Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
485de16a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
485de16a
编写于
11月 29, 2022
作者:
傅
傅剑寒
提交者:
GitHub
11月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
(fluid清理)move prelu from fluid.layers to static.nn (#47894)
上级
9ae6c854
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
120 addition
and
138 deletion
+120
-138
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-107
python/paddle/fluid/tests/unittests/ir/inference/test_trt_activation_pass.py
.../tests/unittests/ir/inference/test_trt_activation_pass.py
+8
-8
python/paddle/fluid/tests/unittests/test_imperative_load_static_param.py
...luid/tests/unittests/test_imperative_load_static_param.py
+2
-2
python/paddle/fluid/tests/unittests/test_inplace_addto_strategy.py
...ddle/fluid/tests/unittests/test_inplace_addto_strategy.py
+1
-1
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+1
-18
python/paddle/static/nn/__init__.py
python/paddle/static/nn/__init__.py
+2
-2
python/paddle/static/nn/common.py
python/paddle/static/nn/common.py
+106
-0
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
485de16a
...
...
@@ -98,7 +98,6 @@ __all__ = [
'resize_nearest'
,
'relu'
,
'log'
,
'prelu'
,
'unique'
,
'unique_with_counts'
,
'elementwise_add'
,
...
...
@@ -5333,112 +5332,6 @@ def relu(x, name=None):
return
out
@
deprecated
(
since
=
"2.0.0"
,
update_to
=
"paddle.static.nn.prelu"
)
def
prelu
(
x
,
mode
,
param_attr
=
None
,
data_format
=
"NCHW"
,
name
=
None
):
r
"""
prelu activation.
.. math::
prelu(x) = max(0, x) + \alpha * min(0, x)
There are three modes for the activation:
.. code-block:: text
all: All elements share same alpha.
channel: Elements in same channel share same alpha.
element: All elements do not share alpha. Each element has its own alpha.
Parameters:
x (Tensor): The input Tensor or LoDTensor with data type float32.
mode (str): The mode for weight sharing.
param_attr (ParamAttr|None, optional): The parameter attribute for the learnable
weight (alpha), it can be create by ParamAttr. None by default.
For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
data_format(str, optional): Data format that specifies the layout of input.
It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, A tensor with the same shape and data type as x.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-1., 2., 3.])
param = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.2))
out = paddle.static.nn.prelu(x, 'all', param)
# [-0.2, 2., 3.]
"""
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'prelu'
)
helper
=
LayerHelper
(
'prelu'
,
**
locals
())
if
mode
not
in
[
'all'
,
'channel'
,
'element'
]:
raise
ValueError
(
'mode should be one of all, channel, element.'
)
alpha_shape
=
[
1
]
if
mode
==
'channel'
:
true_data_format
=
[
'NC'
,
'NCL'
,
'NCHW'
,
'NCDHW'
,
'NLC'
,
'NHWC'
,
'NDHWC'
,
]
if
data_format
not
in
true_data_format
:
raise
ValueError
(
"data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
"'NLC', 'NHWC', 'NDHWC' but receive {}"
.
format
(
data_format
)
)
data_format
=
'NCHW'
if
data_format
[
1
]
==
'C'
else
'NHWC'
assert
(
len
(
x
.
shape
)
>=
2
),
"The size of input shape should be equal or larger than 2 in prelu() when mode is 'channel'"
# NOTE(zhiqiu): The alpha_shape should be [1, channel] + [1] * len(x.shape[2:]).
# To be consistent with Prelu, it is simplified.
# NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
# NOTE(GuoxiaWang): support NHWC data format
if
data_format
==
'NHWC'
:
alpha_shape
=
[
1
,
1
,
1
,
x
.
shape
[
-
1
]]
else
:
alpha_shape
=
[
1
,
x
.
shape
[
1
],
1
,
1
]
elif
mode
==
'element'
:
assert
(
len
(
x
.
shape
)
>=
1
),
"The size of input shape should be equal or larger than 1 in prelu() when mode is 'element'"
alpha_shape
=
[
1
]
+
list
(
x
.
shape
)[
1
:]
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
alpha
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
alpha_shape
,
dtype
=
dtype
,
is_bias
=
False
,
default_initializer
=
Constant
(
0.25
),
)
if
in_dygraph_mode
():
return
_C_ops
.
prelu
(
x
,
alpha
,
data_format
,
mode
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"prelu"
,
inputs
=
{
"X"
:
x
,
'Alpha'
:
alpha
},
attrs
=
{
"mode"
:
mode
,
"data_format"
:
data_format
},
outputs
=
{
"Out"
:
out
},
)
return
out
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_activation_pass.py
浏览文件 @
485de16a
...
