提交 4a497b82 编写于 作者: T Tomasz Patejko 提交者: Tao Luo

MKLDNN implementation of batch normalization (#9904)

* Initial implementation of forward pass for MKLDNN batch norm

* Added attributes for MKLDNN batch norm

* MKLDNN batch norm forward pass passes unittest. Started working on backward

* Backward pass for MKLDNN batch norm added

* MKLDNN batch norm: scoring added to forward pass

* MKLDNN batch norm: bias as input added; handling AnyLayout when kernel is looked up

* MKLDNN batch norm: python unit tests added; mkldnn tests removed

* MKLDNN batch norm: changes required by cpplint

* MKLDNN batch norm: refactoring the operator

* MKLDNN batch norm: saved variance inversed in backward pass for correct execution of MKLDNN unit tests

* MKLDNN batch norm: refctoring, function for static/const cast to void* added

* MKLDNN batch norm: remove AnyLayout from batch norm

*  MKLDNN batch norm: only NCHW format is supported. Unittests refactored

* MKDNN batch norm: use_mkldnn added to attributes

* MKLDNN batch norm: AnyLayout removed from unittest

* MKLDNN batch norm: added CUDNN defines to batch norm

* MKLDNN batch norm: undefined data_format variable corrected

* MKLDNN batch norm: use_cudnn added, use of setUp method for configuring attributes

* MKLDNN batch norm: added use_cudnn attribute to batch norm operator

* MKLDNN batch norm: correcting batch norm unit tests for MKLDNN

* MKLDNN batch norm: MKLDNN tests moved to another file; reverting changes for saved variance not being inverted

