Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
483947c4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
483947c4
编写于
11月 06, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Update and Resolve conflicts
上级
4c9be1a9
f8a6bda8
变更
140
展开全部
显示空白变更内容
内联
并排
Showing
140 changed file
with
2966 addition
and
1408 deletion
+2966
-1408
paddle/framework/CMakeLists.txt
paddle/framework/CMakeLists.txt
+2
-1
paddle/framework/executor.cc
paddle/framework/executor.cc
+7
-1
paddle/framework/framework.proto
paddle/framework/framework.proto
+8
-0
paddle/framework/lod_rank_table.cc
paddle/framework/lod_rank_table.cc
+48
-0
paddle/framework/lod_rank_table.h
paddle/framework/lod_rank_table.h
+55
-0
paddle/framework/lod_tensor.cc
paddle/framework/lod_tensor.cc
+38
-0
paddle/framework/lod_tensor.h
paddle/framework/lod_tensor.h
+6
-0
paddle/framework/lod_tensor_array.h
paddle/framework/lod_tensor_array.h
+23
-0
paddle/framework/lod_tensor_test.cc
paddle/framework/lod_tensor_test.cc
+42
-0
paddle/framework/operator.h
paddle/framework/operator.h
+0
-2
paddle/framework/var_desc.cc
paddle/framework/var_desc.cc
+22
-4
paddle/framework/var_desc.h
paddle/framework/var_desc.h
+1
-0
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
+154
-0
paddle/gserver/layers/MKLDNNAddtoLayer.h
paddle/gserver/layers/MKLDNNAddtoLayer.h
+110
-0
paddle/gserver/layers/MKLDNNLayer.cpp
paddle/gserver/layers/MKLDNNLayer.cpp
+8
-6
paddle/gserver/layers/MKLDNNLayer.h
paddle/gserver/layers/MKLDNNLayer.h
+5
-2
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+3
-3
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+38
-5
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+2
-0
paddle/operators/accuracy_op.cc
paddle/operators/accuracy_op.cc
+13
-9
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+24
-24
paddle/operators/adadelta_op.cc
paddle/operators/adadelta_op.cc
+16
-18
paddle/operators/adagrad_op.cc
paddle/operators/adagrad_op.cc
+8
-4
paddle/operators/adam_op.cc
paddle/operators/adam_op.cc
+13
-16
paddle/operators/adamax_op.cc
paddle/operators/adamax_op.cc
+9
-13
paddle/operators/auc_op.cc
paddle/operators/auc_op.cc
+15
-16
paddle/operators/batch_norm_op.cc
paddle/operators/batch_norm_op.cc
+16
-9
paddle/operators/cast_op.cc
paddle/operators/cast_op.cc
+9
-5
paddle/operators/clip_op.cc
paddle/operators/clip_op.cc
+4
-1
paddle/operators/concat_op.cc
paddle/operators/concat_op.cc
+17
-13
paddle/operators/cond_op.cc
paddle/operators/cond_op.cc
+6
-5
paddle/operators/conv2d_op.cc
paddle/operators/conv2d_op.cc
+18
-14
paddle/operators/conv2d_transpose_op.cc
paddle/operators/conv2d_transpose_op.cc
+11
-7
paddle/operators/conv_cudnn_op.cc
paddle/operators/conv_cudnn_op.cc
+1
-1
paddle/operators/conv_shift_op.cc
paddle/operators/conv_shift_op.cc
+5
-6
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+7
-6
paddle/operators/crf_decoding_op.cc
paddle/operators/crf_decoding_op.cc
+136
-0
paddle/operators/crf_decoding_op.h
paddle/operators/crf_decoding_op.h
+127
-0
paddle/operators/crop_op.cc
paddle/operators/crop_op.cc
+22
-21
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+10
-8
paddle/operators/decayed_adagrad_op.cc
paddle/operators/decayed_adagrad_op.cc
+10
-3
paddle/operators/dropout_op.cc
paddle/operators/dropout_op.cc
+8
-6
paddle/operators/dynamic_recurrent_op.cc
paddle/operators/dynamic_recurrent_op.cc
+10
-4
paddle/operators/elementwise_add_op.cc
paddle/operators/elementwise_add_op.cc
+1
-1
paddle/operators/elementwise_div_op.cc
paddle/operators/elementwise_div_op.cc
+1
-1
paddle/operators/elementwise_mul_op.cc
paddle/operators/elementwise_mul_op.cc
+1
-1
paddle/operators/elementwise_op.h
paddle/operators/elementwise_op.h
+30
-25
paddle/operators/elementwise_sub_op.cc
paddle/operators/elementwise_sub_op.cc
+1
-1
paddle/operators/feed_op.cc
paddle/operators/feed_op.cc
+7
-2
paddle/operators/fetch_op.cc
paddle/operators/fetch_op.cc
+7
-2
paddle/operators/fill_constant_batch_size_like_op.cc
paddle/operators/fill_constant_batch_size_like_op.cc
+7
-2
paddle/operators/fill_constant_op.cc
paddle/operators/fill_constant_op.cc
+6
-1
paddle/operators/fill_zeros_like_op.cc
paddle/operators/fill_zeros_like_op.cc
+5
-3
paddle/operators/gather_op.cc
paddle/operators/gather_op.cc
+20
-3
paddle/operators/gaussian_random_op.cc
paddle/operators/gaussian_random_op.cc
+24
-10
paddle/operators/gru_unit_op.cc
paddle/operators/gru_unit_op.cc
+22
-17
paddle/operators/huber_loss_op.cc
paddle/operators/huber_loss_op.cc
+4
-2
paddle/operators/increment_op.cc
paddle/operators/increment_op.cc
+8
-4
paddle/operators/l1_norm_op.cc
paddle/operators/l1_norm_op.cc
+1
-1
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+45
-43
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+2
-2
paddle/operators/load_op.cc
paddle/operators/load_op.cc
+8
-4
paddle/operators/lod_rank_table_op.cc
paddle/operators/lod_rank_table_op.cc
+80
-0
paddle/operators/lookup_table_op.cc
paddle/operators/lookup_table_op.cc
+16
-10
paddle/operators/lrn_op.cc
paddle/operators/lrn_op.cc
+41
-43
paddle/operators/lstm_op.cc
paddle/operators/lstm_op.cc
+31
-34
paddle/operators/lstm_unit_op.cc
paddle/operators/lstm_unit_op.cc
+12
-7
paddle/operators/margin_rank_loss_op.cc
paddle/operators/margin_rank_loss_op.cc
+11
-10
paddle/operators/matmul_op.cc
paddle/operators/matmul_op.cc
+6
-2
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+5
-1
paddle/operators/minus_op.cc
paddle/operators/minus_op.cc
+5
-3
paddle/operators/modified_huber_loss_op.cc
paddle/operators/modified_huber_loss_op.cc
+20
-12
paddle/operators/momentum_op.cc
paddle/operators/momentum_op.cc
+15
-9
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+8
-3
paddle/operators/multiplex_op.cc
paddle/operators/multiplex_op.cc
+5
-3
paddle/operators/name_convention.md
paddle/operators/name_convention.md
+12
-8
paddle/operators/nccl_op.cc
paddle/operators/nccl_op.cc
+32
-13
paddle/operators/pad_op.cc
paddle/operators/pad_op.cc
+22
-19
paddle/operators/pool_op.cc
paddle/operators/pool_op.cc
+70
-57
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+75
-60
paddle/operators/precision_recall_op.cc
paddle/operators/precision_recall_op.cc
+31
-29
paddle/operators/prelu_op.cc
paddle/operators/prelu_op.cc
+13
-6
paddle/operators/proximal_adagrad_op.cc
paddle/operators/proximal_adagrad_op.cc
+10
-6
paddle/operators/proximal_gd_op.cc
paddle/operators/proximal_gd_op.cc
+9
-5
paddle/operators/rank_loss_op.cc
paddle/operators/rank_loss_op.cc
+14
-14
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+9
-7
paddle/operators/reduce_op.cc
paddle/operators/reduce_op.cc
+10
-7
paddle/operators/reshape_op.cc
paddle/operators/reshape_op.cc
+6
-3
paddle/operators/rmsprop_op.cc
paddle/operators/rmsprop_op.cc
+15
-14
paddle/operators/save_op.cc
paddle/operators/save_op.cc
+10
-5
paddle/operators/scale_op.cc
paddle/operators/scale_op.cc
+8
-5
paddle/operators/seq_expand_op.cc
paddle/operators/seq_expand_op.cc
+3
-1
paddle/operators/sequence_concat_op.cc
paddle/operators/sequence_concat_op.cc
+37
-33
paddle/operators/sequence_conv_op.cc
paddle/operators/sequence_conv_op.cc
+13
-11
paddle/operators/sequence_pool_op.cc
paddle/operators/sequence_pool_op.cc
+29
-26
paddle/operators/sequence_softmax_op.cc
paddle/operators/sequence_softmax_op.cc
+10
-6
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+8
-6
paddle/operators/sigmoid_cross_entropy_with_logits_op.cc
paddle/operators/sigmoid_cross_entropy_with_logits_op.cc
+11
-9
paddle/operators/sign_op.cc
paddle/operators/sign_op.cc
+3
-2
paddle/operators/smooth_l1_loss_op.cc
paddle/operators/smooth_l1_loss_op.cc
+9
-6
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+10
-7
paddle/operators/softmax_with_cross_entropy_op.cc
paddle/operators/softmax_with_cross_entropy_op.cc
+16
-14
paddle/operators/split_op.cc
paddle/operators/split_op.cc
+24
-16
paddle/operators/squared_l2_distance_op.cc
paddle/operators/squared_l2_distance_op.cc
+16
-13
paddle/operators/squared_l2_norm_op.cc
paddle/operators/squared_l2_norm_op.cc
+2
-2
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+7
-5
paddle/operators/top_k_op.cc
paddle/operators/top_k_op.cc
+12
-12
paddle/operators/transpose_op.cc
paddle/operators/transpose_op.cc
+7
-4
paddle/operators/uniform_random_op.cc
paddle/operators/uniform_random_op.cc
+21
-9
paddle/pybind/protobuf.cc
paddle/pybind/protobuf.cc
+3
-1
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+34
-0
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+1
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+12
-1
python/paddle/v2/framework/backward.py
python/paddle/v2/framework/backward.py
+14
-2
python/paddle/v2/framework/framework.py
python/paddle/v2/framework/framework.py
+8
-2
python/paddle/v2/framework/io.py
python/paddle/v2/framework/io.py
+35
-29
python/paddle/v2/framework/layer_helper.py
python/paddle/v2/framework/layer_helper.py
+19
-16
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+70
-50
python/paddle/v2/framework/net_drawer.py
python/paddle/v2/framework/net_drawer.py
+3
-3
python/paddle/v2/framework/nets.py
python/paddle/v2/framework/nets.py
+22
-22
python/paddle/v2/framework/optimizer.py
python/paddle/v2/framework/optimizer.py
+7
-5
python/paddle/v2/framework/tests/test_crf_decoding_op.py
python/paddle/v2/framework/tests/test_crf_decoding_op.py
+146
-0
python/paddle/v2/framework/tests/test_executor_and_mul.py
python/paddle/v2/framework/tests/test_executor_and_mul.py
+2
-2
python/paddle/v2/framework/tests/test_fit_a_line.py
python/paddle/v2/framework/tests/test_fit_a_line.py
+20
-16
python/paddle/v2/framework/tests/test_image_classification_layer.py
...dle/v2/framework/tests/test_image_classification_layer.py
+35
-31
python/paddle/v2/framework/tests/test_image_classification_train.py
...dle/v2/framework/tests/test_image_classification_train.py
+85
-80
python/paddle/v2/framework/tests/test_inference_model_io.py
python/paddle/v2/framework/tests/test_inference_model_io.py
+10
-10
python/paddle/v2/framework/tests/test_layers.py
python/paddle/v2/framework/tests/test_layers.py
+53
-36
python/paddle/v2/framework/tests/test_lod_rank_table.py
python/paddle/v2/framework/tests/test_lod_rank_table.py
+29
-0
python/paddle/v2/framework/tests/test_lod_tensor_array.py
python/paddle/v2/framework/tests/test_lod_tensor_array.py
+38
-0
python/paddle/v2/framework/tests/test_operator_desc.py
python/paddle/v2/framework/tests/test_operator_desc.py
+2
-2
python/paddle/v2/framework/tests/test_parameter.py
python/paddle/v2/framework/tests/test_parameter.py
+2
-2
python/paddle/v2/framework/tests/test_program.py
python/paddle/v2/framework/tests/test_program.py
+9
-9
python/paddle/v2/framework/tests/test_recognize_digits_conv.py
...n/paddle/v2/framework/tests/test_recognize_digits_conv.py
+25
-19
python/paddle/v2/framework/tests/test_recognize_digits_mlp.py
...on/paddle/v2/framework/tests/test_recognize_digits_mlp.py
+28
-19
python/paddle/v2/framework/tests/test_recommender_system.py
python/paddle/v2/framework/tests/test_recommender_system.py
+66
-64
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+23
-14
python/paddle/v2/framework/tests/test_understand_sentiment_conv.py
...ddle/v2/framework/tests/test_understand_sentiment_conv.py
+3
-3
python/paddle/v2/framework/tests/test_variable.py
python/paddle/v2/framework/tests/test_variable.py
+2
-2
python/paddle/v2/framework/tests/test_word2vec.py
python/paddle/v2/framework/tests/test_word2vec.py
+34
-33
未找到文件。
paddle/framework/CMakeLists.txt
浏览文件 @
483947c4
...
