未验证 提交 49074859 编写于 作者: Z zhangkaihuo 提交者: GitHub

Add compare accuracy api (#53430)

上级 45ce0ad5
......@@ -25,6 +25,7 @@ from .grad_scaler import AmpScaler # noqa: F401
from .grad_scaler import OptimizerState # noqa: F401
from . import debugging # noqa: F401
from . import accuracy_compare # noqa: F401
from paddle.fluid import core
from paddle.fluid.framework import (
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
# Judge whether the value is within the range indicated by fp16
def is_infinite(value, dtype=np.float16):
# return value > np.finfo(np.float16).max or value < np.finfo(np.float16).min
array = np.array([value]).astype(dtype)
return np.isinf(array) or np.isnan(array)
# Judge whether the value of fp32 is equal to that of fp16
def is_allclose(actual, expected, atol=1e-2, rtol=1e-2):
return np.allclose(
np.array([actual]), np.array([expected]), atol=atol, rtol=rtol
)
class TensorInfo:
def __init__(self):
self.op_type = None
self.tensor_name = None
self.dtype = None
self.numel = None
self.max_value = None
self.min_value = None
self.mean_value = None
self.has_inf = None
self.has_nan = None
self.num_zero = None
def __str__(self):
return "[TensorInfo] op_type={}, tensor_name={}, dtype={}, numel={}, has_inf={}, has_nan={}, num_zero={}, max_value={:.6f}, min_value={:.6f}, mean_value={:.6f}".format(
self.op_type,
self.tensor_name,
self.dtype,
self.numel,
self.has_inf,
self.has_nan,
self.num_zero,
self.max_value,
self.min_value,
self.mean_value,
)
def key(
self,
):
return self.op_type + "/" + self.tensor_name
def init_from_string(self, line):
try:
line_frags = line.strip().split(" ")
for frag in line_frags:
word_str = (
frag.replace("[", "").replace("]", "").replace(",", "")
)
words = word_str.split("=")
if words[0] == "op":
self.op_type = words[1]
elif words[0] == "tensor":
self.tensor_name = words[1]
elif words[0] == "dtype":
self.dtype = words[1]
elif words[0] == "numel":
self.numel = np.int64(words[1])
elif words[0] == "max":
self.max_value = np.float32(words[1])
elif words[0] == "min":
self.min_value = np.float32(words[1])
elif words[0] == "mean":
self.mean_value = np.float32(words[1])
elif words[0] == "num_inf":
self.has_inf = int(words[1])
elif words[0] == "num_nan":
self.has_nan = int(words[1])
elif words[0] == "num_zero":
self.num_zero = np.int64(words[1])
except Exception as e:
print(f"!! Error parsing {line}")
return self
class MixedPrecisionTensorInfo:
def __init__(
self, fp32_tensor_info, fp16_tensor_info, fp32_idx=0, grad_scale=1.0
):
self.is_normal = True
self.fp32_idx = fp32_idx
self.fp32_tensor_name = None
self.fp32_dtype = None
self.fp32_max_value = None
self.fp32_min_value = None
self.fp32_mean_value = None
self.fp32_num_zero = None
self.scaled_fp32_max_value = None
self.scaled_fp32_min_value = None
self.fp16_tensor_name = None
self.fp16_dtype = None
self.fp16_max_value = None
self.fp16_min_value = None
self.fp16_mean_value = None
self.fp16_num_zero = None
self.fp16_has_inf = None
self.fp16_has_nan = None
self.fp32_div_fp16_max_value = None
self.fp32_div_fp16_min_value = None
self.fp32_div_fp16_mean_value = None
if fp32_tensor_info is not None:
self.op_type = fp32_tensor_info.op_type
self.numel = fp32_tensor_info.numel
self.fp32_num_zero = fp32_tensor_info.num_zero
self.fp32_tensor_name = fp32_tensor_info.tensor_name
self.fp32_dtype = fp32_tensor_info.dtype
self.fp32_max_value = fp32_tensor_info.max_value
self.fp32_min_value = fp32_tensor_info.min_value
self.fp32_mean_value = fp32_tensor_info.mean_value
if "GRAD" in self.fp32_tensor_name:
self.scaled_fp32_max_value = (
grad_scale * fp32_tensor_info.max_value
)
self.scaled_fp32_min_value = (
grad_scale * fp32_tensor_info.min_value
)
if fp16_tensor_info is not None:
