_gradient, create_graph) - def test_simple_example(self): - with _test_eager_guard(): - self.func_simple_example() - self.func_simple_example() - @dygraph_guard - def func_example_no_grad_vars(self): - x = random_var(self.shape) - x_np = x.numpy() - numel = x_np.size - x.stop_gradient = False - - y1 = fluid.layers.relu(x) - y2 = fluid.layers.relu(x) - z = y1 + y2 - w = z * z - - w_mean = fluid.layers.reduce_mean(w) - del y1, z, w - - dx_actual, = self.grad( - [w_mean], [x], create_graph=True, no_grad_vars=[y2]) - - self.assertFalse(y2.stop_gradient) - self.assertFalse(dx_actual.stop_gradient) - - dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) * - (x_np > 0) * 2).astype('float32') - - self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected)) - - def test_example_no_grad_vars(self): - with _test_eager_guard(): - self.func_example_no_grad_vars() - self.func_example_no_grad_vars() - - @dygraph_guard - def func_none_one_initial_gradient(self): + def test_none_one_initial_gradient(self): numel = 1 for s in self.shape: numel *= s @@ -308,13 +190,8 @@ class TestDygraphDoubleGrad(TestCase): np.array_equal(grad_z.numpy(), original_random_grad_z)) - def test_none_one_initial_gradient(self): - with _test_eager_guard(): - self.func_none_one_initial_gradient() - self.func_none_one_initial_gradient() - @dygraph_guard - def func_example_with_gradient_accumulation_and_create_graph(self): + def test_example_with_gradient_accumulation_and_create_graph(self): x = random_var(self.shape) x_np = x.numpy() numel = x_np.size @@ -337,33 +214,25 @@ class TestDygraphDoubleGrad(TestCase): (x_np > 0) * 2).astype('float32') self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected)) - if core._in_eager_mode(): - pass - else: - loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) - loss.backward(retain_graph=True) + loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) + loss.backward(retain_graph=True) + x_grad_actual = x.gradient() + x_grad_expected = (2.0 / float(numel) * + (x_np + dx_expected * + (x_np > 0) * 2 / float(numel))).astype('float32') + self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) + + for i in range(5): + loss.backward(retain_graph=True) x_grad_actual = x.gradient() - x_grad_expected = (2.0 / float(numel) * ( + x_grad_expected = (i + 2) * (2.0 / float(numel) * ( x_np + dx_expected * (x_np > 0) * 2 / float(numel))).astype('float32') self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) - for i in range(5): - loss.backward(retain_graph=True) - x_grad_actual = x.gradient() - x_grad_expected = (i + 2) * (2.0 / float(numel) * ( - x_np + dx_expected * - (x_np > 0) * 2 / float(numel))).astype('float32') - self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) - - def test_example_with_gradient_accumulation_and_create_graph(self): - with _test_eager_guard(): - self.func_example_with_gradient_accumulation_and_create_graph() - self.func_example_with_gradient_accumulation_and_create_graph() - @dygraph_guard - def func_example_with_gradient_accumulation_and_no_grad_vars(self): + def test_example_with_gradient_accumulation_and_no_grad_vars(self): x = random_var(self.shape) x_np = x.numpy() numel = x_np.size @@ -387,25 +256,17 @@ class TestDygraphDoubleGrad(TestCase): (x_np > 0) * 2).astype('float32') self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected)) - if core._in_eager_mode(): - pass - else: - loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) - loss.backward() + loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) + loss.backward() - x_grad_actual = x.gradient() - x_grad_expected = (2.0 / float(numel) * ( - x_np + dx_expected * - (x_np > 0) * 4 / float(numel))).astype('float32') - self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) - - def test_example_with_gradient_accumulation_and_no_grad_vars(self): - with _test_eager_guard(): - self.func_example_with_gradient_accumulation_and_no_grad_vars() - self.func_example_with_gradient_accumulation_and_no_grad_vars() + x_grad_actual = x.gradient() + x_grad_expected = (2.0 / float(numel) * + (x_np + dx_expected * + (x_np > 0) * 4 / float(numel))).astype('float32') + self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) @dygraph_guard - def func_example_with_gradient_accumulation_and_not_create_graph(self): + def test_example_with_gradient_accumulation_and_not_create_graph(self): x = random_var(self.shape) x_np = x.numpy() numel = x_np.size @@ -428,20 +289,12 @@ class TestDygraphDoubleGrad(TestCase): self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected)) - if core._in_eager_mode(): - pass - else: - loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) - loss.backward() + loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) + loss.backward() - x_grad_actual = x.gradient() - x_grad_expected = (2.0 * x_np / float(numel)).astype('float32') - self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) - - def test_example_with_gradient_accumulation_and_not_create_graph(self): - with _test_eager_guard(): - self.func_example_with_gradient_accumulation_and_not_create_graph() - self.func_example_with_gradient_accumulation_and_not_create_graph() + x_grad_actual = x.gradient() + x_grad_expected = (2.0 * x_np / float(numel)).astype('float32') + self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad): @@ -451,7 +304,7 @@ class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad): class TestDygraphDoubleGradVisitedUniq(TestCase): - def func_compare(self): + def test_compare(self): value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2, 5).astype("float32") @@ -496,11 +349,6 @@ class TestDygraphDoubleGradVisitedUniq(TestCase): self.assertTrue(np.array_equal(grad_1, grad_2)) - def test_compare(self): - with _test_eager_guard(): - self.func_compare() - self.func_compare() - class TestRaiseNoDoubleGradOp(TestCase): def raise_no_grad_op(self): diff --git a/python/paddle/fluid/tests/unittests/test_paddle_imperative_double_grad.py b/python/paddle/fluid/tests/unittests/test_paddle_imperative_double_grad.py index 531e9663a2b728a2871dff404425b063a0c47e67..2ffe523ef6dda18a24813e702a1892c335ba6a68 100644 --- a/python/paddle/fluid/tests/unittests/test_paddle_imperative_double_grad.py +++ b/python/paddle/fluid/tests/unittests/test_paddle_imperative_double_grad.py @@ -1,4 +1,4 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,6 @@ import unittest from unittest import TestCase import numpy as np import paddle -from paddle.fluid.framework import _test_eager_guard -import paddle.fluid.core as core def _dygraph_guard_(func): @@ -64,7 +62,7 @@ class TestDygraphDoubleGrad(TestCase): allow_unused=allow_unused) @dygraph_guard - def func_exception(self): + def test_exception(self): with self.assertRaises(AssertionError): self.grad(None, None) @@ -93,13 +91,8 @@ class TestDygraphDoubleGrad(TestCase): with self.assertRaises(AssertionError): self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1) - def test_exception(self): - with _test_eager_guard(): - self.func_exception() - self.func_exception() - @dygraph_guard - def func_simple_example(self): + def test_simple_example(self): x = random_var(self.shape) x.stop_gradient = False y = x + 1 @@ -128,13 +121,8 @@ class TestDygraphDoubleGrad(TestCase): self.assertNotEqual(grad_with_none_and_not_none.stop_gradient, create_graph) - def test_simple_example(self): - with _test_eager_guard(): - self.func_simple_example() - self.func_simple_example() - @dygraph_guard - def func_none_one_initial_gradient(self): + def test_none_one_initial_gradient(self): numel = 1 for s in self.shape: numel *= s @@ -200,13 +188,8 @@ class TestDygraphDoubleGrad(TestCase): np.array_equal(grad_z.numpy(), original_random_grad_z)) - def test_none_one_initial_gradient(self): - with _test_eager_guard(): - self.func_none_one_initial_gradient() - self.func_none_one_initial_gradient() - @dygraph_guard - def func_example_with_gradient_accumulation_and_create_graph(self): + def test_example_with_gradient_accumulation_and_create_graph(self): x = random_var(self.shape) x_np = x.numpy() numel = x_np.size @@ -229,25 +212,17 @@ class TestDygraphDoubleGrad(TestCase): (x_np > 0) * 2).astype('float32') self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected)) - if core._in_eager_mode(): - pass - else: - loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) - loss.backward() + loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) + loss.backward() - x_grad_actual = x.gradient() - x_grad_expected = (2.0 / float(numel) * ( - x_np + dx_expected * - (x_np > 0) * 2 / float(numel))).astype('float32') - self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) - - def test_example_with_gradient_accumulation_and_create_graph(self): - with _test_eager_guard(): - self.func_example_with_gradient_accumulation_and_create_graph() - self.func_example_with_gradient_accumulation_and_create_graph() + x_grad_actual = x.gradient() + x_grad_expected = (2.0 / float(numel) * + (x_np + dx_expected * + (x_np > 0) * 2 / float(numel))).astype('float32') + self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) @dygraph_guard - def func_example_with_gradient_accumulation_and_no_grad_vars(self): + def test_example_with_gradient_accumulation_and_no_grad_vars(self): x = random_var(self.shape) x_np = x.numpy() numel = x_np.size @@ -271,25 +246,17 @@ class TestDygraphDoubleGrad(TestCase): (x_np > 0) * 2).astype('float32') self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected)) - if core._in_eager_mode(): - pass - else: - loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) - loss.backward() - - x_grad_actual = x.gradient() - x_grad_expected = (2.0 / float(numel) * ( - x_np + dx_expected * - (x_np > 0) * 4 / float(numel))).astype('float32') - self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) + loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) + loss.backward() - def test_example_with_gradient_accumulation_and_no_grad_vars(self): - with _test_eager_guard(): - self.func_example_with_gradient_accumulation_and_no_grad_vars() - self.func_example_with_gradient_accumulation_and_no_grad_vars() + x_grad_actual = x.gradient() + x_grad_expected = (2.0 / float(numel) * + (x_np + dx_expected * + (x_np > 0) * 4 / float(numel))).astype('float32') + self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) @dygraph_guard - def func_example_with_gradient_accumulation_and_not_create_graph(self): + def test_example_with_gradient_accumulation_and_not_create_graph(self): x = random_var(self.shape) x_np = x.numpy() numel = x_np.size @@ -312,20 +279,12 @@ class TestDygraphDoubleGrad(TestCase): self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected)) - if core._in_eager_mode(): - pass - else: - loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) - loss.backward() + loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x) + loss.backward() - x_grad_actual = x.gradient() - x_grad_expected = (2.0 * x_np / float(numel)).astype('float32') - self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) - - def test_example_with_gradient_accumulation_and_not_create_graph(self): - with _test_eager_guard(): - self.func_example_with_gradient_accumulation_and_not_create_graph() - self.func_example_with_gradient_accumulation_and_not_create_graph() + x_grad_actual = x.gradient() + x_grad_expected = (2.0 * x_np / float(numel)).astype('float32') + self.assertTrue(np.allclose(x_grad_actual, x_grad_expected)) class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):