@@ -45,8 +45,9 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
...
@@ -45,8 +45,9 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
cc_library
(
backward SRCS backward.cc DEPS net_op
)
cc_library
(
backward SRCS backward.cc DEPS net_op
)
cc_test
(
backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context fill_constant_op
)
cc_test
(
backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context fill_constant_op
)
cc_library
(
lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog
lod_rank_table
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/framework/executor.cc
浏览文件 @
483947c4
...
@@ -21,7 +21,9 @@ limitations under the License. */
...
@@ -21,7 +21,9 @@ limitations under the License. */
#include <vector>
#include <vector>
#include "paddle/framework/feed_fetch_type.h"
#include "paddle/framework/feed_fetch_type.h"
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/scope.h"
...
@@ -70,10 +72,14 @@ static void CreateTensor(Variable* var, VarDesc::VarType var_type) {
...
@@ -70,10 +72,14 @@ static void CreateTensor(Variable* var, VarDesc::VarType var_type) {
var
->
GetMutable
<
FeedFetchList
>
();
var
->
GetMutable
<
FeedFetchList
>
();
}
else
if
(
var_type
==
VarDesc
::
STEP_SCOPES
)
{
}
else
if
(
var_type
==
VarDesc
::
STEP_SCOPES
)
{
var
->
GetMutable
<
std
::
vector
<
framework
::
Scope
>>
();
var
->
GetMutable
<
std
::
vector
<
framework
::
Scope
>>
();
}
else
if
(
var_type
==
VarDesc
::
LOD_RANK_TABLE
)
{
var
->
GetMutable
<
LoDRankTable
>
();
}
else
if
(
var_type
==
VarDesc
::
LOD_TENSOR_ARRAY
)
{
var
->
GetMutable
<
LoDTensorArray
>
();
}
else
{
}
else
{
PADDLE_THROW
(
PADDLE_THROW
(
"Variable type %d is not in "
"Variable type %d is not in "
"[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST]"
,
"[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST
, LOD_RANK_TABLE
]"
,
var_type
);
var_type
);
}
}
}
}
...
...
paddle/framework/framework.proto
浏览文件 @
483947c4
...
@@ -109,6 +109,11 @@ message LoDTensorDesc {
...
@@ -109,6 +109,11 @@ message LoDTensorDesc {
optional
int32
lod_level
=
2
[
default
=
0
];
optional
int32
lod_level
=
2
[
default
=
0
];
}
}
message
LoDTensorArrayDesc
{
required
TensorDesc
tensor
=
1
;
optional
int32
lod_level
=
2
[
default
=
0
];
}
message
VarDesc
{
message
VarDesc
{
enum
VarType
{
enum
VarType
{
LOD_TENSOR
=
1
;
LOD_TENSOR
=
1
;
...
@@ -116,11 +121,14 @@ message VarDesc {
...
@@ -116,11 +121,14 @@ message VarDesc {
FEED_MINIBATCH
=
3
;
FEED_MINIBATCH
=
3
;
FETCH_LIST
=
4
;
FETCH_LIST
=
4
;
STEP_SCOPES
=
5
;
STEP_SCOPES
=
5
;
LOD_RANK_TABLE
=
6
;
LOD_TENSOR_ARRAY
=
7
;
}
}
required
string
name
=
1
;
required
string
name
=
1
;
required
VarType
type
=
2
;
required
VarType
type
=
2
;
optional
LoDTensorDesc
lod_tensor
=
3
;
optional
LoDTensorDesc
lod_tensor
=
3
;
optional
TensorDesc
selected_rows
=
4
;
optional
TensorDesc
selected_rows
=
4
;
optional
LoDTensorArrayDesc
tensor_array
=
6
;
optional
bool
persistable
=
5
[
default
=
false
];
optional
bool
persistable
=
5
[
default
=
false
];
}
}
...
...
paddle/framework/lod_rank_table.cc
0 → 100644
浏览文件 @
483947c4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
namespace
paddle
{
namespace
framework
{
void
LoDRankTable
::
Reset
(
const
LoD
&
lod
,
size_t
level
)
{
this
->
coarse_lod_
.
clear
();
this
->
items_
.
clear
();
PADDLE_ENFORCE
(
level
<
lod
.
size
(),
"Cannot rank lod since the level %d is less than lod size %d"
,
level
,
lod
.
size
());
coarse_lod_
.
reserve
(
level
);
for
(
size_t
i
=
0
;
i
<
level
;
++
i
)
{
coarse_lod_
.
push_back
(
lod
[
i
]);
}
auto
&
vec
=
lod
[
level
];
for
(
size_t
i
=
0
;
i
<
vec
.
size
()
-
1
;
++
i
)
{
TableItem
item
;
item
.
index
=
i
;
item
.
length
=
vec
[
i
+
1
]
-
vec
[
i
];
items_
.
emplace_back
(
item
);
}
// NOTE(yuyang18):
//
// The time complexity of stable_sort is O(N*log(N)) if additional memory is
// available. It is easy to debug and unit test when using `stable_sort`
// instead of `sort`. Also, the items of a rank table will not be too large.
std
::
stable_sort
(
items_
.
begin
(),
items_
.
end
(),
[](
const
TableItem
&
a
,
const
TableItem
&
b
)
{
return
a
.
length
>
b
.
length
;
});
}
}
// namespace framework
}
// namespace paddle
paddle/framework/lod_rank_table.h
0 → 100644
浏览文件 @
483947c4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/lod_tensor.h"
namespace
paddle
{
namespace
framework
{
// LoD Rank Table stores the `level` of `lod` which is ordered by sequence
// length in descending order. It is useful when implement dynamic RNN and is
// shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice
// output operators.
//
// The table item contains two element. The length of sequence and the index of
// sequence in that level.
//
// LoDRankTable also stores the coarse_lod, which is the lod information whose
// level is less than input level, in order to restore the output LoD
// information.
class
LoDRankTable
{
public:
struct
TableItem
{
size_t
index
;
size_t
length
;
};
LoDRankTable
()
{}
void
Reset
(
const
LoD
&
lod
,
size_t
level
);
const
std
::
vector
<
TableItem
>&
items
()
const
{
return
this
->
items_
;
}
const
LoD
&
coarse_lod
()
const
{
return
this
->
coarse_lod_
;
}
size_t
level
()
const
{
return
coarse_lod_
.
size
();
}
private:
LoD
coarse_lod_
;
std
::
vector
<
TableItem
>
items_
;
};
}
// namespace framework
}
// namespace paddle
paddle/framework/lod_tensor.cc
浏览文件 @
483947c4
...
@@ -135,5 +135,43 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
...
@@ -135,5 +135,43 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
PADDLE_ENFORCE_LT
(
begin
,
end
,
"Cannot shrink, the result tensor is empty."
);
PADDLE_ENFORCE_LT
(
begin
,
end
,
"Cannot shrink, the result tensor is empty."
);
ShareDataWith
(
Slice
(
begin
,
end
));
ShareDataWith
(
Slice
(
begin
,
end
));
}
}
void
GetFineGrainedLoDLength
(
const
LoD
&
lod
,
size_t
start_idx
,
size_t
end_idx
,
std
::
vector
<
std
::
vector
<
size_t
>>*
lod_length
,
size_t
*
start_offset
)
{
lod_length
->
clear
();
PADDLE_ENFORCE
(
start_idx
<
lod
.
size
()
-
1
,
"start_idx should be >= 0 and < lod.size() - 1."
);
PADDLE_ENFORCE
(
end_idx
<
lod
.
size
(),
"end_idx should be >= 0 and < lod.size()."
);
PADDLE_ENFORCE_LE
(
start_idx
,
end_idx
,
"start_idx should be less than end_idx."
);
for
(
size_t
level_idx
=
0
;
level_idx
<
lod
.
size
();
++
level_idx
)
{
std
::
vector
<
size_t
>
level_lens
;
for
(
size_t
i
=
start_idx
;
i
<
end_idx
;
++
i
)
{
level_lens
.
push_back
(
lod
[
level_idx
][
i
+
1
]
-
lod
[
level_idx
][
i
]);
}
lod_length
->
emplace_back
(
level_lens
);
start_idx
=
lod
[
level_idx
][
start_idx
];
end_idx
=
lod
[
level_idx
][
end_idx
];
}
*
start_offset
=
start_idx
;
}
void
AppendLoD
(
LoD
*
lod
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
lod_length
)
{
PADDLE_ENFORCE_EQ
(
lod
->
size
(),
lod_length
.
size
(),
"The lod_length should has the same size with the appended lod."
);
for
(
size_t
i
=
0
;
i
<
lod
->
size
();
++
i
)
{
auto
&
level
=
(
*
lod
)[
i
];
if
(
level
.
empty
())
{
level
.
push_back
(
0
);
}
for
(
size_t
len
:
lod_length
[
i
])
{
level
.
push_back
(
level
.
back
()
+
len
);
}
}
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/framework/lod_tensor.h
浏览文件 @
483947c4
...
@@ -181,5 +181,11 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
...
@@ -181,5 +181,11 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
return
tensor
;
return
tensor
;
}
}
void
GetFineGrainedLoDLength
(
const
LoD
&
lod
,
size_t
start_idx
,
size_t
end_idx
,
std
::
vector
<
std
::
vector
<
size_t
>>*
lod_length
,
size_t
*
start_offset
);
void
AppendLoD
(
LoD
*
lod
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
lod_length
);
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/framework/lod_tensor_array.h
0 → 100644
浏览文件 @
483947c4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/framework/lod_tensor.h"
namespace
paddle
{
namespace
framework
{
using
LoDTensorArray
=
std
::
vector
<
LoDTensor
>
;
}
}
// namespace paddle
paddle/framework/lod_tensor_test.cc
浏览文件 @
483947c4
...
@@ -144,5 +144,47 @@ TEST(LodExpand, test) {
...
@@ -144,5 +144,47 @@ TEST(LodExpand, test) {
}
}
}
}
TEST
(
LoD
,
GetFineGrainedLoDLength
)
{
LoD
lod
;
lod
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
,
5
});
lod
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
1
,
6
,
8
,
10
,
11
});
lod
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
5
,
7
,
10
,
12
,
15
,
17
,
20
,
24
,
26
,
29
});
std
::
vector
<
std
::
vector
<
size_t
>>
lod_length
;
size_t
start_offset
;
paddle
::
framework
::
GetFineGrainedLoDLength
(
lod
,
1
,
2
,
&
lod_length
,
&
start_offset
);
std
::
vector
<
std
::
vector
<
size_t
>>
expected
;
expected
.
push_back
(
std
::
vector
<
size_t
>
{
2
});
expected
.
push_back
(
std
::
vector
<
size_t
>
{
2
,
2
});
expected
.
push_back
(
std
::
vector
<
size_t
>
{
2
,
3
,
4
,
2
});
EXPECT_EQ
(
lod_length
,
expected
);
EXPECT_EQ
(
start_offset
,
15UL
);
}
TEST
(
LoD
,
AppendLoD
)
{
std
::
vector
<
std
::
vector
<
size_t
>>
lod_lens
;
lod_lens
.
push_back
(
std
::
vector
<
size_t
>
{
2
});
lod_lens
.
push_back
(
std
::
vector
<
size_t
>
{
2
,
2
});
lod_lens
.
push_back
(
std
::
vector
<
size_t
>
{
2
,
3
,
4
,
2
});
LoD
origin
;
origin
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
});
origin
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
1
,
6
});
origin
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
5
,
7
,
10
,
12
,
15
});
paddle
::
framework
::
AppendLoD
(
&
origin
,
lod_lens
);
LoD
expected
;
expected
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
});
expected
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
1
,
6
,
8
,
10
});
expected
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
5
,
7
,
10
,
12
,
15
,
17
,
20
,
24
,
26
});
EXPECT_EQ
(
origin
,
expected
);
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/framework/operator.h
浏览文件 @
483947c4
...
@@ -408,7 +408,6 @@ class OperatorWithKernel : public OperatorBase {
...
@@ -408,7 +408,6 @@ class OperatorWithKernel : public OperatorBase {
// indicate kernel DataType by input data. Defaultly all input data must be
// indicate kernel DataType by input data. Defaultly all input data must be
// same.
// same.
virtual
DataType
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
{
virtual
DataType
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
{
VLOG
(
3
)
<<
"Default IndicateDataType "
<<
this
->
Type
();
auto
&
scope
=
ctx
.
scope
();
auto
&
scope
=
ctx
.
scope
();
int
data_type
=
-
1
;
int
data_type
=
-
1
;
for
(
auto
&
input
:
this
->
inputs_
)
{
for
(
auto
&
input
:
this
->
inputs_
)
{
...
@@ -425,7 +424,6 @@ class OperatorWithKernel : public OperatorBase {
...