self.op_type = fp16_tensor_info.op_type
self.numel = fp16_tensor_info.numel
self.fp16_num_zero = fp16_tensor_info.num_zero
self.fp16_tensor_name = fp16_tensor_info.tensor_name
self.fp16_dtype = fp16_tensor_info.dtype
self.fp16_max_value = fp16_tensor_info.max_value
self.fp16_min_value = fp16_tensor_info.min_value
self.fp16_mean_value = fp16_tensor_info.mean_value
self.fp16_has_inf = fp16_tensor_info.has_inf
self.fp16_has_nan = fp16_tensor_info.has_nan
if fp32_tensor_info is not None and fp16_tensor_info is not None:
# Check whether the op name and data are equal
assert fp32_tensor_info.op_type == fp16_tensor_info.op_type
assert (
fp32_tensor_info.numel == fp16_tensor_info.numel
), "Error:\n\tFP32 Tensor Info:{}\n\tFP16 Tensor Info:{}".format(
fp32_tensor_info, fp16_tensor_info
)
# Fp16 divided by fp32
self.fp32_div_fp16_max_value = self._div(
self.fp16_max_value, self.fp32_max_value
)
self.fp32_div_fp16_min_value = self._div(
self.fp16_min_value, self.fp32_min_value
)
self.fp32_div_fp16_mean_value = self._div(
self.fp16_mean_value, self.fp32_mean_value
)
self._check_normal()
def __str__(self):
def _float_str(value):
return f"{value:.6f}" if value is not None else value
debug_str = "[MixedPrecisionTensorInfo] op_type={}, numel={}".format(
self.op_type, self.numel
)
debug_str += "\n FP32: tensor_name={}, dtype={}, max_value={}, min_value={}, mean_value={}".format(
self.fp32_tensor_name,
self.fp32_dtype,
_float_str(self.fp32_max_value),
_float_str(self.fp32_min_value),
_float_str(self.fp32_mean_value),
)
debug_str += "\n FP16: tensor_name={}, dtype={}, max_value={}, min_value={}, mean_value={}, has_inf={}, has_nan={}".format(
self.fp16_tensor_name,
self.fp16_dtype,
_float_str(self.fp16_max_value),
_float_str(self.fp16_min_value),
_float_str(self.fp16_mean_value),
self.fp16_has_inf,
self.fp16_has_nan,
)
return debug_str
def _div(self, a, b):
if a is not None and b is not None:
return a / b if b != 0 else 1
return None
def get_tensor_name(self):
if self.fp32_tensor_name is None:
return self.fp16_tensor_name # + "#" + str(self.idx)
elif self.fp16_tensor_name is None:
return self.fp32_tensor_name + "#" + str(self.fp32_idx)
else:
return (
self.fp16_tensor_name.replace(".cast_fp16", "/.cast_fp16/")
+ "#"
+ str(self.fp32_idx)
)
def _check_normal(self):
# When the OP meets the following conditions, it is abnormal data, and use --skip_normal_tensors to retain the data in Excel:
# 1. The number of OP outputs exceeds the indication range of int32
# 2. The output data exceeds the representation range of fp16
# 3. Nan or inf appears in fp16 output data
# 4. The maximum value of fp32 is not equal to the maximum value of fp16
# 5. The minimum value of fp32 is not equal to the minimum value of fp16
if self.numel is not None and self.numel > np.iinfo(np.int32).max:
self.is_normal = False
return
check_list = [
self.fp32_max_value,
self.fp32_min_value,
self.scaled_fp32_max_value,
self.scaled_fp32_min_value,
self.fp16_max_value,
self.fp16_min_value,
]
for value in check_list:
if value is not None and is_infinite(value):
self.is_normal = False
return
if self.fp16_has_inf is not None and self.fp16_has_inf:
self.is_normal = False
return
if self.fp16_has_nan is not None and self.fp16_has_nan:
self.is_normal = False
return
if (
self.scaled_fp32_max_value is not None
and self.fp16_max_value is not None
and not is_allclose(self.fp16_max_value, self.scaled_fp32_max_value)
):
self.is_normal = False
return
if (
self.scaled_fp32_min_value is not None
and self.fp16_min_value is not None
and not is_allclose(self.fp16_min_value, self.scaled_fp32_min_value)
):
self.is_normal = False
return
class ExcelWriter:
def __init__(self, log_fp32_dir, log_fp16_dir, output_path):
self.log_fp32_dir = log_fp32_dir
