Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
48a5cccb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
48a5cccb
编写于
2月 15, 2019
作者:
Q
qingqing01
提交者:
GitHub
2月 15, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix debug mode in prior_box_op (#15702)
* Fix debug mode in prior_box_op * Refine code
上级
4c8feae4
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
36 addition
and
46 deletion
+36
-46
paddle/fluid/operators/detection/density_prior_box_op.h
paddle/fluid/operators/detection/density_prior_box_op.h
+6
-7
paddle/fluid/operators/detection/prior_box_op.h
paddle/fluid/operators/detection/prior_box_op.h
+30
-39
未找到文件。
paddle/fluid/operators/detection/density_prior_box_op.h
浏览文件 @
48a5cccb
...
@@ -72,7 +72,7 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -72,7 +72,7 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
#ifdef PADDLE_WITH_MKLML
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#pragma omp parallel for
#endif
#endif
for
(
in
t
i
=
0
;
i
<
fixed_ratios
.
size
();
i
++
)
{
for
(
size_
t
i
=
0
;
i
<
fixed_ratios
.
size
();
i
++
)
{
sqrt_fixed_ratios
.
push_back
(
sqrt
(
fixed_ratios
[
i
]));
sqrt_fixed_ratios
.
push_back
(
sqrt
(
fixed_ratios
[
i
]));
}
}
...
@@ -115,11 +115,10 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -115,11 +115,10 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
}
}
}
}
if
(
clip
)
{
if
(
clip
)
{
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
T
*
dt
=
boxes
->
data
<
T
>
();
ClipFunctor
<
T
>
clip_func
;
std
::
transform
(
dt
,
dt
+
boxes
->
numel
(),
dt
,
[](
T
v
)
->
T
{
trans
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
v
,
0.
),
1.
);
boxes
->
data
<
T
>
(),
boxes
->
data
<
T
>
()
+
boxes
->
numel
(),
});
boxes
->
data
<
T
>
(),
clip_func
);
}
}
framework
::
Tensor
var_t
;
framework
::
Tensor
var_t
;
var_t
.
mutable_data
<
T
>
(
var_t
.
mutable_data
<
T
>
(
...
@@ -141,7 +140,7 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -141,7 +140,7 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
#pragma omp parallel for collapse(2)
#pragma omp parallel for collapse(2)
#endif
#endif
for
(
int
i
=
0
;
i
<
box_num
;
++
i
)
{
for
(
int
i
=
0
;
i
<
box_num
;
++
i
)
{
for
(
in
t
j
=
0
;
j
<
variances
.
size
();
++
j
)
{
for
(
size_
t
j
=
0
;
j
<
variances
.
size
();
++
j
)
{
e_vars
(
i
,
j
)
=
variances
[
j
];
e_vars
(
i
,
j
)
=
variances
[
j
];
}
}
}
}
...
...
paddle/fluid/operators/detection/prior_box_op.h
浏览文件 @
48a5cccb
...
@@ -46,13 +46,6 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
...
@@ -46,13 +46,6 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
}
}
}
}
template
<
typename
T
>
struct
ClipFunctor
{
HOSTDEVICE
inline
T
operator
()(
T
in
)
const
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
in
,
0.
),
1.
);
}
};
template
<
typename
T
>
template
<
typename
T
>
class
PriorBoxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
PriorBoxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -101,31 +94,30 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -101,31 +94,30 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
e_boxes
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
boxes
);
T
*
b_t
=
boxes
->
data
<
T
>
(
);
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
T
center_x
=
(
w
+
offset
)
*
step_width
;
T
center_x
=
(
w
+
offset
)
*
step_width
;
T
center_y
=
(
h
+
offset
)
*
step_height
;
T
center_y
=
(
h
+
offset
)
*
step_height
;
T
box_width
,
box_height
;
T
box_width
,
box_height
;
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
auto
min_size
=
min_sizes
[
s
];
auto
min_size
=
min_sizes
[
s
];
if
(
min_max_aspect_ratios_order
)
{
if
(
min_max_aspect_ratios_order
)
{
box_width
=
box_height
=
min_size
/
2.
;
box_width
=
box_height
=
min_size
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
+=
4
;
if
(
max_sizes
.
size
()
>
0
)
{
if
(
max_sizes
.
size
()
>
0
)
{
auto
max_size
=
max_sizes
[
s
];
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
+=
4
;
}
}
// priors with different aspect ratios
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
aspect_ratios
.
size
();
++
r
)
{
for
(
size_t
r
=
0
;
r
<
aspect_ratios
.
size
();
++
r
)
{
...
@@ -135,11 +127,11 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -135,11 +127,11 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
}
}
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
+=
4
;
}
}
}
else
{
}
else
{
// priors with different aspect ratios
// priors with different aspect ratios
...
@@ -147,21 +139,21 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -147,21 +139,21 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
float
ar
=
aspect_ratios
[
r
];
float
ar
=
aspect_ratios
[
r
];
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
+=
4
;
}
}
if
(
max_sizes
.
size
()
>
0
)
{
if
(
max_sizes
.
size
()
>
0
)
{
auto
max_size
=
max_sizes
[
s
];
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
+=
4
;
}
}
}
}
}
}
...
@@ -169,11 +161,10 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -169,11 +161,10 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
}
}
if
(
clip
)
{
if
(
clip
)
{
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
T
*
dt
=
boxes
->
data
<
T
>
();
ClipFunctor
<
T
>
clip_func
;
std
::
transform
(
dt
,
dt
+
boxes
->
numel
(),
dt
,
[](
T
v
)
->
T
{
trans
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
v
,
0.
),
1.
);
boxes
->
data
<
T
>
(),
boxes
->
data
<
T
>
()
+
boxes
->
numel
(),
});
boxes
->
data
<
T
>
(),
clip_func
);
}
}
framework
::
Tensor
var_t
;
framework
::
Tensor
var_t
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录