@@ -425,7 +424,6 @@ class OperatorWithKernel : public OperatorBase {
}
}
if
(
t
!=
nullptr
)
{
if
(
t
!=
nullptr
)
{
int
tmp
=
static_cast
<
int
>
(
ToDataType
(
t
->
type
()));
int
tmp
=
static_cast
<
int
>
(
ToDataType
(
t
->
type
()));
VLOG
(
3
)
<<
"Input "
<<
ipt_name
<<
" with data_type "
<<
tmp
;
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
"DataType of Paddle Op %s must be the same."
,
"DataType of Paddle Op %s must be the same."
,
Type
());
Type
());
...
...
paddle/framework/var_desc.cc
浏览文件 @
483947c4
...
@@ -37,13 +37,27 @@ std::vector<int64_t> VarDescBind::Shape() const {
...
@@ -37,13 +37,27 @@ std::vector<int64_t> VarDescBind::Shape() const {
DataType
VarDescBind
::
GetDataType
()
const
{
return
tensor_desc
().
data_type
();
}
DataType
VarDescBind
::
GetDataType
()
const
{
return
tensor_desc
().
data_type
();
}
void
VarDescBind
::
SetLoDLevel
(
int32_t
lod_level
)
{
void
VarDescBind
::
SetLoDLevel
(
int32_t
lod_level
)
{
PADDLE_ENFORCE
(
desc_
.
type
()
==
VarDesc
::
LOD_TENSOR
);
switch
(
desc_
.
type
())
{
case
VarDesc
::
LOD_TENSOR
:
desc_
.
mutable_lod_tensor
()
->
set_lod_level
(
lod_level
);
desc_
.
mutable_lod_tensor
()
->
set_lod_level
(
lod_level
);
break
;
case
VarDesc
::
LOD_TENSOR_ARRAY
:
desc_
.
mutable_tensor_array
()
->
set_lod_level
(
lod_level
);
break
;
default:
PADDLE_THROW
(
"Tensor type=%d does not support LoDLevel"
,
desc_
.
type
());
}
}
}
int32_t
VarDescBind
::
GetLodLevel
()
const
{
int32_t
VarDescBind
::
GetLodLevel
()
const
{
PADDLE_ENFORCE
(
desc_
.
type
()
==
VarDesc
::
LOD_TENSOR
);
switch
(
desc_
.
type
())
{
case
VarDesc
::
LOD_TENSOR
:
return
desc_
.
lod_tensor
().
lod_level
();
return
desc_
.
lod_tensor
().
lod_level
();
case
VarDesc
::
LOD_TENSOR_ARRAY
:
return
desc_
.
tensor_array
().
lod_level
();
default:
PADDLE_THROW
(
"Tensor type=%d does not support LoDLevel"
,
desc_
.
type
());
}
}
}
const
TensorDesc
&
VarDescBind
::
tensor_desc
()
const
{
const
TensorDesc
&
VarDescBind
::
tensor_desc
()
const
{
...
@@ -53,6 +67,8 @@ const TensorDesc &VarDescBind::tensor_desc() const {
...
@@ -53,6 +67,8 @@ const TensorDesc &VarDescBind::tensor_desc() const {
return
desc_
.
selected_rows
();
return
desc_
.
selected_rows
();
case
VarDesc
::
LOD_TENSOR
:
case
VarDesc
::
LOD_TENSOR
:
return
desc_
.
lod_tensor
().
tensor
();
return
desc_
.
lod_tensor
().
tensor
();
case
VarDesc
::
LOD_TENSOR_ARRAY
:
return
desc_
.
tensor_array
().
tensor
();
default:
default:
PADDLE_THROW
(
"Unexpected branch."
);
PADDLE_THROW
(
"Unexpected branch."
);
}
}
...
@@ -66,6 +82,8 @@ TensorDesc *VarDescBind::mutable_tensor_desc() {
...
@@ -66,6 +82,8 @@ TensorDesc *VarDescBind::mutable_tensor_desc() {
return
desc_
.
mutable_selected_rows
();
return
desc_
.
mutable_selected_rows
();
case
VarDesc
::
LOD_TENSOR
:
case
VarDesc
::
LOD_TENSOR
:
return
desc_
.
mutable_lod_tensor
()
->
mutable_tensor
();
return
desc_
.
mutable_lod_tensor
()
->
mutable_tensor
();
case
VarDesc
::
LOD_TENSOR_ARRAY
:
return
desc_
.
mutable_tensor_array
()
->
mutable_tensor
();
default:
default:
PADDLE_THROW
(
"Unexpected branch."
);
PADDLE_THROW
(
"Unexpected branch."
);
}
}
...
...
paddle/framework/var_desc.h
浏览文件 @
483947c4
...
@@ -15,6 +15,7 @@ limitations under the License. */
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#pragma once
#include <vector>
#include <vector>
#include "glog/logging.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/framework.pb.h"
namespace
paddle
{
namespace
paddle
{
...
...
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
0 → 100644
浏览文件 @
483947c4
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNAddtoLayer.h"
using
namespace
mkldnn
;
// NOLINT
namespace
paddle
{
REGISTER_LAYER
(
mkldnn_addto
,
MKLDNNAddtoLayer
);
bool
MKLDNNAddtoLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
MKLDNNLayer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
layerSize_
=
getSize
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
CHECK_EQ
(
layerSize_
,
inputLayers_
[
i
]
->
getSize
())
<<
"input size must equal"
;
}
if
(
biasParameter_
.
get
()
!=
NULL
)
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
1
,
layerSize_
,
biasParameter_
,
0
));
}
return
true
;
}
void
MKLDNNAddtoLayer
::
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
{
CHECK_EQ
(
layerSize_
,
getSize
())
<<
"this layer size can not be changed"
;
reshapeInput
(
bs
,
ih
,
iw
);
ic
=
inputLayers_
[
0
]
->
getSize
()
/
ih
/
iw
;
CHECK_EQ
((
size_t
)
ic
*
ih
*
iw
,
inputLayers_
[
0
]
->
getSize
());
CHECK_EQ
(
inputElemenCnt_
,
(
size_t
)
bs
*
ic
*
ih
*
iw
);
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
CHECK_EQ
(
int64_t
(
bs
),
inputLayers_
[
i
]
->
getOutput
().
getBatchSize
());
CHECK_EQ
(
layerSize_
,
inputLayers_
[
i
]
->
getSize
());
}
oc
=
ic
;
oh
=
ih
;
ow
=
iw
;
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
void
MKLDNNAddtoLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
if
(
biases_
)
{
LOG
(
FATAL
)
<<
"not implemented yet"
;
}
resetFwdBuffers
(
inVals_
,
out
);
in
=
inVals_
[
0
];
std
::
shared_ptr
<
sum
::
primitive_desc
>
fwdPD
;
resetFwdPD
(
fwdPD
,
inVals_
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD
,
inVals_
,
out
);
}
void
MKLDNNAddtoLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
resetBwdBuffers
(
inGrads_
,
out
);
in
=
inGrads_
[
0
];
// backward only need share output grad to input grad
for
(
size_t
i
=
0
;
i
<
inGrads_
.
size
();
i
++
)
{
if
(
inGrads_
[
i
]
!=
nullptr
)
{
inGrads_
[
i
]
=
out
;
inputLayers_
[
i
]
->
getOutputGrad
()
->
setData
(
inGrads_
[
i
]
->
getData
());
}
}
}
void
MKLDNNAddtoLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
MKLDNNAddtoLayer
::
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
inputs
.
resize
(
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
resetInValue
(
inputs
[
i
],
nullptr
,
i
);
CHECK
(
inputs
[
i
]);
inputs
[
i
]
->
downSpatial
();
}
for
(
size_t
i
=
1
;
i
<
inputs
.
size
();
i
++
)
{
CHECK_PRIMITIVE_DESC_EQ
(
inputs
[
i
],
inputs
[
0
]
->
getPrimitiveDesc
());
}
resetOutValue
(
out
,
inputs
[
0
]
->
getPrimitiveDesc
());
}
void
MKLDNNAddtoLayer
::
resetFwdPD
(
std
::
shared_ptr
<
sum
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
out
)
{
std
::
vector
<
double
>
scales
(
inputs
.
size
(),
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
srcPDs
.
push_back
(
inputs
[
i
]
->
getPrimitiveDesc
());
}
CHECK
(
out
);
pd
.
reset
(
new
sum
::
primitive_desc
(
out
->
getMemoryDesc
(),
scales
,
srcPDs
));
CHECK_PRIMITIVE_DESC_EQ
(
out
,
pd
->
dst_primitive_desc
());
}
void
MKLDNNAddtoLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
sum
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
std
::
vector
<
primitive
::
at
>
srcs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
srcs
.
push_back
(
*
(
inputs
[
i
]));
}
fwd_
.
reset
(
new
sum
(
*
pd
,
srcs
,
*
out
));
pipeline
.
push_back
(
*
fwd_
);
}
void
MKLDNNAddtoLayer
::
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
outVal_
);
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
CHECK
(
out
);
inputs
.
resize
(
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
resetInGrad
(
inputs
[
i
],
inVal_
->
getPrimitiveDesc
(),
i
);
CHECK_PRIMITIVE_DESC_EQ
(
inputs
[
i
],
out
->
getPrimitiveDesc
());
}
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNAddtoLayer.h
0 → 100644
浏览文件 @
483947c4
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace
paddle
{
/**
* @brief A subclass of MKLDNNLayer Addto layer.
*
* The config file api is mkldnn_addto
*/
class
MKLDNNAddtoLayer
:
public
MKLDNNLayer
{
protected:
std
::
vector
<
MKLDNNMatrixPtr
>
inVals_
;
std
::
vector
<
MKLDNNMatrixPtr
>
inGrads_
;
// layer size == ic * ih * iw == oc * oh *ow, and can not be changed
size_t
layerSize_
;
// TODO(TJ): this part has not been optimized by MKL-DNN
std
::
unique_ptr
<
Weight
>
biases_
;
public:
explicit
MKLDNNAddtoLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
)
{}
~
MKLDNNAddtoLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
override
;
void
resetFwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
resetBwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
updateWeights
(
const
UpdateCallback
&
callback
)
override
;
void
printValueFormat
()
override
{
for
(
size_t
i
=
0
;
i
<
inVals_
.
size
();
++
i
)
{
VLOG
(
MKLDNN_FMTS
)
<<
i
<<
" input: "
<<
inVals_
[
i
]
->
getFormat
()
<<
" >>>"
;
}
if
(
outVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
outVal_
->
getFormat
()
<<
" >>> "
;
}
if
(
extOutVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
extOutVal_
->
getFormat
();
}
}
void
printGradFormat
()
override
{
if
(
extOutGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
extOutGrad_
->
getFormat
();
}
if
(
outGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
outGrad_
->
getFormat
()
<<
" <<< "
;
}
for
(
size_t
i
=
0
;
i
<
inGrads_
.
size
();
++
i
)
{
VLOG
(
MKLDNN_FMTS
)
<<
i
<<
" input: "
<<
inGrads_
[
i
]
->
getFormat
()
<<
"<<<"
;
}
}
protected:
/**
* Forward functions: reset buffers(inputs, output, bias),
* reset primitive descriptor,
* reset pipeline.
*/
void
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
void
resetFwdPD
(
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
out
);
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
/**
* Backward functions: reset buffers(inputs, output, bias)
*/
void
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
};
}
// namespace paddle
paddle/gserver/layers/MKLDNNLayer.cpp
浏览文件 @
483947c4
...
@@ -77,7 +77,7 @@ void MKLDNNLayer::forward(PassType passType) {
...
@@ -77,7 +77,7 @@ void MKLDNNLayer::forward(PassType passType) {
needResetBwd_
=
true
;
needResetBwd_
=
true
;
}
}
if
(
inputLayers_
[
0
]
->
getType
()
==
"data"
)
{
if
(
inputLayers_
[
0
]
->
getType
()
==
"data"
&&
inputLayers_
.
size
()
==
1
)
{
// Update input value data when input layer is "data" type,
// Update input value data when input layer is "data" type,
// since the input value data address might be changed.
// since the input value data address might be changed.
CHECK
(
extInVal_
);
CHECK
(
extInVal_
);
...
@@ -171,14 +171,16 @@ void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn,
...
@@ -171,14 +171,16 @@ void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn,
}
}
void
MKLDNNLayer
::
resetInValue
(
void
MKLDNNLayer
::
resetInValue
(
MKLDNNMatrixPtr
&
in
,
const
std
::
shared_ptr
<
memory
::
primitive_desc
>&
intPD
)
{
MKLDNNMatrixPtr
&
in
,
const
std
::
shared_ptr
<
memory
::
primitive_desc
>&
intPD
,
size_t
inputIdx
)
{
cvtInVal_
=
nullptr
;
cvtInVal_
=
nullptr
;
extInVal_
=
nullptr
;
extInVal_
=
nullptr
;
in
=
nullptr
;
in
=
nullptr
;
CHECK_GT
(
bs_
*
ic_
*
ih_
*
iw_
,
0
);
CHECK_GT
(
bs_
*
ic_
*
ih_
*
iw_
,
0
);
auto
extPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
auto
extPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
{
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
,
engine_
);
{
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
,
engine_
);
const
MatrixPtr
&
inMat
=
inputLayers_
[
0
]
->
getOutputValue
();
const
MatrixPtr
&
inMat
=
inputLayers_
[
inputIdx
]
->
getOutputValue
();
in
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
in
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
in
!=
nullptr
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
in
!=
nullptr
);
if
(
in
==
nullptr
||
in
->
getFormat
()
==
format
::
nc
)
{
if
(
in
==
nullptr
||
in
->
getFormat
()
==
format
::
nc
)
{
...