self.log_fp16_dir = log_fp16_dir
try:
import xlsxwriter as xlw
except ImportError:
print(
"import xlsxwriter failed. please run 'pip install xlsxwriter==3.0.9' to install it"
)
self.workbook = xlw.Workbook(output_path)
self.title_format = self.workbook.add_format(
{
'bold': True,
'border': 1,
'font_color': 'black',
'bg_color': '#6495ED',
'align': 'center',
}
)
self.tensor_name_format = self.workbook.add_format(
{'bold': True, 'bg_color': '#F5F5F5'}
)
self.red_bg_cell_format = self.workbook.add_format(
{'bold': True, 'bg_color': 'red'}
)
self.yellow_bg_cell_format = self.workbook.add_format(
{'bold': True, 'bg_color': 'yellow'}
)
self.orange_bg_cell_format = self.workbook.add_format(
{'bold': True, 'bg_color': 'orange'}
)
def close(self):
self.workbook.close()
self.workbook = None
def _write_dtype(self, worksheet, value, row, col):
if value is None:
worksheet.write(row, col, "--")
else:
if value == "fp16":
worksheet.write(row, col, value, self.yellow_bg_cell_format)
else:
worksheet.write(row, col, value)
def _write_tensor_name(self, worksheet, mp_tensor_info, row, col):
tensor_name = mp_tensor_info.get_tensor_name()
if (
mp_tensor_info.fp32_tensor_name is not None
and mp_tensor_info.fp16_tensor_name
):
worksheet.write(row, col, tensor_name, self.tensor_name_format)
else:
worksheet.write(row, col, tensor_name)
def _write_maxmin_value(
self, worksheet, value, row, col, check_finite=True
):
if value is None:
worksheet.write(row, col, "--")
else:
if abs(value) < 1e-5:
value_str = f"{value:.6E}"
else:
value_str = f"{value:.6f}"
if check_finite and is_infinite(value, np.float16):
worksheet.write(row, col, value_str, self.red_bg_cell_format)
else:
worksheet.write(row, col, value_str)
def _write_tensor_num_zero(
self, worksheet, value, row, col, check_finite=True
):
if value is None:
worksheet.write(row, col, "--")
else:
value_str = f"{value:>10d}"
worksheet.write(row, col, value_str)
def _write_infinite_status(self, worksheet, value, row, col):
if value is None:
worksheet.write(row, col, "--")
else:
if value == 1:
worksheet.write(row, col, value, self.red_bg_cell_format)
else:
worksheet.write(row, col, value)
def _write_fp32divfp16_value(self, worksheet, value, row, col, loss_scale):
def _in_range(value, scale=1):
return value > scale * 0.95 and value < scale * 1.05
if value is None:
worksheet.write(row, col, "--")
else:
value_str = f"{value:.6f}"
if _in_range(value, scale=1) or _in_range(value, loss_scale):
worksheet.write(row, col, value_str)
else:
worksheet.write(row, col, value_str, self.orange_bg_cell_format)
def _write_titles(self, worksheet, loss_scale, row):
column_width_dict = {
"op_type": 24,
"tensor_name": 60,
"numel": 10,
"num_zero": 10,
"infinite": 8,
"dtype": 8,
"max_value": 16,
"min_value": 16,
"mean_value": 16,
"has_inf": 8,
"has_nan": 8,
}
title_names = ["op_type", "tensor_name", "numel", "infinite"]
if self.log_fp16_dir is None:
# only fp32 values
worksheet.merge_range("E1:H1", "fp32", self.title_format)
worksheet.merge_range(
"I1:J1", f"fp32 (scale={loss_scale})", self.title_format
)
title_names.extend(
[
"dtype",
"max_value",
"min_value",
"mean_value",
"max_value",
"min_value",
]
)
elif self.log_fp32_dir is None:
# only fp16 values
worksheet.merge_range(
"E1:J1", f"fp16 (scale={loss_scale})", self.title_format
)
title_names.extend(
[
"dtype",
"max_value",
"min_value",
"mean_value",
"num_zero",
"has_inf",
"has_nan",
]
)
else:
# fp32 and fp16 values
worksheet.merge_range("E1:H1", "fp32", self.title_format)
worksheet.merge_range(
"I1:N1", f"fp16 (scale={loss_scale})", self.title_format
)
worksheet.merge_range("O1:Q1", "fp16 / fp32", self.title_format)
title_names.extend(
[
"dtype",
"max_value",
"min_value",
"mean_value",
"num_zero",
"dtype",