* Change default layout to NCHW

* MKLDNN batch norm: init_kernel_type method added to unit tests

* MKLDNN batch norm: style changes

* MKLDNN batch norm: unit tests refactored

* MKLDNN batch norm: added use_mkldnn attribute to batch norm python interface
上级 4fbde42c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
using mkldnn::memory;
template <typename T>
using EigenArrayMap =
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;
namespace {
template <typename T>
struct bn_type_traits {
using op_type = T;
using op_desc = typename op_type::desc;
using op_prim = typename op_type::primitive_desc;
};
template <typename T, typename Container>
void copy_to_weights(T scale_begin, T scale_end, T shift_begin, T shift_end,
Container *c) {
auto it = std::begin(*c);
std::copy(scale_begin, scale_end, std::inserter(*c, it));
std::copy(
shift_begin, shift_end,
std::inserter(*c, std::next(it, std::distance(scale_begin, scale_end))));
}
template <typename Op, typename... Args>
void run_batch_norm_op(Args &&... args) {
Op batch_norm_op{args...};
std::vector<mkldnn::primitive> pipeline;
pipeline.push_back(batch_norm_op);
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
template <typename T>
inline void *cast_const_to_void(const T *t) {
return static_cast<void *>(const_cast<T *>(t));
}
} // namespace
template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto data_layout_str = ctx.Attr<std::string>("data_layout");
auto data_layout = framework::StringToDataLayout(data_layout_str);
PADDLE_ENFORCE(data_layout == framework::DataLayout::kNCHW,
"MKLDNN batch normalization handles only NCHW data layout");
const float epsilon = ctx.Attr<float>("epsilon");
const float momentum = ctx.Attr<float>("momentum");
const bool is_test = ctx.Attr<bool>("is_test");
const auto *x = ctx.Input<Tensor>("X");
const auto *mean = ctx.Input<Tensor>("Mean");
const auto *variance = ctx.Input<Tensor>("Variance");
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
auto *y = ctx.Output<Tensor>("Y");
auto *mean_out = ctx.Output<Tensor>("MeanOut");
auto *variance_out = ctx.Output<Tensor>("VarianceOut");
auto *batch_mean = ctx.Output<Tensor>("SavedMean");
auto *batch_variance = ctx.Output<Tensor>("SavedVariance");
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *shift = ctx.Input<Tensor>("Bias");
y->mutable_data<T>(ctx.GetPlace());
mean_out->mutable_data<T>(ctx.GetPlace());
variance_out->mutable_data<T>(ctx.GetPlace());
if (!is_test) {
batch_mean->mutable_data<T>(ctx.GetPlace());
batch_variance->mutable_data<T>(ctx.GetPlace());
}
auto propagation = is_test == true ? mkldnn::prop_kind::forward_scoring
: mkldnn::prop_kind::forward_training;
auto dims = paddle::framework::vectorize2int(x->dims());
auto src_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto dst_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto src_pd = mkldnn::memory::primitive_desc{src_md, mkldnn_engine};
auto dst_pd = mkldnn::memory::primitive_desc{dst_md, mkldnn_engine};
auto src = mkldnn::memory{src_pd, cast_const_to_void(x->data<T>())};
auto dst = mkldnn::memory{dst_pd, y->data<T>()};
unsigned flags = mkldnn::use_scale_shift;
if (is_test) flags |= mkldnn::use_global_stats;
using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
auto batch_norm_fwd_desc =
bn_fwd_types::op_desc{propagation, src_md, epsilon, flags};
auto batch_norm_fwd_pd =
bn_fwd_types::op_prim{batch_norm_fwd_desc, mkldnn_engine};
const unsigned int ic = dims[1];
// MKLDNN requires a single piece of memory for scale and shift/bias data
const size_t scaleshift_size = 2 * ic;
std::vector<T> scaleshift_data;
scaleshift_data.reserve(scaleshift_size);
copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
shift->data<T>() + ic, &scaleshift_data);
auto scaleshift_memory = mkldnn::memory{
batch_norm_fwd_pd.weights_primitive_desc(), scaleshift_data.data()};
if (is_test) {
auto mean_memory = mkldnn::memory{batch_norm_fwd_pd.mean_primitive_desc(),
cast_const_to_void(mean->data<T>())};
auto variance_memory =
mkldnn::memory{batch_norm_fwd_pd.variance_primitive_desc(),
cast_const_to_void(variance->data<T>())};
run_batch_norm_op<typename bn_fwd_types::op_type>(
batch_norm_fwd_pd, src, (const mkldnn::primitive::at &)mean_memory,
(const mkldnn::primitive::at &)variance_memory, scaleshift_memory,
dst);
} else {
auto mean_memory =
mkldnn::memory{batch_norm_fwd_pd.mean_primitive_desc(),
cast_const_to_void(batch_mean->data<T>())};
auto variance_memory =
mkldnn::memory{batch_norm_fwd_pd.variance_primitive_desc(),
cast_const_to_void(batch_variance->data<T>())};
run_batch_norm_op<bn_fwd_types::op_type>(batch_norm_fwd_pd, src,
scaleshift_memory, dst,
mean_memory, variance_memory);
}
if (!is_test) {
const unsigned int in = dims[0];
const unsigned int sample_size = x->numel() / in / ic;
// saved_xx is use just in this batch of data
EigenVectorArrayMap<T> saved_mean_e(