@@ -216,11 +218,12 @@ void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out,
...
@@ -216,11 +218,12 @@ void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out,
}
}
void
MKLDNNLayer
::
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
void
MKLDNNLayer
::
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
memory
::
primitive_desc
intPD
)
{
memory
::
primitive_desc
intPD
,
size_t
inputIdx
)
{
cvtInGrad_
=
nullptr
;
cvtInGrad_
=
nullptr
;
extInGrad_
=
nullptr
;
extInGrad_
=
nullptr
;
in
=
nullptr
;
in
=
nullptr
;
LayerPtr
&
input
=
inputLayers_
[
0
];
LayerPtr
&
input
=
inputLayers_
[
inputIdx
];
if
(
input
->
getOutputGrad
()
==
nullptr
)
{
if
(
input
->
getOutputGrad
()
==
nullptr
)
{
// no need input grad
// no need input grad
return
;
return
;
...
@@ -245,7 +248,6 @@ void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
...
@@ -245,7 +248,6 @@ void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
return
;
return
;
}
}
// need create reorder
// need create reorder
// TODO(TJ): add macro definition to simplify it
CHECK
(
extInVal_
!=
nullptr
&&
isPaddleFormat
(
extInVal_
->
getFormat
()))
CHECK
(
extInVal_
!=
nullptr
&&
isPaddleFormat
(
extInVal_
->
getFormat
()))
<<
"should have external input value and the format must be nchw(nc)"
;
<<
"should have external input value and the format must be nchw(nc)"
;
extInGrad_
=
MKLDNNMatrix
::
create
(
extInVal_
->
getPrimitiveDesc
(),
inMat
);
extInGrad_
=
MKLDNNMatrix
::
create
(
extInVal_
->
getPrimitiveDesc
(),
inMat
);
...
...
paddle/gserver/layers/MKLDNNLayer.h
浏览文件 @
483947c4
...
@@ -199,7 +199,8 @@ protected:
...
@@ -199,7 +199,8 @@ protected:
*/
*/
void
resetInValue
(
void
resetInValue
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
in
,
const
std
::
shared_ptr
<
mkldnn
::
memory
::
primitive_desc
>&
intPD
=
nullptr
);
const
std
::
shared_ptr
<
mkldnn
::
memory
::
primitive_desc
>&
intPD
=
nullptr
,
size_t
inputIdx
=
0
);
/**
/**
* reset output value from internal primitive desc.
* reset output value from internal primitive desc.
...
@@ -212,7 +213,9 @@ protected:
...
@@ -212,7 +213,9 @@ protected:
* reset input grad from internal primitive desc.
* reset input grad from internal primitive desc.
* reset both internal and external buffer and create reorder if necessary.
* reset both internal and external buffer and create reorder if necessary.
*/
*/
void
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
mkldnn
::
memory
::
primitive_desc
intPD
);
void
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
mkldnn
::
memory
::
primitive_desc
intPD
,
size_t
inputIdx
=
0
);
/**
/**
* reset output grad from internal primitive desc.
* reset output grad from internal primitive desc.
...
...
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
483947c4
...
@@ -132,7 +132,7 @@ void MKLDNNTester::checkForward() {
...
@@ -132,7 +132,7 @@ void MKLDNNTester::checkForward() {
VLOG
(
MKLDNN_TESTS
)
<<
"Check Forward"
;
VLOG
(
MKLDNN_TESTS
)
<<
"Check Forward"
;
printTopDatas
();
printTopDatas
();
double
delta
=
double
delta
=
compareMatrix
(
dnnLayer_
->
getOutputValue
(),
ref
Layer_
->
getOutputValue
());
compareMatrix
(
refLayer_
->
getOutputValue
(),
dnn
Layer_
->
getOutputValue
());
EXPECT_LE
(
fabs
(
delta
),
eps_
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
}
...
@@ -147,7 +147,7 @@ void MKLDNNTester::checkBackwardData() {
...
@@ -147,7 +147,7 @@ void MKLDNNTester::checkBackwardData() {
VLOG
(
MKLDNN_ALL
)
<<
"Reference Backward Result: InputGrad "
<<
i
;
VLOG
(
MKLDNN_ALL
)
<<
"Reference Backward Result: InputGrad "
<<
i
;
printMatrix
(
refDiff
);
printMatrix
(
refDiff
);
double
delta
=
compareMatrix
(
dnnDiff
,
ref
Diff
);
double
delta
=
compareMatrix
(
refDiff
,
dnn
Diff
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
if
(
isBN
)
{
if
(
isBN
)
{
// the other two inputs in batch norm are for moving mean and var
// the other two inputs in batch norm are for moving mean and var
...
@@ -177,7 +177,7 @@ void MKLDNNTester::checkBackwardWgts() {
...
@@ -177,7 +177,7 @@ void MKLDNNTester::checkBackwardWgts() {
<<
parameters_
[
REF
][
i
]
->
getName
();
<<
parameters_
[
REF
][
i
]
->
getName
();
printVector
(
ref
);
printVector
(
ref
);
double
delta
=
compareVector
(
dnn
,
ref
);
double
delta
=
compareVector
(
ref
,
dnn
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
}
...
...
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
483947c4
...
@@ -271,20 +271,53 @@ TEST(MKLDNNLayer, BatchNormLayer) {
...
@@ -271,20 +271,53 @@ TEST(MKLDNNLayer, BatchNormLayer) {
testBatchNormLayer
({
16
,
32
,
16
,
16
});
testBatchNormLayer
({
16
,
32
,
16
,
16
});
}
}
struct
test
Act
Desc
{
struct
test
Image
Desc
{
int
bs
,
ic
,
ih
,
iw
;
int
bs
,
ic
,
ih
,
iw
;
};
};
static
void
getAddtoConfig
(
TestConfig
&
cfg
,
const
testActDesc
&
pm
)
{
static
void
getAddtoConfig
(
TestConfig
&
cfg
,
const
testImageDesc
&
pm
,
const
size_t
nInputs
=
1
)
{
cfg
.
biasSize
=
0
;
cfg
.
biasSize
=
0
;
cfg
.
layerConfig
.
set_type
(
"addto"
);
cfg
.
layerConfig
.
set_type
(
"addto"
);
size_t
layerSize
=
pm
.
ic
*
pm
.
ih
*
pm
.
iw
;
size_t
layerSize
=
pm
.
ic
*
pm
.
ih
*
pm
.
iw
;
cfg
.
layerConfig
.
set_size
(
layerSize
);
cfg
.
layerConfig
.
set_size
(
layerSize
);
cfg
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
layerSize
,
0
});
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
cfg
.
layerConfig
.
add_inputs
();
for
(
size_t
i
=
0
;
i
<
nInputs
;
++
i
)
{
std
::
stringstream
ss
;
ss
<<
"layer_"
<<
i
;
cfg
.
inputDefs
.
push_back
({
INPUT_DATA
,
ss
.
str
(),
layerSize
,
0
});
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
ImageConfig
*
img_conf
=
input
->
mutable_image_conf
();
img_conf
->
set_channels
(
pm
.
ic
);
img_conf
->
set_img_size_y
(
pm
.
ih
);
img_conf
->
set_img_size
(
pm
.
iw
);
}
}
void
testAddtoLayer
(
const
testImageDesc
&
pm
,
const
size_t
nInputs
)
{
CHECK_GE
(
nInputs
,
1
);
TestConfig
dnnConfig
;
getAddtoConfig
(
dnnConfig
,
pm
,
nInputs
);
dnnConfig
.
layerConfig
.
set_type
(
"mkldnn_addto"
);
// TODO(TJ): test with bias
for
(
auto
withBias
:
{
false
})
{
if
(
withBias
)
{
dnnConfig
.
biasSize
=
pm
.
ic
*
pm
.
ih
*
pm
.
iw
;
}
else
{
dnnConfig
.
biasSize
=
0
;
}
RUN_MKLDNN_TEST_LAYER
(
dnnConfig
,
"addto"
,
pm
)
}
}
TEST
(
MKLDNNLayer
,
AddtoLayer
)
{
testAddtoLayer
({
16
,
5
,
14
,
14
},
1
);
testAddtoLayer
({
8
,
10
,
8
,
8
},
2
);
testAddtoLayer
({
4
,
12
,
1
,
1
},
3
);
}
}
void
testActivation
(
std
::
string
actType
,
const
test
Act
Desc
&
pm
)
{
void
testActivation
(
std
::
string
actType
,
const
test
Image
Desc
&
pm
)
{
// TODO(TJ): remove me when paddle support elu activation
// TODO(TJ): remove me when paddle support elu activation
if
(
actType
==
"mkldnn_elu"
)
{
if
(
actType
==
"mkldnn_elu"
)
{
return
;
return
;
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
483947c4
...
@@ -142,6 +142,7 @@ set(DEPS_OPS
...
@@ -142,6 +142,7 @@ set(DEPS_OPS
nccl_op
nccl_op
sequence_conv_op
sequence_conv_op
sequence_pool_op
sequence_pool_op
lod_rank_table_op
lstm_op
)
lstm_op
)
op_library
(
cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op
)
op_library
(
cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op
)
...
@@ -150,6 +151,7 @@ op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
...
@@ -150,6 +151,7 @@ op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
op_library
(
sum_op DEPS net_op selected_rows_functor
)
op_library
(
sum_op DEPS net_op selected_rows_functor
)
op_library
(
pool_op DEPS pooling
)
op_library
(
pool_op DEPS pooling
)
op_library
(
pool_with_index_op DEPS pooling
)
op_library
(
pool_with_index_op DEPS pooling
)
op_library
(
lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table
)
if
(
WITH_GPU
)
if
(
WITH_GPU
)
op_library
(
nccl_op DEPS nccl_common
)
op_library
(
nccl_op DEPS nccl_common
)
endif
()
endif
()
...
...
paddle/operators/accuracy_op.cc
浏览文件 @
483947c4
...
@@ -33,7 +33,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
...
@@ -33,7 +33,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
auto
inference_dim
=
ctx
->
GetInputDim
(
"Out"
);
auto
inference_dim
=
ctx
->
GetInputDim
(
"Out"
);
auto
label_dim
=
ctx
->
GetInputDim
(
"Label"
);
auto
label_dim
=
ctx
->
GetInputDim
(
"Label"
);
// Assume indices has same shape
with inferne
ce, because
// Assume indices has same shape
as inferen
ce, because
// it's the output of topk.
// it's the output of topk.
PADDLE_ENFORCE_EQ
(
label_dim
.
size
(),
2
,
"label's rank must be 2."
);
PADDLE_ENFORCE_EQ
(
label_dim
.
size
(),
2
,
"label's rank must be 2."
);
...
@@ -60,20 +60,24 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -60,20 +60,24 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
// TODO(typhoonzero): support both inference value and indices.
// TODO(typhoonzero): support both inference value and indices.
AddInput
(
"Out"
,
"
topk (inferences) the network output
"
);
AddInput
(
"Out"
,
"
The network output of topk (inferences)
"
);
AddInput
(
"Indices"
,
"
topk (indices) the network output
"
);
AddInput
(
"Indices"
,
"
The the network output of topk (indices)
"
);
AddInput
(
"Label"
,
"Label of the training data"
);
AddInput
(
"Label"
,
"Label of the training data"
);
// TODO(typhoonzero): AddInput("Weight", ...
// TODO(typhoonzero): AddInput("Weight", ...
AddOutput
(
"Accuracy"
,
"The accuracy of current batch"
);
AddOutput
(
"Accuracy"
,
"The accuracy of current batch"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Accuracy. It will print accuracy rate for classification.
Accuracy Operator.
The accuracy is:
.. math::
It will print accuracy rate for classification.
accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})
The accuracy is calculated as follows:
$$accuracy = \frac{NumOfCorrectPredicts}{NumOfAllSamples}$$
Both the input Out and Label can carry the LoD (Level of Details)
information, or not. But the output only shares the LoD information
with the input Out(Inference).
Both the input `Out` and `Label` can carry the LoD (Level of Details)
information, or not. But the output only shares the LoD with input `Inference`.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/activation_op.cc
浏览文件 @
483947c4
...
@@ -44,7 +44,7 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -44,7 +44,7 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Sigmoid operator"
);
AddInput
(
"X"
,
"Input of Sigmoid operator"
);
AddOutput
(
"Y"
,
"Output of Sigmoid operator"
);
AddOutput
(
"Y"
,
"Output of Sigmoid operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Sigmoid
activation o
perator.
Sigmoid
Activation O
perator.
$y = 1 / (1 + e^{-x})$
$y = 1 / (1 + e^{-x})$
...
@@ -60,7 +60,7 @@ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -60,7 +60,7 @@ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of LogSigmoid operator"
);
AddInput
(
"X"
,
"Input of LogSigmoid operator"
);
AddOutput
(
"Y"
,
"Output of LogSigmoid operator"
);
AddOutput
(
"Y"
,
"Output of LogSigmoid operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Logsigmoid
activation o
perator.