...
@@ -204,17 +204,17 @@ class TensorRTSubgraphPassDynamicMishFp16SerializeTest(
class
TensorRTSubgraphPassPreluAllTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'all'
)
return
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
'all'
)
class
TensorRTSubgraphPassPreluChannelTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'channel'
)
return
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
'channel'
)
class
TensorRTSubgraphPassPreluElementTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'element'
)
return
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
'element'
)
class
TensorRTSubgraphPassPreluDynamicTest
(
TensorRTSubgraphPassActivationTest
):
...
...
@@ -233,7 +233,7 @@ class TensorRTSubgraphPassPreluDynamicTest(TensorRTSubgraphPassActivationTest):
)
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'all'
)
return
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
'all'
)
class
TensorRTSubgraphPassPreluFp16Test
(
TensorRTSubgraphPassActivationTest
):
...
...
@@ -244,7 +244,7 @@ class TensorRTSubgraphPassPreluFp16Test(TensorRTSubgraphPassActivationTest):
)
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'all'
)
return
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
'all'
)
class
TensorRTSubgraphPassPreluFp16SerializeTest
(
...
...
@@ -257,7 +257,7 @@ class TensorRTSubgraphPassPreluFp16SerializeTest(
)
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'all'
)
return
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
'all'
)
class
TensorRTSubgraphPassPreluFp16DynamicTest
(
...
...
@@ -278,7 +278,7 @@ class TensorRTSubgraphPassPreluFp16DynamicTest(
)
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'all'
)
return
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
'all'
)
class
TensorRTSubgraphPassPreluFp16DynamicSerializeTest
(
...
...
@@ -299,7 +299,7 @@ class TensorRTSubgraphPassPreluFp16DynamicSerializeTest(
)
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'all'
)
return
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
'all'
)
class
TensorRTSubgraphPassGeluTest
(
TensorRTSubgraphPassActivationTest
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_load_static_param.py
浏览文件 @
485de16a
...
...
@@ -82,8 +82,8 @@ class TestDygraphLoadStatic(unittest.TestCase):
prelu_in
=
fluid
.
data
(
name
=
"prelu_in"
,
shape
=
[
None
,
5
,
10
,
10
],
dtype
=
'float32'
)
prelu_out_1
=
fluid
.
layers
.
prelu
(
prelu_in
,
"channel"
)
prelu_out_2
=
fluid
.
layers
.
prelu
(
prelu_in
,
"channel"
)
prelu_out_1
=
paddle
.
static
.
nn
.
prelu
(
prelu_in
,
"channel"
)
prelu_out_2
=
paddle
.
static
.
nn
.
prelu
(
prelu_in
,
"channel"
)
bilinear_tensor_pro_x
=
fluid
.
data
(
"t1"
,
shape
=
[
None
,
5
],
dtype
=
"float32"
...
...
python/paddle/fluid/tests/unittests/test_inplace_addto_strategy.py
浏览文件 @
485de16a
...
...
@@ -60,7 +60,7 @@ def create_program(data_format="NCHW"):
x
.
stop_gradient
=
False
if
data_format
==
"NHWC"
:
x
=
paddle
.
transpose
(
x
,
[
0
,
2
,
3
,
1
])
x
=
fluid
.
layers
.
prelu
(
x
,
mode
=
"channel"
)
x
=
paddle
.
static
.
nn
.
prelu
(
x
,
mode
=
"channel"
)
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
3
,
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
485de16a
...
...
@@ -1064,7 +1064,7 @@ class TestLayer(LayerTest):
dtype
=
"float32"
,
append_batch_size
=
False
,
)
out
=
layers
.
prelu
(
out
=
paddle
.
static
.
nn
.
prelu
(
data_t
,
mode
,
param_attr
=
ParamAttr
(
initializer
=
Constant
(
1.0
))
)
static_rlt
=
self
.
get_static_graph_result
(
...
...
@@ -2916,7 +2916,6 @@ class TestBook(LayerTest):
{
"make_gaussian_random"
,
"make_kldiv_loss"
,
"make_prelu"
,
"make_sampling_id"
,
"make_uniform_random_batch_size_like"
,
}
...
...
@@ -3482,22 +3481,6 @@ class TestBook(LayerTest):
out
=
tmp_pad
(
input
)
return
out
def
make_prelu
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()
):
input
=
self
.
_get_data
(
name
=
"input"
,
shape
=
[
5
,
200
,
100
,
100
],
dtype
=
"float32"
)
mode
=
'channel'
out
=
layers
.
prelu
(
input
,
mode
,
param_attr
=
ParamAttr
(
initializer
=
Constant
(
1.0
)),
name
=
'prelu'
,
)
return
out
def
make_mish
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()
...