batch_mean->mutable_data<T>(ctx.GetPlace()), ic);
EigenVectorArrayMap<T> saved_variance_e(
batch_variance->mutable_data<T>(ctx.GetPlace()), ic);
saved_mean_e.setZero();
saved_variance_e.setZero();
const unsigned int x_arr_size = in * ic;
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, x_arr_size);
for (unsigned int nc = 0; nc < x_arr_size; ++nc) {
saved_mean_e(nc % ic) += x_arr.col(nc).sum();
}
saved_mean_e /= in * sample_size;
for (unsigned int nc = 0; nc < x_arr_size; ++nc) {
saved_variance_e(nc % ic) +=
(x_arr.col(nc) - saved_mean_e(nc % ic)).matrix().squaredNorm();
}
saved_variance_e /= in * sample_size;
ConstEigenVectorArrayMap<T> mean_arr{mean->data<T>(), ic};
ConstEigenVectorArrayMap<T> variance_arr{variance->data<T>(), ic};
EigenVectorArrayMap<T> running_mean_arr(
mean_out->mutable_data<T>(ctx.GetPlace()), ic);
EigenVectorArrayMap<T> running_var_arr(
variance_out->mutable_data<T>(ctx.GetPlace()), ic);
auto one_minus_momentum = 1. - momentum;
running_mean_arr =
mean_arr * momentum + saved_mean_e * one_minus_momentum;
running_var_arr =
variance_arr * momentum + saved_variance_e * one_minus_momentum;
}
}
};
template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext &ctx) const override {
auto data_layout_str = ctx.Attr<std::string>("data_layout");
auto data_layout = framework::StringToDataLayout(data_layout_str);
PADDLE_ENFORCE(data_layout == framework::DataLayout::kNCHW,
"MKLDNN batch normalization handles only NCHW data layout");
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
const float epsilon = ctx.Attr<float>("epsilon");
const auto *x = ctx.Input<Tensor>("X");
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *shift = ctx.Input<Tensor>("Bias");
const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
const auto *batch_variance = ctx.Input<Tensor>("SavedVariance");
const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));
diff_x->mutable_data<T>(ctx.GetPlace());
diff_scale->mutable_data<T>(ctx.GetPlace());
diff_shift->mutable_data<T>(ctx.GetPlace());
auto dims = paddle::framework::vectorize2int(x->dims());
unsigned flags = mkldnn::use_scale_shift | !mkldnn::use_global_stats;
auto src_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto dst_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto diff_src_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto diff_dst_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
auto batch_norm_fwd_desc = bn_fwd_types::op_desc{
mkldnn::prop_kind::forward_training, src_md, epsilon, flags};
auto batch_norm_fwd_pd =
bn_fwd_types::op_prim{batch_norm_fwd_desc, mkldnn_engine};
auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
mkldnn::prop_kind::backward, diff_dst_md, dst_md, epsilon, flags};
auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
batch_norm_bwd_desc, mkldnn_engine, batch_norm_fwd_pd};
auto src = mkldnn::memory{{src_md, mkldnn_engine},
cast_const_to_void(x->data<T>())};
auto mean = mkldnn::memory{batch_norm_bwd_pd.mean_primitive_desc(),
cast_const_to_void(batch_mean->data<T>())};
auto variance =
mkldnn::memory{batch_norm_bwd_pd.variance_primitive_desc(),
cast_const_to_void(batch_variance->data<T>())};
auto diff_dst = mkldnn::memory{{diff_dst_md, mkldnn_engine},
cast_const_to_void(diff_y->data<T>())};
const unsigned int ic = dims[1];
const size_t scaleshift_size = 2 * ic;
std::vector<T> scaleshift_data;
scaleshift_data.reserve(scaleshift_size);
copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
shift->data<T>() + ic, &scaleshift_data);
auto scaleshift_memory = mkldnn::memory{
batch_norm_bwd_pd.weights_primitive_desc(), scaleshift_data.data()};
std::vector<T> diff_scaleshift_data;
diff_scaleshift_data.reserve(scaleshift_size);
copy_to_weights(diff_scale->data<T>(), diff_scale->data<T>() + ic,
diff_shift->data<T>(), diff_shift->data<T>() + ic,
&diff_scaleshift_data);
auto diff_scaleshift_memory =
mkldnn::memory{batch_norm_bwd_pd.diff_weights_primitive_desc(),
diff_scaleshift_data.data()};
auto diff_src = mkldnn::memory{{diff_src_md, mkldnn_engine},
static_cast<void *>(diff_x->data<T>())};
run_batch_norm_op<bn_bwd_types::op_type>(
batch_norm_bwd_pd, src, mean, variance, diff_dst, scaleshift_memory,
diff_src, diff_scaleshift_memory);
auto it = std::begin(diff_scaleshift_data);
std::copy(it, std::next(it, ic), diff_scale->data<T>());
std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
diff_shift->data<T>());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(batch_norm, MKLDNN, paddle::platform::CPUPlace,
ops::BatchNormMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, paddle::platform::CPUPlace,
ops::BatchNormMKLDNNGradOpKernel<float>);
...@@ -15,6 +15,9 @@ limitations under the License. */ ...@@ -15,6 +15,9 @@ limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h" #include "paddle/fluid/operators/batch_norm_op.h"
#include <string> #include <string>