Logsigmoid
Activation O
perator.
$y = \log(1 / (1 + e^{-x}))$
$y = \log(1 / (1 + e^{-x}))$
...
@@ -75,7 +75,7 @@ class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -75,7 +75,7 @@ class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Exp operator"
);
AddInput
(
"X"
,
"Input of Exp operator"
);
AddOutput
(
"Y"
,
"Output of Exp operator"
);
AddOutput
(
"Y"
,
"Output of Exp operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Exp
activation o
perator.
Exp
Activation O
perator.
$y = e^x$
$y = e^x$
...
@@ -90,7 +90,7 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -90,7 +90,7 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Relu operator"
);
AddInput
(
"X"
,
"Input of Relu operator"
);
AddOutput
(
"Y"
,
"Output of Relu operator"
);
AddOutput
(
"Y"
,
"Output of Relu operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Relu
activation o
perator.
Relu
Activation O
perator.
$y = \max(x, 0)$
$y = \max(x, 0)$
...
@@ -109,7 +109,7 @@ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -109,7 +109,7 @@ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"alpha"
,
"The small negative slope"
)
AddAttr
<
AttrType
>
(
"alpha"
,
"The small negative slope"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.02
f
));
.
SetDefault
(
static_cast
<
AttrType
>
(
0.02
f
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
LeakyRelu
activation o
perator.
LeakyRelu
Activation O
perator.
$y = \max(x, \alpha * x)$
$y = \max(x, \alpha * x)$
...
@@ -128,7 +128,7 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -128,7 +128,7 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"lambda"
,
"non-negative offset"
)
AddAttr
<
AttrType
>
(
"lambda"
,
"non-negative offset"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
f
));
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
f
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Softshrink
activation o
perator.
Softshrink
Activation O
perator.
$$
$$
y = \begin{cases}
y = \begin{cases}
...
@@ -149,7 +149,7 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -149,7 +149,7 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Tanh operator"
);
AddInput
(
"X"
,
"Input of Tanh operator"
);
AddOutput
(
"Y"
,
"Output of Tanh operator"
);
AddOutput
(
"Y"
,
"Output of Tanh operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Tanh
activation o
perator.
Tanh
Activation O
perator.
$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
...
@@ -165,7 +165,7 @@ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -165,7 +165,7 @@ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of TanhShrink operator"
);
AddInput
(
"X"
,
"Input of TanhShrink operator"
);
AddOutput
(
"Y"
,
"Output of TanhShrink operator"
);
AddOutput
(
"Y"
,
"Output of TanhShrink operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
TanhShrink
activation o
perator.
TanhShrink
Activation O
perator.
$$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
...
@@ -184,7 +184,7 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -184,7 +184,7 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The value of threshold for HardShrink"
)
AddAttr
<
AttrType
>
(
"threshold"
,
"The value of threshold for HardShrink"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
HardShrink
activation o
perator.
HardShrink
Activation O
perator.
$$
$$
y = \begin{cases}
y = \begin{cases}
...
@@ -205,7 +205,7 @@ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -205,7 +205,7 @@ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Sqrt operator"
);
AddInput
(
"X"
,
"Input of Sqrt operator"
);
AddOutput
(
"Y"
,
"Output of Sqrt operator"
);
AddOutput
(
"Y"
,
"Output of Sqrt operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Sqrt
activation o
perator.
Sqrt
Activation O
perator.
$y = \sqrt{x}$
$y = \sqrt{x}$
...
@@ -220,7 +220,7 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -220,7 +220,7 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Abs operator"
);
AddInput
(
"X"
,
"Input of Abs operator"
);
AddOutput
(
"Y"
,
"Output of Abs operator"
);
AddOutput
(
"Y"
,
"Output of Abs operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Abs
activation o
perator.
Abs
Activation O
perator.
$y = |x|$
$y = |x|$
...
@@ -236,7 +236,7 @@ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -236,7 +236,7 @@ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Reciprocal operator"
);
AddInput
(
"X"
,
"Input of Reciprocal operator"
);
AddOutput
(
"Y"
,
"Output of Reciprocal operator"
);
AddOutput
(
"Y"
,
"Output of Reciprocal operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Reciprocal
activation o
perator.
Reciprocal
Activation O
perator.
$$y = \frac{1}{x}$$
$$y = \frac{1}{x}$$
...
@@ -251,7 +251,7 @@ class LogOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -251,7 +251,7 @@ class LogOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Log operator"
);
AddInput
(
"X"
,
"Input of Log operator"
);
AddOutput
(
"Y"
,
"Output of Log operator"
);
AddOutput
(
"Y"
,
"Output of Log operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Log
activation o
perator.
Log
Activation O
perator.
$y = \ln(x)$
$y = \ln(x)$
...
@@ -268,7 +268,7 @@ class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -268,7 +268,7 @@ class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Square operator"
);
AddInput
(
"X"
,
"Input of Square operator"
);
AddOutput
(
"Y"
,
"Output of Square operator"
);
AddOutput
(
"Y"
,
"Output of Square operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Square
activation o
perator.
Square
Activation O
perator.
$y = x^2$
$y = x^2$
...
@@ -284,7 +284,7 @@ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -284,7 +284,7 @@ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Softplus operator"
);
AddInput
(
"X"
,
"Input of Softplus operator"
);
AddOutput
(
"Y"
,
"Output of Softplus operator"
);
AddOutput
(
"Y"
,
"Output of Softplus operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Softplus
activation o
perator.
Softplus
Activation O
perator.
$y = \ln(1 + e^{x})$
$y = \ln(1 + e^{x})$
...
@@ -300,7 +300,7 @@ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -300,7 +300,7 @@ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Softsign operator"
);
AddInput
(
"X"
,
"Input of Softsign operator"
);
AddOutput
(
"Y"
,
"Output of Softsign operator"
);
AddOutput
(
"Y"
,
"Output of Softsign operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Softsign
activation o
perator.
Softsign
Activation O
perator.
$$y = \frac{x}{1 + |x|}$$
$$y = \frac{x}{1 + |x|}$$
...
@@ -320,7 +320,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -320,7 +320,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"t_max"
,
"The max marginal value of BRelu"
)
AddAttr
<
AttrType
>
(
"t_max"
,
"The max marginal value of BRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
24
));
.
SetDefault
(
static_cast
<
AttrType
>
(
24
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
BRelu
activation o
perator.
BRelu
Activation O
perator.
$y = \max(\min(x, t_{min}), t_{max})$
$y = \max(\min(x, t_{min}), t_{max})$
...
@@ -339,7 +339,7 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -339,7 +339,7 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of SoftRelu"
)
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of SoftRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
40
));
.
SetDefault
(
static_cast
<
AttrType
>
(
40
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
SoftRelu
activation o
perator.
SoftRelu
Activation O
perator.
$y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$
$y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$
...
@@ -357,7 +357,7 @@ class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -357,7 +357,7 @@ class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"alpha"
,
"The alpha value of ELU"
)
AddAttr
<
AttrType
>
(
"alpha"
,
"The alpha value of ELU"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.0
f
));
.
SetDefault
(
static_cast
<
AttrType
>
(
1.0
f
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
ELU
activation o
perator.
ELU
Activation O
perator.
Applies the following element-wise computation on the input according to
Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.
https://arxiv.org/abs/1511.07289.
...
@@ -378,7 +378,7 @@ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -378,7 +378,7 @@ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of Relu6"
)
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of Relu6"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
6
));
.
SetDefault
(
static_cast
<
AttrType
>
(
6
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Relu6
activation o
perator.
Relu6
Activation O
perator.
$y = \min(\max(0, x), 6)$
$y = \min(\max(0, x), 6)$
...
@@ -396,7 +396,7 @@ class PowOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -396,7 +396,7 @@ class PowOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"factor"
,
"The exponential factor of Pow"
)
AddAttr
<
AttrType
>
(
"factor"
,
"The exponential factor of Pow"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1
));
.
SetDefault
(
static_cast
<
AttrType
>
(
1
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Pow
activation o
perator.
Pow
Activation O
perator.
$y = x^{factor}$
$y = x^{factor}$
...
@@ -416,7 +416,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -416,7 +416,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"scale_b"
,
"The scale parameter of b for the input"
)
AddAttr
<
AttrType
>
(
"scale_b"
,
"The scale parameter of b for the input"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.7159
));
.
SetDefault
(
static_cast
<
AttrType
>
(
1.7159
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
STanh
activation o
perator.
STanh
Activation O
perator.
$$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
$$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
...
@@ -435,7 +435,7 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -435,7 +435,7 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold location of activation"
)
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold location of activation"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.0
));
.
SetDefault
(
static_cast
<
AttrType
>
(
1.0
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
ThresholdedRelu
activation o
perator.
ThresholdedRelu
Activation O
perator.
$$
$$
y = \begin{cases}
y = \begin{cases}
...
@@ -461,7 +461,7 @@ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -461,7 +461,7 @@ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"offset"
,
"Offset for linear approximation of sigmoid"
)
AddAttr
<
AttrType
>
(
"offset"
,
"Offset for linear approximation of sigmoid"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
HardSigmoid
activation o
perator.
HardSigmoid
Activation O
perator.
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
which is much faster than sigmoid.
...
...
paddle/operators/adadelta_op.cc
浏览文件 @
483947c4
...
@@ -64,16 +64,15 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -64,16 +64,15 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
"(Tensor) Input parameter"
);
AddInput
(
"Param"
,
"(Tensor) Input parameter"
);
AddInput
(
"Grad"
,
"(Tensor) Input gradient"
);
AddInput
(
"Grad"
,
"(Tensor) Input gradient"
);
AddInput
(
"AvgSquaredGrad"
,
AddInput
(
"AvgSquaredGrad"
,
"(Tensor) Input average of squared gradient"
);
"(Tensor) Input expectation of squared gradient"
);
AddInput
(
"AvgSquaredUpdate"
,
AddInput
(
"AvgSquaredUpdate"
,
"(Tensor) Input
expectation
of squared parameter updates"
);
"(Tensor) Input
average
of squared parameter updates"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output parameter"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output parameter"
);
AddOutput
(
"AvgSquaredGradOut"
,
AddOutput
(
"AvgSquaredGradOut"
,
"(Tensor) Output
expectation
of squared gradient"
);
"(Tensor) Output
average
of squared gradient"
);
AddOutput
(
"AvgSquaredUpdateOut"
,
AddOutput
(
"AvgSquaredUpdateOut"
,
"(Tensor) Output
expectation
of squared parameter updates"
);
"(Tensor) Output
average
of squared parameter updates"
);
AddAttr
<
float
>
(
"rho"
,
AddAttr
<
float
>
(
"rho"
,
"(float, default 0.95) Exponential decay rate "
"(float, default 0.95) Exponential decay rate "
...
@@ -84,22 +83,21 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -84,22 +83,21 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
"numerical stability"
)
"numerical stability"
)
.
SetDefault
(
1.0e-6
f
);
.
SetDefault
(
1.0e-6
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Adadelta
Updates Operato
r.
Adadelta
Optimize
r.
This implements the Adadelta optimizer[1]. Adadelta is a per-dimension
Adadelta optimizer is implemented as explained in:
adaptive learning rate method for gradient descent.
https://arxiv.org/abs/1212.5701
Adadelta is a per-dimension adaptive learning rate method used
for gradient descent.
Adadelta updates:
Adadelta updates
are as follows
:
avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * grad * grad
$$avgSquaredGradOut = \rho * avgSquaredGrad + (1 - \rho) * grad * grad \break
param_update = - sqrt((avg_squared_update + epsilon) /
paramUpdate = - $\sqrt{((avgSquaredUpdate + \epsilon) /
(avg_squared_grad_out + epsilon)) * grad
(avgSquaredGrad_out + \epsilon))}$ * grad \break
avg_squared_update_out = rho * avg_squared_update + (1 - rho) * param_update**2
avgSquaredUpdateOut = \rho * avgSquaredUpdate + (1 - \rho) *
param_out = param + param_update
{(paramUpdate)}^2 \break
paramOut = param + paramUpdate$$
References:
[1] ADADELTA: An Adaptive Learning Rate Method
https://arxiv.org/abs/1212.5701
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/adagrad_op.cc
浏览文件 @
483947c4
...
@@ -73,12 +73,16 @@ class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -73,12 +73,16 @@ class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
Adaptive Gradient Algorithm (Adagrad).
Adaptive Gradient Algorithm (Adagrad).
moment_out = moment + grad * grad
The update is done as follows:
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
$$momentOut = moment + grad * grad \break
paramOut = param - learningRate * grad / ($\sqrt{momentOut}$ + \epsilon) \break
$$
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have the epsilon attribute. It is added here for numerical stability
does not have the epsilon attribute. It is added here in our implementation
by avoiding division by zero.
as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
for numerical stability to avoid the division by zero error.
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/adam_op.cc
浏览文件 @
483947c4
...
@@ -51,8 +51,8 @@ class AdamOp : public framework::OperatorWithKernel {
...