...
python/paddle/static/nn/__init__.py
浏览文件 @
485de16a
...
...
@@ -31,7 +31,7 @@ from ...fluid.layers import crf_decoding # noqa: F401
from
...fluid.layers
import
layer_norm
# noqa: F401
from
...fluid.layers
import
multi_box_head
# noqa: F401
from
.loss
import
nce
# noqa: F401
from
.
..fluid.layers
import
prelu
# noqa: F401
from
.
common
import
prelu
# noqa: F401
from
...fluid.layers
import
py_func
# noqa: F401
from
...fluid.layers
import
row_conv
# noqa: F401
from
...fluid.layers
import
spectral_norm
# noqa: F401
...
...
@@ -78,7 +78,6 @@ __all__ = [ # noqa
'layer_norm'
,
'multi_box_head'
,
'nce'
,
'prelu'
,
'py_func'
,
'row_conv'
,
'spectral_norm'
,
...
...
@@ -101,4 +100,5 @@ __all__ = [ # noqa
'sequence_enumerate'
,
'sequence_reverse'
,
'StaticRNN'
,
'prelu'
,
]
python/paddle/static/nn/common.py
浏览文件 @
485de16a
...
...
@@ -2083,3 +2083,109 @@ def deform_conv2d(
modulated
=
True
,
name
=
name
,
)
@
static_only
def
prelu
(
x
,
mode
,
param_attr
=
None
,
data_format
=
"NCHW"
,
name
=
None
):
r
"""
prelu activation.
.. math::
prelu(x) = max(0, x) + \alpha * min(0, x)
There are three modes for the activation:
.. code-block:: text
all: All elements share same alpha.
channel: Elements in same channel share same alpha.
element: All elements do not share alpha. Each element has its own alpha.
Parameters:
x (Tensor): The input Tensor or LoDTensor with data type float32.
mode (str): The mode for weight sharing.
param_attr (ParamAttr|None, optional): The parameter attribute for the learnable \
weight (alpha), it can be create by ParamAttr. None by default. \
For detailed information, please refer to :ref:`api_paddle_ParamAttr`.
data_format(str, optional): Data format that specifies the layout of input.
It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
name (str, optional): Name for the operation (optional, default is None). \
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A tensor with the same shape and data type as x.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
x = paddle.static.data(name="x", shape=[None,5,10,10], dtype="float32")
mode = 'channel'
output = paddle.static.nn.prelu(
x,mode,param_attr=paddle.ParamAttr(name='alpha'))
"""
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'prelu'
)
helper
=
LayerHelper
(
'prelu'
,
**
locals
())
if
mode
not
in
[
'all'
,
'channel'
,
'element'
]:
raise
ValueError
(
'mode should be one of all, channel, element.'
)
alpha_shape
=
[
1
]
if
mode
==
'channel'
:
true_data_format
=
[
'NC'
,
'NCL'
,
'NCHW'
,
'NCDHW'
,
'NLC'
,
'NHWC'
,
'NDHWC'
,
]
if
data_format
not
in
true_data_format
:
raise
ValueError
(
"data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
"'NLC', 'NHWC', 'NDHWC' but receive {}"
.
format
(
data_format
)
)
data_format
=
'NCHW'
if
data_format
[
1
]
==
'C'
else
'NHWC'
assert
(
len
(
x
.
shape
)
>=
2
),
"The size of input shape should be equal or larger than 2 in prelu() when mode is 'channel'"
# NOTE(zhiqiu): The alpha_shape should be [1, channel] + [1] * len(x.shape[2:]).
# To be consistent with Prelu, it is simplified.
# NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
# NOTE(GuoxiaWang): support NHWC data format
if
data_format
==
'NHWC'
:
alpha_shape
=
[
1
,
1
,
1
,
x
.
shape
[
-
1
]]
else
:
alpha_shape
=
[
1
,
x
.
shape
[
1
],
1
,
1
]
elif
mode
==
'element'
:
assert
(
len
(
x
.
shape
)
>=
1
),
"The size of input shape should be equal or larger than 1 in prelu() when mode is 'element'"
alpha_shape
=
[
1
]
+
list
(
x
.
shape
)[
1
:]
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
alpha
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
alpha_shape
,
dtype
=
dtype
,
is_bias
=
False
,
default_initializer
=
paddle
.
nn
.
initializer
.
Constant
(
0.25
),
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"prelu"
,
inputs
=
{
"X"
:
x
,
'Alpha'
:
alpha
},
attrs
=
{
"mode"
:
mode
,
"data_format"
:
data_format
},
outputs
=
{
"Out"
:
out
},
)
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录