#include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/data_layout.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -106,7 +109,18 @@ class BatchNormOp : public framework::OperatorWithKernel { ...@@ -106,7 +109,18 @@ class BatchNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(bn_param_type, framework::ToDataType( PADDLE_ENFORCE_EQ(bn_param_type, framework::ToDataType(
ctx.Input<Tensor>("Variance")->type()), ctx.Input<Tensor>("Variance")->type()),
"Variance input should be of float type"); "Variance input should be of float type");
return framework::OpKernelType(input_data_type, ctx.GetPlace());
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
library_);
} }
}; };
...@@ -151,6 +165,9 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -151,6 +165,9 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
"Variance of the current mini batch, " "Variance of the current mini batch, "
"will apply to output when training") "will apply to output when training")
.AsIntermediate(); .AsIntermediate();
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC( AddComment(R"DOC(
Batch Normalization. Batch Normalization.
...@@ -349,8 +366,19 @@ class BatchNormGradOp : public framework::OperatorWithKernel { ...@@ -349,8 +366,19 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
if (t == nullptr) { if (t == nullptr) {
PADDLE_THROW("can't find Y@GRAD"); PADDLE_THROW("can't find Y@GRAD");
} }
return framework::OpKernelType(framework::ToDataType(t->type()),
ctx.GetPlace()); framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout, library_);
} }
}; };
...@@ -474,6 +502,7 @@ class BatchNormGradMaker : public framework::SingleGradOpDescMaker { ...@@ -474,6 +502,7 @@ class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y")); op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetInput("Scale", Input("Scale")); op->SetInput("Scale", Input("Scale"));
op->SetInput("Bias", Input("Bias"));
op->SetInput("SavedMean", Output("SavedMean")); op->SetInput("SavedMean", Output("SavedMean"));
op->SetInput("SavedVariance", Output("SavedVariance")); op->SetInput("SavedVariance", Output("SavedVariance"));
......
...@@ -1496,6 +1496,7 @@ def batch_norm(input, ...@@ -1496,6 +1496,7 @@ def batch_norm(input,
bias_attr=None, bias_attr=None,
data_layout='NCHW', data_layout='NCHW',
in_place=False, in_place=False,
use_mkldnn=False,
name=None, name=None,
moving_mean_name=None, moving_mean_name=None,
moving_variance_name=None, moving_variance_name=None,
...@@ -1574,9 +1575,12 @@ def batch_norm(input, ...@@ -1574,9 +1575,12 @@ def batch_norm(input,
"SavedMean": saved_mean, "SavedMean": saved_mean,
"SavedVariance": saved_variance "SavedVariance": saved_variance
}, },
attrs={"momentum": momentum, attrs={
"momentum": momentum,
"epsilon": epsilon, "epsilon": epsilon,
"is_test": is_test}) "is_test": is_test,
"use_mkldnn": use_mkldnn
})
return helper.append_activation(batch_norm_out) return helper.append_activation(batch_norm_out)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from op_test import OpTest
from paddle.fluid.framework import grad_var_name
from test_batch_norm_op import TestBatchNormOpInference, TestBatchNormOpTraining, _reference_training, _reference_grad
class TestMKLDNNBatchNormOpTraining(TestBatchNormOpTraining):
def init_kernel_type(self):
self.use_mkldnn = True
self.data_formats = ["NCHW"]
def ref_forward_backward(self, x, y_grad, scale, bias, mean, variance,
epsilon, momentum, shape, data_layout):
# run forward
y, saved_mean, saved_variance = _reference_training(
x, scale, bias, epsilon, data_layout)
mean_out = saved_mean * (1. - momentum) + momentum * mean
variance_out = saved_variance * (1. - momentum) + momentum * variance
# run backward
x_grad, scale_grad, bias_grad = _reference_grad(
x, y_grad, scale, saved_mean, saved_variance, epsilon, data_layout)
return y, mean_out, variance_out, saved_mean, saved_variance, x_grad, scale_grad, bias_grad
class TestMKLDNNBatchNormOpInference(TestBatchNormOpInference):
def init_kernel_type(self):
self.use_mkldnn = True
def test_check_output(self):
place = core.CPUPlace()
data_format = "NCHW"
self.check_with_place(place, data_format, self.dtype, [2, 3, 4, 5])
if __name__ == '__main__':
unittest.main()
...@@ -158,6 +158,8 @@ def set_output_grad(scope, outputs, place, feed_dict=None): ...@@ -158,6 +158,8 @@ def set_output_grad(scope, outputs, place, feed_dict=None):
class TestBatchNormOpInference(unittest.TestCase): class TestBatchNormOpInference(unittest.TestCase):
def setUp(self): def setUp(self):
self.dtype = np.float32 self.dtype = np.float32
self.use_mkldnn = False
self.init_kernel_type()
def __assert_close(self, tensor, np_array, msg, atol=1e-4): def __assert_close(self, tensor, np_array, msg, atol=1e-4):
self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg) self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)