"max_value",
"min_value",
"mean_value",
"num_zero",
"has_inf",
"has_nan",
"max_value",
"min_value",
"mean_value",
]
)
for col in range(len(title_names)):
col_char = chr(ord("A") + col)
worksheet.set_column(
col_char + ":" + col_char, column_width_dict[title_names[col]]
)
for col in range(len(title_names)):
worksheet.write(row, col, title_names[col], self.title_format)
def add_worksheet(
self, mp_tensor_info_list, sheetname, loss_scale, skip_normal_tensors
):
assert self.workbook is not None
worksheet = self.workbook.add_worksheet(sheetname)
row = 1
self._write_titles(worksheet, loss_scale, row)
row += 1
infinite_op_types = []
for tensor_info in mp_tensor_info_list:
if (
not tensor_info.is_normal
and tensor_info.op_type not in infinite_op_types
):
infinite_op_types.append(tensor_info.op_type)
if skip_normal_tensors and tensor_info.is_normal:
continue
worksheet.write(row, 0, tensor_info.op_type)
self._write_tensor_name(worksheet, tensor_info, row, 1)
if tensor_info.numel > np.iinfo(np.int32).max:
worksheet.write(
row, 2, tensor_info.numel, self.bad_value_format
)
else:
worksheet.write(row, 2, tensor_info.numel)
if tensor_info.is_normal:
worksheet.write(row, 3, "0")
else:
worksheet.write(row, 3, "1", self.red_bg_cell_format)
col = 4
if self.log_fp32_dir is not None:
self._write_dtype(worksheet, tensor_info.fp32_dtype, row, col)
self._write_maxmin_value(
worksheet, tensor_info.fp32_max_value, row, col + 1
)
self._write_maxmin_value(
worksheet, tensor_info.fp32_min_value, row, col + 2
)
self._write_maxmin_value(
worksheet, tensor_info.fp32_mean_value, row, col + 3
)
self._write_tensor_num_zero(
worksheet, tensor_info.fp32_num_zero, row, col + 4
)
col += 5
if self.log_fp16_dir is None:
self._write_maxmin_value(
worksheet, tensor_info.scaled_fp32_max_value, row, col
)
self._write_maxmin_value(
worksheet,
tensor_info.scaled_fp32_min_value,
row,
col + 1,
)
col += 2
if self.log_fp16_dir is not None:
self._write_dtype(worksheet, tensor_info.fp16_dtype, row, col)
self._write_maxmin_value(
worksheet, tensor_info.fp16_max_value, row, col + 1
)
self._write_maxmin_value(
worksheet, tensor_info.fp16_min_value, row, col + 2
)
self._write_maxmin_value(
worksheet, tensor_info.fp16_mean_value, row, col + 3
)
self._write_tensor_num_zero(
worksheet, tensor_info.fp32_num_zero, row, col + 4
)
col += 5
self._write_infinite_status(
worksheet, tensor_info.fp16_has_inf, row, col
)
self._write_infinite_status(
worksheet, tensor_info.fp16_has_nan, row, col + 1
)
col += 2
if self.log_fp32_dir is not None and self.log_fp16_dir is not None:
self._write_fp32divfp16_value(
worksheet,
tensor_info.fp32_div_fp16_max_value,
row,
col,
loss_scale,
)
self._write_fp32divfp16_value(
worksheet,
tensor_info.fp32_div_fp16_min_value,
row,
col + 1,
loss_scale,
)
self._write_fp32divfp16_value(
worksheet,
tensor_info.fp32_div_fp16_mean_value,
row,
col + 2,
loss_scale,
)
col += 3
row += 1
print(f"-- OP Types produce infinite outputs: {infinite_op_types}")
def parse_log(log_dir, filename, specified_op_list=None):
if log_dir is None or filename is None:
return None
complete_filename = log_dir + "/" + filename
tensor_info_list = []
has_tensor_name = False
try:
with open(complete_filename, 'r') as f:
lines = f.readlines()
for i in range(len(lines)):
if i % 10 == 0:
print(
f"-- Processing {i:-8d} / {len(lines):-8d} line",
end="\r",
)
# [op=adamw] [tensor=encoder_layer_20_multi_head_att_output_fc_0.w_0], numel: 294912, max: 0.005773, min: -0.005774
line = lines[i]
if "[PRECISION]" in line:
tensor_info = TensorInfo()
tensor_info.init_from_string(line)
if (
tensor_info.tensor_name is not None
and tensor_info.tensor_name != ""
):
has_tensor_name = True
if (
specified_op_list is None
or tensor_info.op_type in specified_op_list