@@ -51,8 +51,8 @@ class AdamOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta1_pow_dims
),
1
,
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta1_pow_dims
),
1
,
"Beta1 power accumulator should have 1 dimension"
);
"Beta1 power accumulator should have 1 dimension"
);
auto
beta2_pow_dims
=
ctx
->
GetInputDim
(
"Beta2Pow"
);
auto
beta2_pow_dims
=
ctx
->
GetInputDim
(
"Beta2Pow"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta
1
_pow_dims
),
1
,
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta
2
_pow_dims
),
1
,
"Beta
1
power accumulator should have 1 dimension"
);
"Beta
2
power accumulator should have 1 dimension"
);
auto
param_dims
=
ctx
->
GetInputDim
(
"Param"
);
auto
param_dims
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
...
@@ -60,10 +60,10 @@ class AdamOp : public framework::OperatorWithKernel {
...
@@ -60,10 +60,10 @@ class AdamOp : public framework::OperatorWithKernel {
"Param and Grad input of AdamOp should have same dimension"
);
"Param and Grad input of AdamOp should have same dimension"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Moment1"
),
param_dims
,
ctx
->
GetInputDim
(
"Moment1"
),
"Param and Moment input of AdamOp should have same dimension"
);
"Param and Moment
1
input of AdamOp should have same dimension"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Moment2"
),
param_dims
,
ctx
->
GetInputDim
(
"Moment2"
),
"Param and
InfNorm
input of AdamOp should have same dimension"
);
"Param and
Moment2
input of AdamOp should have same dimension"
);
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment1Out"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment1Out"
,
param_dims
);
...
@@ -103,23 +103,20 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -103,23 +103,20 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
1.0e-8
f
);
.
SetDefault
(
1.0e-8
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Adam
Updates Operato
r.
Adam
Optimize
r.
This implements the Adam optimizer from Section 2 of the Adam
This implements the Adam optimizer from Section 2 of the Adam
paper[1]. Adam is a first-order gradient-based optimization
paper : https://arxiv.org/abs/1412.6980.
method based on adaptive estimates of lower-order moments.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
Adam updates:
Adam updates:
moment1_out = beta1 * moment1 + (1 − beta1) * grad
$$moment_1_{out} = \beta_1 * moment_1 + (1 - \beta_1) * grad \break
moment2_out = beta2 * moment2 + (1 − beta2) * grad * grad
moment_2_{out} = \beta_2 * moment_2 + (1 - \beta_2) * grad * grad \break
learning_rate_t = learning_rate_t *
learningRate = learningRate *
sqrt(1 - beta2_pow) / (1 - beta1_pow)
$\sqrt{(1 - \beta_2_{pow})}$ / (1 - \beta_1_{pow}) \break
param_out = param - learning_rate_t * moment1/ (sqrt(moment2) + epsilon)
paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$
References:
[1] Adam: A Method for Stochastic Optimization
(https://arxiv.org/abs/1412.6980)
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/adamax_op.cc
浏览文件 @
483947c4
...
@@ -99,26 +99,22 @@ class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -99,26 +99,22 @@ class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker {
"Constant for numerical stability"
)
"Constant for numerical stability"
)
.
SetDefault
(
1.0e-8
f
);
.
SetDefault
(
1.0e-8
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Adamax
Updates Operato
r.
Adamax
Optimize
r.
This implements
the Adamax optimizer from Section 7 of the Adam
We implement
the Adamax optimizer from Section 7 of the Adam
paper
[1]
. Adamax is a variant of the
paper
: https://arxiv.org/abs/1412.6980
. Adamax is a variant of the
Adam algorithm based on the infinity norm.
Adam algorithm based on the infinity norm.
Adamax updates:
Adamax updates:
moment_out = beta1 * moment + (1 - beta1) * grad
$$momentOut = \beta_1 * moment + (1 - \beta_1) * grad \break
inf
_norm_out = max(beta2 * inf_norm + epsilon, abs(grad))
inf
NormOut = max(\beta_2 * infNorm + \epsilon, |grad|) \break
learning
_rate_t = learning_rate/(1 - beta1_pow)
learning
Rate = learningRate /(1 - \beta_1_{pow}) \break
param
_out = param - learning_rate_t * moment_out/inf_norm_out
param
Out = param - learningRate * momentPut / infNormOut$$
The original paper does not have an epsilon attribute.
The original paper does not have an epsilon attribute.
However, it is added here for numerical stability
However, it is added here for numerical stability to prevent the
by preventing divide by 0.
division by 0 error.
References:
[1] Adam: A Method for Stochastic Optimization
(https://arxiv.org/abs/1412.6980)
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/auc_op.cc
浏览文件 @
483947c4
...
@@ -23,11 +23,11 @@ class AucOp : public framework::OperatorWithKernel {
...
@@ -23,11 +23,11 @@ class AucOp : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
),
"Input of Out
must be initialized
."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
),
"Input of Out
should not be null
."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Indices"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Indices"
),
"Input of Indices
must be initialized
."
);
"Input of Indices
should not be null
."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input of Label
must be initialized
."
);
"Input of Label
should not be null
."
);
auto
inference_height
=
ctx
->
GetInputDim
(
"Out"
)[
0
];
auto
inference_height
=
ctx
->
GetInputDim
(
"Out"
)[
0
];
auto
label_height
=
ctx
->
GetInputDim
(
"Label"
)[
0
];
auto
label_height
=
ctx
->
GetInputDim
(
"Label"
)[
0
];
...
@@ -52,20 +52,20 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -52,20 +52,20 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Out"
,
AddInput
(
"Out"
,
"A floating point 2D tensor, values are in the range [0, 1]."
"A floating point 2D tensor, values are in the range [0, 1]."
"Each row is
descend sorted
. This input should be the"
"Each row is
sorted in descending order
. This input should be the"
"output of topk."
"output of topk."
"Typically, this tensor indicates the probability of each label"
);
"Typically, this tensor indicates the probability of each label"
);
AddInput
(
"Indices"
,
AddInput
(
"Indices"
,
"An int 2D tensor, indicating the indices of original"
"An int 2D tensor, indicating the indices of original"
"tensor before sort
. Typically, this tensor indicates which label
"
"tensor before sort
ing. Typically, this tensor indicates which
"
"the probability stands for."
);
"
label
the probability stands for."
);
AddInput
(
"Label"
,
AddInput
(
"Label"
,
"A 2D int tensor indicating the label of the training data."
"A 2D int tensor indicating the label of the training data."
"The height is batch size and width is always 1."
);
"The height is batch size and width is always 1."
);
// TODO(typhoonzero): support weight input
// TODO(typhoonzero): support weight input
AddOutput
(
"AUC"
,
AddOutput
(
"AUC"
,
"A scalar representing the "
"A scalar representing the "
"current area-under-curve."
);
"current area-under-
the-
curve."
);
AddAttr
<
std
::
string
>
(
"curve"
,
"Curve type, can be 'ROC' or 'PR'."
)
AddAttr
<
std
::
string
>
(
"curve"
,
"Curve type, can be 'ROC' or 'PR'."
)
.
SetDefault
(
"ROC"
);
.
SetDefault
(
"ROC"
);
...
@@ -74,19 +74,18 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -74,19 +74,18 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
" roc curve."
)
" roc curve."
)
.
SetDefault
(
200
);
.
SetDefault
(
200
);
AddComment
(
AddComment
(
R"DOC(
R"DOC(Computes the AUC according forward output and label.
Area Under The Curve (AUC) Operator.
Best to use for binary classification evaluations.
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation. As a note:
If input label contains values other than 0 and 1, it will be cast
If input label contains values other than 0 and 1, it will be cast
to bool.
to bool. You can find the relevant definitions here:
You can find the definations here:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
Possible curves are
:
There are two types of possible curves
:
-
ROC: Receiver operating characteristic
1.
ROC: Receiver operating characteristic
-
PR: Precision Recall
2.
PR: Precision Recall
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/batch_norm_op.cc
浏览文件 @
483947c4
...
@@ -51,6 +51,10 @@ class BatchNormOp : public framework::OperatorWithKernel {
...
@@ -51,6 +51,10 @@ class BatchNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"SavedMean"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"SavedMean"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"SavedVariance"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"SavedVariance"
),
""
);
const
float
epsilon
=
ctx
->
Attrs
().
Get
<
float
>
(
"epsilon"
);
PADDLE_ENFORCE_GE
(
epsilon
,
0.0
,
"epsilon should be larger than 0"
);
PADDLE_ENFORCE_LE
(
epsilon
,
0.001
,
"epsilon should not be too large"
);
// make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
// make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"Mean"
)[
0
],
ctx
->
Outputs
(
"MeanOut"
)[
0
],
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"Mean"
)[
0
],
ctx
->
Outputs
(
"MeanOut"
)[
0
],
"Mean and MeanOut should share the same memory"
);
"Mean and MeanOut should share the same memory"
);
...
@@ -66,7 +70,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
...
@@ -66,7 +70,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
:
x_dims
[
x_dims
.
size
()
-
1
]);
:
x_dims
[
x_dims
.
size
()
-
1
]);
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
3
&&
x_dims
.
size
()
<=
5
,
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
3
&&
x_dims
.
size
()
<=
5
,
"Input
x
must have 3 to 5 dimensions."
);
"Input
X
must have 3 to 5 dimensions."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
C
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
C
);
...
@@ -93,16 +97,16 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -93,16 +97,16 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The input tensor"
);
AddInput
(
"X"
,
"The input tensor"
);
AddInput
(
"Scale"
,
AddInput
(
"Scale"
,
"Scale is a 1-dimensional tensor of size C "
"Scale is a 1-dimensional tensor of size C "
"t
o be
applied to the output"
);
"t
hat is
applied to the output"
);
AddInput
(
"Bias"
,
AddInput
(
"Bias"
,
"Bias is a 1-dimensional tensor of size C "
"Bias is a 1-dimensional tensor of size C "
"t
o be
applied to the output"
);
"t
hat is
applied to the output"
);
AddInput
(
"Mean"
,
AddInput
(
"Mean"
,
"The global mean (for training) or
the
"
"The global mean (for training) or "
"estimated mean (for testing)"
);
"estimated mean (for testing)"
);
AddInput
(
"Variance"
,
AddInput
(
"Variance"
,
"The global variance (for training) "
"The global variance (for training) "
"or
the
estimated Variance (for testing)"
);
"or estimated Variance (for testing)"
);
AddOutput
(
"Y"
,
"result after normalization"
);
AddOutput
(
"Y"
,
"result after normalization"
);
AddOutput
(
"MeanOut"
,
AddOutput
(
"MeanOut"
,
"Share memory with Mean. "
"Share memory with Mean. "
...
@@ -119,10 +123,14 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -119,10 +123,14 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
"will apply to output when training"
)
"will apply to output when training"
)
.
AsIntermediate
();
.
AsIntermediate
();
AddComment
(
R"DOC(
AddComment
(
R"DOC(
https://arxiv.org/pdf/1502.03167.pdf
Batch Normalization.
NHWC `[batch, in_height, in_width, in_channels]`
Batch Norm has been implemented as discussed in the paper:
NCHW `[batch, in_channels, in_height, in_width]`
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
)DOC"
);
)DOC"
);
}
}
...
@@ -297,7 +305,6 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
...
@@ -297,7 +305,6 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
framework
::
DataType
IndicateDataType
(
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
VLOG
(
3
)
<<
"IndicateDataType "
<<
this
->
Type
();
const
auto
*
var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
));
const
auto
*
var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
));
if
(
var
==
nullptr
)
{
if
(
var
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
PADDLE_THROW
(
"can't find Y@GRAD"
);
...
...
paddle/operators/cast_op.cc
浏览文件 @
483947c4
...
@@ -23,13 +23,17 @@ class CastOpProtoMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -23,13 +23,17 @@ class CastOpProtoMaker : public framework::OpProtoAndCheckerMaker {
CastOpProtoMaker
(
framework
::
OpProto
*
proto
,
CastOpProtoMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"the input tensor of cast op"
);
AddInput
(
"X"
,
"The input tensor of cast op"
);
AddOutput
(
"Out"
,
"the output tensor of cast op"
);
AddOutput
(
"Out"
,
"The output tensor of cast op"
);
AddComment
(
R"DOC(Cast operator.
cast the input tensor to other data type.
)DOC"
);
AddAttr
<
int
>
(
"out_data_type"
,
"output data type"
);
AddAttr
<
int
>
(
"out_data_type"
,
"output data type"
);
AddAttr
<
int
>
(
"in_data_type"
,
"input data type"
);
AddAttr
<
int
>
(
"in_data_type"
,
"input data type"
);
AddComment
(
R"DOC(
Cast Operator.
This Operator casts the input tensor to another data type and
returns tha Output Tensor.
)DOC"
);
}
}
};
};
...
...
paddle/operators/clip_op.cc
浏览文件 @
483947c4
...
@@ -49,8 +49,11 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -49,8 +49,11 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
AddAttr
<
AttrType
>
(
"max"
,
"(float)Maximum value, above which element is replaced by max"
);
"max"
,
"(float)Maximum value, above which element is replaced by max"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Clip operator limits the given input within an interval. The interval is
Clip Operator.
The clip operator limits the value of given input within an interval. The interval is
specified with arguments 'min' and 'max'.
specified with arguments 'min' and 'max'.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/concat_op.cc
浏览文件 @
483947c4
...