...@@ -230,6 +232,7 @@ class TestBatchNormOpInference(unittest.TestCase): ...@@ -230,6 +232,7 @@ class TestBatchNormOpInference(unittest.TestCase):
# attrs # attrs
is_test=True, is_test=True,
data_layout=data_layout, data_layout=data_layout,
use_mkldnn=self.use_mkldnn,
epsilon=epsilon) epsilon=epsilon)
batch_norm_op.run(scope, place) batch_norm_op.run(scope, place)
...@@ -254,10 +257,15 @@ class TestBatchNormOpInference(unittest.TestCase): ...@@ -254,10 +257,15 @@ class TestBatchNormOpInference(unittest.TestCase):
[2, 3, 4, 5]) [2, 3, 4, 5])
self.check_with_place(place, data_format, self.dtype, [2, 3]) self.check_with_place(place, data_format, self.dtype, [2, 3])
def init_kernel_type(self):
pass
class TestFP16BatchNormOpInference(TestBatchNormOpInference): class TestFP16BatchNormOpInference(TestBatchNormOpInference):
def setUp(self): def setUp(self):
self.dtype = np.float16 self.dtype = np.float16
self.use_mkldnn = False
self.init_kernel_type()
def test_check_output(self): def test_check_output(self):
places = [] places = []
...@@ -274,9 +282,28 @@ class TestFP16BatchNormOpInference(TestBatchNormOpInference): ...@@ -274,9 +282,28 @@ class TestFP16BatchNormOpInference(TestBatchNormOpInference):
class TestBatchNormOpTraining(unittest.TestCase): class TestBatchNormOpTraining(unittest.TestCase):
def setUp(self):
self.use_mkldnn = False
self.data_formats = ["NCHW", "NHWC"]
self.init_kernel_type()
def __assert_close(self, tensor, np_array, msg, atol=1e-4): def __assert_close(self, tensor, np_array, msg, atol=1e-4):
np.allclose(np.array(tensor), np_array, atol=atol) np.allclose(np.array(tensor), np_array, atol=atol)
def ref_forward_backward(self, x, y_grad, scale, bias, mean, variance,
epsilon, momentum, shape, data_layout):
# run forward
y, saved_mean, var_ref = _reference_training(x, scale, bias, epsilon,
data_layout)
mean_out = saved_mean * (1. - momentum) + momentum * mean
variance_out = var_ref * (1. - momentum) + momentum * variance
saved_variance = 1. / np.sqrt(var_ref + epsilon)
# run backward
x_grad, scale_grad, bias_grad = _reference_grad(
x, y_grad, scale, saved_mean, var_ref, epsilon, data_layout)
return y, mean_out, variance_out, saved_mean, saved_variance, x_grad, scale_grad, bias_grad
def test_forward_backward(self): def test_forward_backward(self):
def test_with_place(place, data_layout, shape): def test_with_place(place, data_layout, shape):
# attr # attr
...@@ -295,16 +322,11 @@ class TestBatchNormOpTraining(unittest.TestCase): ...@@ -295,16 +322,11 @@ class TestBatchNormOpTraining(unittest.TestCase):
mean = np.zeros(scale_shape).astype(np.float32) mean = np.zeros(scale_shape).astype(np.float32)
variance = np.ones(scale_shape).astype(np.float32) variance = np.ones(scale_shape).astype(np.float32)
# run forward
y, saved_mean, var_ref = _reference_training(x, scale, bias,
epsilon, data_layout)
mean_out = saved_mean * (1. - momentum) + momentum * mean
variance_out = var_ref * (1. - momentum) + momentum * variance
saved_variance = 1. / np.sqrt(var_ref + epsilon)
# run backward
y_grad = np.random.random_sample(shape).astype(np.float32) y_grad = np.random.random_sample(shape).astype(np.float32)
x_grad, scale_grad, bias_grad = _reference_grad(
x, y_grad, scale, saved_mean, var_ref, epsilon, data_layout) y, mean_out, variance_out, saved_mean, saved_variance, x_grad, scale_grad, bias_grad = self.ref_forward_backward(
x, y_grad, scale, bias, mean, variance, epsilon, momentum,
shape, data_layout)
var_dict = locals() var_dict = locals()
var_dict['y@GRAD'] = y_grad var_dict['y@GRAD'] = y_grad
...@@ -344,7 +366,8 @@ class TestBatchNormOpTraining(unittest.TestCase): ...@@ -344,7 +366,8 @@ class TestBatchNormOpTraining(unittest.TestCase):
"momentum": momentum, "momentum": momentum,
"epsilon": epsilon, "epsilon": epsilon,
"is_test": False, "is_test": False,
"data_layout": data_layout "data_layout": data_layout,
"use_mkldnn": self.use_mkldnn
}) })
block.create_var(name='y@GRAD', dtype='float32', shape=y.shape) block.create_var(name='y@GRAD', dtype='float32', shape=y.shape)
...@@ -387,13 +410,17 @@ class TestBatchNormOpTraining(unittest.TestCase): ...@@ -387,13 +410,17 @@ class TestBatchNormOpTraining(unittest.TestCase):
print "op test forward passed: ", str(place), data_layout print "op test forward passed: ", str(place), data_layout
places = [core.CPUPlace()] places = [core.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("batch_norm"): if core.is_compiled_with_cuda() and core.op_support_gpu("batch_norm"):
places.append(core.CUDAPlace(0)) places.append(core.CUDAPlace(0))
for place in places: for place in places:
for data_format in ["NCHW", "NHWC"]: for data_format in self.data_formats:
test_with_place(place, data_format, [2, 3, 4, 5]) test_with_place(place, data_format, [2, 3, 4, 5])
def init_kernel_type(self):
pass
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册