):
tensor_info_list.append(tensor_info)
# print(tensor_info)
except FileNotFoundError:
print("the file ", complete_filename, "is not found")
return None, has_tensor_name
return tensor_info_list, has_tensor_name
def merge_tensor_info_list(
fp32_tensor_info_list, fp16_tensor_info_list, grad_scale
):
mp_tensor_info_list = []
if fp16_tensor_info_list is not None:
fp32_tensor_info_dict = {}
fp32_write_count = {}
if fp32_tensor_info_list is not None:
for tensor_info in fp32_tensor_info_list:
tensor_info_key = tensor_info.key()
count = fp32_write_count.get(tensor_info_key, 0)
fp32_write_count[tensor_info_key] = count + 1
fp32_tensor_info_dict[
tensor_info_key + "#" + str(count)
] = tensor_info
fp32_read_count = {}
for i in range(len(fp16_tensor_info_list)):
if i % 10 == 0:
print(
"-- Processing {:-8d} / {:-8d} FP16 Tensor Info".format(
i, len(fp16_tensor_info_list)
),
end="\r",
)
fp16_tensor_info = fp16_tensor_info_list[i]
fp32_tensor_info_key = (
fp16_tensor_info.key()
.replace(".cast_fp16", "")
.replace(".cast_fp32", "")
)
count = fp32_read_count.get(fp32_tensor_info_key, 0)
fp32_tensor_info = fp32_tensor_info_dict.get(
fp32_tensor_info_key + "#" + str(count), None
)
if fp32_tensor_info is not None:
fp32_read_count[fp32_tensor_info_key] = count + 1
mp_tensor_info = MixedPrecisionTensorInfo(
fp32_tensor_info, fp16_tensor_info, count, grad_scale
)
mp_tensor_info_list.append(mp_tensor_info)
# print(mp_tensor_info)
elif fp32_tensor_info_list is not None:
fp32_count = {}
for i in range(len(fp32_tensor_info_list)):
if i % 10 == 0:
print(
"-- Processing {:-8d} / {:-8d} FP32 Tensor Info".format(
i, len(fp32_tensor_info_list)
),
end="\r",
)
tensor_info = fp32_tensor_info_list[i]
tensor_info_key = tensor_info.key()
count = fp32_count.get(tensor_info_key, 0)
fp32_count[tensor_info_key] = count + 1
mp_tensor_info = MixedPrecisionTensorInfo(
tensor_info, None, count, grad_scale
)
mp_tensor_info_list.append(mp_tensor_info)
return mp_tensor_info_list
def compare_accuracy(
dump_path,
another_dump_path,
output_filename,
loss_scale=1,
dump_all_tensors=False,
):
excel_writer = ExcelWriter(dump_path, another_dump_path, output_filename)
grad_scale = loss_scale
workerlog_filenames = []
filenames = os.listdir(dump_path)
for name in filenames:
if "worker_" in name:
workerlog_filenames.append(name)
print(
"-- There are {} workerlogs under {}: {}".format(
len(workerlog_filenames), dump_path, workerlog_filenames
)
)
for filename in sorted(workerlog_filenames):
print(
"-- [Step 1/4] Parsing FP32 logs under {}/{}".format(
dump_path, filename
)
)
fp32_tensor_info_list, fp32_has_tensor_name = parse_log(
dump_path, filename, None
)
print(
"-- [Step 2/4] Parsing FP16 logs under {}/{}".format(
another_dump_path, filename
)
)
fp16_tensor_info_list, fp16_has_tensor_name = parse_log(
another_dump_path, filename, None
)
print(
"-- [Step 3/4] Merge FP32 and FP16 tensor info for {}".format(
filename
)
)
mp_tensor_info_list = merge_tensor_info_list(
fp32_tensor_info_list, fp16_tensor_info_list, grad_scale
)
print(
"-- [Step 4/4] Add worksheet for mixed precision tensor info of {}".format(
filename
)
)
excel_writer.add_worksheet(
mp_tensor_info_list,
filename,
loss_scale,
False,
)
print(f"-- Write to {output_filename}")
print("")
excel_writer.close()
......@@ -30,6 +30,7 @@ __all__ = [
"collect_operator_stats",
"enable_tensor_checker",
"disable_tensor_checker",
"compare_accuracy",
]
......@@ -424,6 +425,67 @@ def collect_operator_stats():
disable_operator_stats_collection()
def compare_accuracy(
dump_path,
another_dump_path,
output_filename,
loss_scale=1,
dump_all_tensors=False,
):
r"""
This is a precision comparison tool that can be used to compare log data of float16 and float32.