@@ -56,20 +56,24 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -56,20 +56,24 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
ConcatOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
ConcatOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"the input tensors of concat operator."
).
AsDuplicable
();
AddInput
(
"X"
,
"Input tensors of concat operator."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"the output tensor of concat operator."
);
AddOutput
(
"Out"
,
"Output tensor of concat operator."
);
AddAttr
<
int
>
(
"axis"
,
"The axis along which the input tensors will be concatenated."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Join the input tensors along with the axis.
Concat Operator.
Examples:
Concatenate the input tensors along dimension axis.
Examples:
Input[0] = [[1,2],[3,4]]
Input[0] = [[1,2],[3,4]]
Input[1] = [[5,6]]
Input[1] = [[5,6]]
axis = 0
axis = 0
Output = [[1,2],
Output = [[1,2],
[3,4],
[3,4],
[5,6]]
[5,6]]
)DOC"
);
AddAttr
<
int
>
(
"axis"
,
"The axis which the inputs will be joined with."
)
)DOC"
);
.
SetDefault
(
0
);
}
}
};
};
...
...
paddle/operators/cond_op.cc
浏览文件 @
483947c4
...
@@ -216,11 +216,12 @@ class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -216,11 +216,12 @@ class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"IndexTensors"
,
"Index Tensors contains indices for true/false"
);
AddOutput
(
"IndexTensors"
,
"Index Tensors contains indices for true/false"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Sample dependent Cond Operator:
Sample Dependent Conditional Operator.
Given Cond[i] as a 1/0 vector to indicate true/false
The equation is:
Given Cond[i] as a 1/0 vector to indicate true/false:
Out[i] = subnet_t[i], if Cond[i] == true
Out[i] = subnet_true[i], if Cond[i] == true
Out[i] = subnet_t[i], if Cond[i] == false
Out[i] = subnet_false[i], if Cond[i] == false
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/conv2d_op.cc
浏览文件 @
483947c4
...
@@ -56,17 +56,18 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
...
@@ -56,17 +56,18 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
AddInput
(
AddInput
(
"Input"
,
"Input"
,
"The input tensor of convolution operator. "
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H and W is the height and width of image."
);
"number of channels, H is the height of the image, "
"and W is the width of the image."
);
AddInput
(
"Filter"
,
AddInput
(
"Filter"
,
"The filter tensor of convolution operator."
"The filter tensor of convolution operator.
"
"The format of the filter tensor is MCHW, where M is the number of "
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
"output image channels, C is the number of input image channels, "
"H
and W is height and width of
filter. "
"H
is the height of the filter, and W is the width of the
filter. "
"If the groups attribute is greater than 1, C equal the number of "
"If the groups attribute is greater than 1, C equal
s
the number of "
"input image channels divided by the groups."
);
"input image channels divided by the groups."
);
AddOutput
(
"Output"
,
AddOutput
(
"Output"
,
"The output tensor of convolution operator."
"The output tensor of convolution operator.
"
"The format of output tensor is also NCHW."
);
"The format of output tensor is also NCHW."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of convolution operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of convolution operator."
)
.
SetDefault
({
1
,
1
});
.
SetDefault
({
1
,
1
});
...
@@ -74,16 +75,19 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
...
@@ -74,16 +75,19 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
.
SetDefault
({
0
,
0
});
.
SetDefault
({
0
,
0
});
AddAttr
<
int
>
(
AddAttr
<
int
>
(
"groups"
,
"groups"
,
"
g
roup size of convolution operator. "
"
G
roup size of convolution operator. "
"
Refer to grouped convolution in Alex Krizhevsky's
paper: "
"
According to grouped convolution in Alex Krizhevsky's Deep CNN
paper: "
"when group=2, the first half of the filters
are
only connected to the "
"when group=2, the first half of the filters
is
only connected to the "
"first half of the input channels,
and the second half only connected
"
"first half of the input channels,
while the second half of the filters
"
"
to the second half
."
)
"
is only connected to the second half of the input channels
."
)
.
SetDefault
(
1
);
.
SetDefault
(
1
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
The convolution operation calculates the output based on the input, filter
Convolution Operator.
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
The convolution operation calculates the output based on the input, filter,
strides, paddings, and groups parameters. The size of each dimension of the
parameters is checked in the infer-shape method.
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/conv2d_transpose_op.cc
浏览文件 @
483947c4
...
@@ -54,15 +54,16 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
...
@@ -54,15 +54,16 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
AddInput
(
AddInput
(
"Input"
,
"Input"
,
"(Tensor) The input tensor of convolution transpose operator. "
"(Tensor) The input tensor of convolution transpose operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of input channels, H and W is the height and width of image."
);
"number of input channels, H is the height of the image, and "
"W is the width of the image."
);
AddInput
(
"Filter"
,
AddInput
(
"Filter"
,
"(Tensor) The filter tensor of convolution transpose operator."
"(Tensor) The filter tensor of convolution transpose operator."
"The format of the filter tensor is CMHW, where C is the number of "
"The format of the filter tensor is CMHW, where C is the number of "
"output image channels, M is the number of input image channels, "
"output image channels, M is the number of input image channels, "
"H
and W is height and width of
filter. "
"H
is the height of the filter, and W is the width of the
filter. "
"We enforce groups number == 1 and padding == 0 in "
"We enforce groups number == 1 and padding == 0 in "
"
convolution transpose S
cenario."
);
"
the convolution transpose s
cenario."
);
AddOutput
(
"Output"
,
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution transpose operator."
"(Tensor) The output tensor of convolution transpose operator."
"The format of output tensor is also NCHW."
);
"The format of output tensor is also NCHW."
);
...
@@ -73,9 +74,12 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
...
@@ -73,9 +74,12 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
"paddings of convolution transpose operator."
)
"paddings of convolution transpose operator."
)
.
SetDefault
({
0
,
0
});
.
SetDefault
({
0
,
0
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
The convolution transpose operation calculates the output based on the input, filter
Convolution Transpose Operator.
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
The convolution transpose operation calculates the output based on the input,
filter, strides, paddings, and groups parameters. The size of each dimension
of the parameters is checked in the infer-shape method.
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/conv_cudnn_op.cc
浏览文件 @
483947c4
...
@@ -29,7 +29,7 @@ class CudnnConvOpMaker : public Conv2DOpMaker {
...
@@ -29,7 +29,7 @@ class CudnnConvOpMaker : public Conv2DOpMaker {
"workspace is a section of GPU memory which will be "
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"workspace size can increase performance but also requires "
"better hardwar
d. This size should be carefully setted
."
)
"better hardwar
e. This size should be chosen carefully
."
)
.
SetDefault
(
4096
);
.
SetDefault
(
4096
);
}
}
};
};
...
...
paddle/operators/conv_shift_op.cc
浏览文件 @
483947c4
...
@@ -96,14 +96,13 @@ as used in the Neural Turing Machine: https://arxiv.org/abs/1410.5401
...
@@ -96,14 +96,13 @@ as used in the Neural Turing Machine: https://arxiv.org/abs/1410.5401
The equation is:
The equation is:
\f[
$$Out[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} X_{i+j} * Y_{j}$$
Out[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} X_{i+j} * Y_{j}
\f]
where X's index is computed modulo M, and b's index is computed modulo N.
where X's index is computed modulo M, and Y's index is computed modulo N.
Both inputs X and Y can carry LoD (Level of Details) information.
However, the output only shares the LoD information with input X.
Both of the input `X` and `Y` can carry LoD (Level of Details) information.
However, the output only shares the LoD information with input `X`.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/cos_sim_op.cc
浏览文件 @
483947c4
...
@@ -79,15 +79,16 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -79,15 +79,16 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Cosine Similarity Operator.
Cosine Similarity Operator.
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).
$Out = X^T * Y / (\sqrt{X^T * X} * \sqrt{Y^T * Y})$
The input
`X` and `Y`
must have the same shape, except that the 1st dimension
The input
X and Y
must have the same shape, except that the 1st dimension
of input
`Y` could be just 1 (different from input `X`
), which will be
of input
Y could be just 1 (different from input X
), which will be
broadcasted to match the shape of input
`X`
before computing their cosine
broadcasted to match the shape of input
X
before computing their cosine
similarity.
similarity.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input X.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/crf_decoding_op.cc
0 → 100644
浏览文件 @
483947c4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/crf_decoding_op.h"
namespace
paddle
{
namespace
operators
{
class
CRFDecodingOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
CRFDecodingOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Emission"
,
"(LoDTensor, default: LoDTensor<float>). A LoDTensor with shape "
"[N x D] where N is the size of the mini-batch and D is the total "
"tag number. This input is the unscaled emission weight matrix of "
"the linear_chain_crf operator."
);
AddInput
(
"Transition"
,
"(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
"This input is the transition weights learned by the linear_chain_crf "
"operator, denoted as w. The 1st row of w are transition weights for "
"the start mask. The 2nd row of w are transition weights for the end "
"mask. Transition weights between other tags begin from the 3rd row of "
"w. See more details in comments of the linear_chain_crf operator."
);
AddInput
(
"Label"
,
"(LoDTensor, LoDTensor<int>). The ground truth with shape "
"[N x 1]. This input is optional. See more details in the operator's "
"comments."
)
.
AsDispensable
();
AddOutput
(
"ViterbiPath"
,
"(LoDTensor, LoDTensor<int>). The decoding results. What to "
"return changes depending on whether the Input(Label) (the groud "
"truth) is given. See more details in the operator's comment."
);
AddComment
(
R"DOC(
The crf_decoding operator reads the emission feature weights and the transition
freature weights learned by the linear_chain_crf operator. It implements the
Viterbi algorithm which is a dynamic programming algorithm for finding the most
likely sequence of hidden states, called the Viterbi path, that results in a
sequence of observed tags.
The output of this operator changes according to whether Input(Label) is given:
1. Input(Label) is given:
This happens in training. This operator is used to co-work with the chunk_eval
operator.
When Input(Label) is given, the crf_decoding operator returns a row vector
with shape [N x 1] whose values are fixed to be 0, indicating an incorrect
prediction, or 1 indicating a tag is correctly predicted. Such an ouput is the
input to chunk_eval operator.
2. Input(Label) is not given:
This is the standard decoding process.
The crf_decoding operator returns a row vecotr with shape [N x 1] whose values
range from 0 to maximum tag number - 1. Each element indicates an index of a
predicted tag.
)DOC"
);
}
};
class
CRFDecodingOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Emission"
),
"Input(Emission) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Transition"
),
"Input(Transition) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ViterbiPath"
),
"Output(ViterbiPath) should be not null."
);
auto
emission_dims
=
ctx
->
GetInputDim
(
"Emission"
);
PADDLE_ENFORCE_EQ
(
emission_dims
.
size
(),
2UL
,
"The Input(Emission) should be a 2-D tensor."
);
PADDLE_ENFORCE
(
emission_dims
[
0
],
"An empty mini-batch is not allowed."
);
auto
transition_dims
=
ctx
->
GetInputDim
(
"Transition"
);
PADDLE_ENFORCE_EQ
(
transition_dims
.
size
(),
2UL
,
"The Input(Transition) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
transition_dims
[
0
]
-
2
,
transition_dims
[
1
],
"An invalid dimension for the Input(Transition), which should "
"be a 2-D tensor with shape [(D + 2) x D]."
);
PADDLE_ENFORCE_EQ
(
emission_dims
[
1
],
transition_dims
[
1
],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"should be equal to the tag number."
);
if
(
ctx
->
HasInput
(
"Label"
))
{
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE
(
label_dims
.
size
()
==
2UL
&&
label_dims
[
1
]
==
1UL
,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1."
);
PADDLE_ENFORCE_EQ
(
emission_dims
[
0
],
label_dims
[
0
],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same."
);
}
ctx
->
ShareLoD
(
"Emission"
,
/*->*/
"ViterbiPath"
);
ctx
->
SetOutputDim
(
"ViterbiPath"
,
{
emission_dims
[
0
],
1
});
}
protected:
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"Emission"
)
->
type
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
crf_decoding
,
ops
::
CRFDecodingOp
,
ops
::
CRFDecodingOpMaker
);
REGISTER_OP_CPU_KERNEL
(
crf_decoding
,
ops
::
CRFDecodingOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
CRFDecodingOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/crf_decoding_op.h
0 → 100644
浏览文件 @
483947c4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
using
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
CRFDecodingOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"The crf_decoding operator can only run on CPU."
);
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
decoded_path
=
ctx
.
Output
<
Tensor
>
(
"ViterbiPath"
);
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
"The Input(Emission) should be a sequence."
);
auto
lod
=
emission_weights
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Emission) must be a sequence."
);
const
size_t
level
=
0
;
const
size_t
seq_num
=
lod
[
level
].
size
()
-
1
;
int
*
path
=
decoded_path
->
mutable_data
<
int
>
(
platform
::
CPUPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
int
>
()(
ctx
.
device_context
(),
decoded_path
,
0
);
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
Tensor
decoded_path_one_seq
=
decoded_path
->
Slice
(
start_pos
,
end_pos
);
Decode
(
emission_weights
->
Slice
(
start_pos
,
end_pos
),
*
transition_weights
,
&
decoded_path_one_seq
);
}
if
(
label
)
{
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
const
int
*
label_value
=
label
->
data
<
int
>
();
size_t
batch_size
=
emission_weights
->
dims
()[
0
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
path
[
i
]
=
label_value
[
i
]
==
path
[
i
]
?