Args:
dump_path(str): The path of the running log, such as the log for execution using the fp32 type.
another_dump_path(str): the path of another running log ,such as the log for execution using the fp16 type.
output_filename(str): the excel file nmae of compare output.
loss_scale(float): the loss_scale during the training phase.
dump_all_tensors(bool, optional): dump all tensor, It is currently not support. Default is False.
Examples:
.. code-block:: python
import paddle
from paddle.fluid import core
try:
import xlsxwriter as xlw
except ImportError:
import subprocess
subprocess.check_call(
['python', '-m', 'pip', 'install', 'xlsxwriter==3.0.9']
)
import xlsxwriter as xlw
if core.is_compiled_with_cuda():
paddle.set_flags(
{"FLAGS_check_nan_inf": 1, "FLAGS_check_nan_inf_level": 3}
)
path = "workerlog_log_dir"
paddle.fluid.core.set_nan_inf_debug_path(path)
x = paddle.to_tensor(
[2, 3, 4, 0], dtype="float32"
)
y = paddle.to_tensor(
[1, 5, 2, 0], dtype="float32"
)
z1 = x + y
out_excel = "compary_accuracy_out_excel.csv"
paddle.amp.debugging.compare_accuracy(
path, path, out_excel, loss_scale=1, dump_all_tensors=False
)
"""
assert dump_all_tensors is False, "It is currently not supported."
paddle.amp.accuracy_compare.compare_accuracy(
dump_path,
another_dump_path,
output_filename,
loss_scale,
dump_all_tensors=False,
)
def enable_tensor_checker(checker_config):
"""
The enable_tensor_checker(checker_config) function enables model-level accuracy checking and is used in combination with disables_tensor_checker() to achieve model-level precision checking by checking the output Tensors of all operators within the specified range.
......
......@@ -16,3 +16,4 @@ autograd==1.4
librosa==0.8.1
parameterized
wandb>=0.13
xlsxwriter==3.0.9
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
from paddle.fluid import core
@unittest.skipIf(
not core.is_compiled_with_cuda(), "not support cpu TestCompareAccuracyApi"
)
class TestCompareAccuracyApi(unittest.TestCase):
def calc(self, path, dtype):
paddle.fluid.core.set_nan_inf_debug_path(path)
x = paddle.to_tensor(
[2000, 3000, 4, 0], place=core.CUDAPlace(0), dtype=dtype
)
y = paddle.to_tensor(
[100, 500, 2, 10000], place=core.CUDAPlace(0), dtype=dtype
)
# normal
z1 = x + y
# inf
z2 = x * y
def test(self):
paddle.set_flags(
{"FLAGS_check_nan_inf": 1, "FLAGS_check_nan_inf_level": 3}
)
fp32_path = "workerlog_fp32_log_dir"
fp16_path = "workerlog_fp16_log_dir"
self.calc(fp32_path, "float32")
self.calc(fp16_path, "float16")
out_excel = "compary_accuracy_out_excel.csv"
paddle.amp.debugging.compare_accuracy(
fp32_path,
fp16_path,
out_excel,
loss_scale=1,
dump_all_tensors=False,
)
def test2(self):
fp32_path = "workerlog_fp32_log_dir"
fp16_path = "workerlog_fp16_null_log_dir"
self.calc(fp32_path, "float32")
out_excel = "compary_accuracy_out_excel_2.csv"
paddle.amp.debugging.compare_accuracy(
fp32_path,
fp16_path,
out_excel,
loss_scale=1,
dump_all_tensors=False,
)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册