1
:
0
;
}
}
}
private:
void
Decode
(
const
Tensor
&
emission_weights
,
const
Tensor
&
transition_weights
,
Tensor
*
decoded_path
)
const
{
auto
emission_dims
=
emission_weights
.
dims
();
const
size_t
seq_len
=
emission_dims
[
0
];
const
size_t
tag_num
=
emission_dims
[
1
];
const
size_t
state_trans_base_idx
=
2
;
const
T
*
x
=
emission_weights
.
data
<
T
>
();
const
T
*
w
=
transition_weights
.
data
<
T
>
();
int
*
path
=
decoded_path
->
data
<
int
>
();
// alpha is a memo table. An element alpha(k, v) records the score of the
// best sequence of tags from position 1 to position k with v being the end
// tag.
Tensor
alpha
;
T
*
alpha_value
=
alpha
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
Tensor
track
;
int
*
track_value
=
track
.
mutable_data
<
int
>
(
emission_dims
,
platform
::
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
alpha_value
[
i
]
=
w
[
i
]
+
x
[
i
];
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
int
max_j
=
0
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
T
score
=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
+
w
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
if
(
score
>
max_score
)
{
max_score
=
score
;
max_j
=
j
;
}
}
alpha_value
[
k
*
tag_num
+
i
]
=
max_score
+
x
[
k
*
tag_num
+
i
];
track_value
[
k
*
tag_num
+
i
]
=
max_j
;
}
}
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
int
max_i
=
0
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
score
=
alpha_value
[(
seq_len
-
1
)
*
tag_num
+
i
]
+
w
[
tag_num
+
i
];
if
(
score
>
max_score
)
{
max_score
=
score
;
max_i
=
i
;
}
}
path
[
seq_len
-
1
]
=
max_i
;
for
(
int
k
=
seq_len
-
1
;
k
>=
1
;
--
k
)
{
path
[
k
-
1
]
=
max_i
=
track_value
[
k
*
tag_num
+
max_i
];
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/crop_op.cc
浏览文件 @
483947c4
...
@@ -56,34 +56,35 @@ class CropOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -56,34 +56,35 @@ class CropOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"The input of pad op. "
"The input of pad op. "
"The input should be a k-D tensor(k > 0 and k < 7)"
);
"The input should be a k-D tensor(k > 0 and k < 7)
.
"
);
AddInput
(
"Y"
,
AddInput
(
"Y"
,
"The input used as reference for cropping"
"The input used as reference for cropping
,
"
"
with the same dimension as X.
"
)
"
which is of the same dimensions as X.
"
)
.
AsDispensable
();
.
AsDispensable
();
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"The output of crop op "
"The output of crop op
,
"
"w
ith the same dimension
as X."
);
"w
hich is of the same dimensions
as X."
);
AddAttr
<
std
::
vector
<
int
>>
(
"offsets"
,
AddAttr
<
std
::
vector
<
int
>>
(
"offsets"
,
"A list<int> describing offsets to be cropped."
"A list<int> describing offsets to be cropped.
"
"The size of offsets list should be
as
same as "
"The size of offsets list should be
the
same as "
"
dimension size of
input X."
);
"
the dimension size of
input X."
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"A list<int> describing the shape of output."
"A list<int> describing the shape of output.
"
"The size of shape list should be
as
same as "
"The size of shape list should be
the
same as "
"
dimension size of
input X."
)
"
the dimension size of
input X."
)
.
SetDefault
(
std
::
vector
<
int
>
());
.
SetDefault
(
std
::
vector
<
int
>
());
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Crop Operator.
Crop Operator.
Crop input into output, as specified by offsets and shape.
Crop input into output, as specified by offsets and shape.
There are two ways to set shape:
There are two ways to set shape:
1. referenc
input: crop input X as
shape as reference input.
1. referenc
e input: crop input X into the same
shape as reference input.
The dimension of reference input should
The dimension of reference input should
be
as same as
input X.
be
the same as the dimension of
input X.
2. shape list: crop input X
by
shape described by a list<int>.
2. shape list: crop input X
into the
shape described by a list<int>.
The size of shape list should be
as
same as
The size of shape list should be
the
same as
dimension size of
input X.
the dimension size of
input X.
The input should be a k-D tensor(k > 0 and k < 7). As an example:
The input should be a k-D tensor(k > 0 and k < 7). As an example:
...
@@ -91,20 +92,20 @@ Given:
...
@@ -91,20 +92,20 @@ Given:
X = [[0, 1, 2, 0, 0]
X = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
[0, 0, 0, 0, 0]]
,
and
and
offsets = [0, 1]
offsets = [0, 1]
,
and
and
shape = [2, 2]
shape = [2, 2]
,
then we get
we get:
Out = [[1, 2],
Out = [[1, 2],
[3, 4]]
[3, 4]]
.
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
483947c4
...
@@ -49,7 +49,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
...
@@ -49,7 +49,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
}
}
protected:
protected:
// Explicitly set that
data type of the output of the cross_entropy operator
// Explicitly set that
the data type of computation kernel of cross_entropy
// is determined by its input "X".
// is determined by its input "X".
framework
::
DataType
IndicateDataType
(
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
@@ -96,7 +96,8 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
...
@@ -96,7 +96,8 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
}
}
protected:
protected:
// CrossEntropy's data type just determined by "X"
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework
::
DataType
IndicateDataType
(
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
());
return
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
());
...
@@ -117,9 +118,9 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -117,9 +118,9 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
"Label"
,
"Label"
,
"(Tensor, default Tensor<int>), the ground truth which is "
"(Tensor, default Tensor<int>), the ground truth which is "
"a 2-D tensor. "
"a 2-D tensor. "
"When soft_label is set to false,
`Label`
is a Tensor<int> with shape "
"When soft_label is set to false,
Label
is a Tensor<int> with shape "
"[N x 1]. "
"[N x 1]. "
"When soft_label is set to true,
`Label`
is a Tensor<float/double> "
"When soft_label is set to true,
Label
is a Tensor<float/double> "
"with shape [N x K]."
);
"with shape [N x K]."
);
AddOutput
(
"Y"
,
AddOutput
(
"Y"
,
"(Tensor, default Tensor<float>), a 2-D tensor "
"(Tensor, default Tensor<float>), a 2-D tensor "
...
@@ -137,13 +138,13 @@ computation.
...
@@ -137,13 +138,13 @@ computation.
1) One-hot cross-entropy:
1) One-hot cross-entropy:
soft_label = false, Label[i, 0] indicates the class index for sample i:
soft_label = false, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
$Y[i] = -\log(X[i, Label[i]])$
2) Soft-label cross-entropy:
2) Soft-label cross-entropy:
soft_label = true, Label[i, j] indicates the soft label of class j
soft_label = true, Label[i, j] indicates the soft label of class j
for sample i:
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
$Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
Please make sure that in this case the summuation of each row of Label
Please make sure that in this case the summuation of each row of Label
equals one.
equals one.
...
@@ -153,8 +154,9 @@ computation.
...
@@ -153,8 +154,9 @@ computation.
non-zero element (equals 1), soft-label cross-entropy degenerates to a
non-zero element (equals 1), soft-label cross-entropy degenerates to a
one-hot cross-entropy with one-hot label representation.
one-hot cross-entropy with one-hot label representation.
Both the input `X` and `Label` can carry the LoD (Level of Details) information,
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input X.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/decayed_adagrad_op.cc
浏览文件 @
483947c4
...
@@ -75,11 +75,18 @@ class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -75,11 +75,18 @@ class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
"Constant for numerical stability"
)
"Constant for numerical stability"
)
.
SetDefault
(
1.0e-6
f
);
.
SetDefault
(
1.0e-6
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Decayed Adagrad Optimizer.
Decayed Adagrad
The update is done as follows:
moment_out = decay * moment + (1 - decay) * grad * grad
$$
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
moment\_out = decay * moment + (1 - decay) * grad * grad \\
param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + epsilon}
$$
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have an epsilon attribute. It is added here for numerical
stability to avoid the division by zero error.
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/dropout_op.cc
浏览文件 @
483947c4
...
@@ -43,22 +43,24 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -43,22 +43,24 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
DropoutOpMaker
(
framework
::
OpProto
*
proto
,
DropoutOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddAttr
<
float
>
(
"dropout_prob"
,
"Probability of setting units to zero."
)
.
SetDefault
(
.5
f
);
AddAttr
<
bool
>
(
"is_training"
,
"Whether in training phase."
).
SetDefault
(
true
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddInput
(
"X"
,
"The input of dropout op."
);
AddInput
(
"X"
,
"The input of dropout op."
);
AddOutput
(
"Out"
,
"The output of dropout op."
);
AddOutput
(
"Out"
,
"The output of dropout op."
);
AddOutput
(
"Mask"
,
"The random sampled dropout mask."
).
AsIntermediate
();
AddOutput
(
"Mask"
,
"The random sampled dropout mask."
).
AsIntermediate
();
AddAttr
<
float
>
(
"dropout_prob"
,
"Probability of setting units to zero."
)
.
SetDefault
(
.5
f
);
AddAttr
<
bool
>
(
"is_training"
,
"True if in training phase."
).
SetDefault
(
true
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Dropout Operator.
Dropout Operator.
'Dropout'
refers to randomly dropping out units in a nerual network. It is a
Dropout
refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
the given dropout probability) the outputs of some units to zero, while others
being set to their inputs.
are set equal to their corresponding inputs.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/dynamic_recurrent_op.cc
浏览文件 @
483947c4
...
@@ -386,12 +386,13 @@ class DynamicRecurrentOpProtoAndCheckerMaker
...
@@ -386,12 +386,13 @@ class DynamicRecurrentOpProtoAndCheckerMaker
RNNAlgorithm
::
kArgNames
[
RNNAlgorithm
::
ComputeMode
::
kForward
];
RNNAlgorithm
::
kArgNames
[
RNNAlgorithm
::
ComputeMode
::
kForward
];
// inputs and outputs stored in proto
// inputs and outputs stored in proto
AddInput
(
name
.
inlinks
,
AddInput
(
name
.
inlinks
,
"
t
he inputs that need to be segmented for each step."
)
"
T
he inputs that need to be segmented for each step."
)
.
AsDuplicable
();
.
AsDuplicable
();
AddInput
(
name
.
initial_states
,
"
variables to initializ
e states."
)
AddInput
(
name
.
initial_states
,
"
Variables to initialize th
e states."
)
.
AsDuplicable
();
.
AsDuplicable
();
AddOutput
(
name
.
outlinks
,
"the outputs that need to concated for all steps."
)
AddOutput
(
name
.
outlinks
,
"The outputs that need to be concatenated for all steps."
)
.
AsDuplicable
();
.
AsDuplicable
();
AddOutput
(
name
.
step_scopes
,
"step scopes"
);
AddOutput
(
name
.
step_scopes
,
"step scopes"
);
...
@@ -399,7 +400,12 @@ class DynamicRecurrentOpProtoAndCheckerMaker
...
@@ -399,7 +400,12 @@ class DynamicRecurrentOpProtoAndCheckerMaker
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
ex_states
,
"names of ex_states"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
ex_states
,
"names of ex_states"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
states
,
"names of states"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
states
,
"names of states"
);
AddComment
(
"This is a RNN operator for varience-length sequences."
);
AddComment
(
R"DOC(
Dynamic Recurrent Operator.
This is a RNN operator for varience-length sequences.
)DOC"
);
}
}
};
};
...
...
paddle/operators/elementwise_add_op.cc
浏览文件 @
483947c4
...
@@ -22,7 +22,7 @@ class ElementwiseAddOpMaker : public ElementwiseOpMaker {
...
@@ -22,7 +22,7 @@ class ElementwiseAddOpMaker : public ElementwiseOpMaker {
ElementwiseAddOpMaker
(
framework
::
OpProto
*
proto
,
ElementwiseAddOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
ElementwiseOpMaker
(
proto
,
op_checker
)
{
:
ElementwiseOpMaker
(
proto
,
op_checker
)
{
SetComment
(
"
add"
,
"Out = X + Y
"
);
SetComment
(
"
Add"
,
"$Out = X + Y$
"
);
AddComment
(
comment_
);
AddComment
(
comment_
);
}
}
};
};
...
...
paddle/operators/elementwise_div_op.cc
浏览文件 @
483947c4
...
@@ -22,7 +22,7 @@ class ElementwiseDivOpMaker : public ElementwiseOpMaker {
...
@@ -22,7 +22,7 @@ class ElementwiseDivOpMaker : public ElementwiseOpMaker {
ElementwiseDivOpMaker
(
framework
::
OpProto
*
proto
,
ElementwiseDivOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
ElementwiseOpMaker
(
proto
,
op_checker
)
{
:
ElementwiseOpMaker
(
proto
,
op_checker
)
{
SetComment
(
"Div"
,
"
Out = X / Y
"
);
SetComment
(
"Div"
,
"
$Out = X / Y$
"
);
AddComment
(
comment_
);
AddComment
(
comment_
);
}
}
};
};
...
...
paddle/operators/elementwise_mul_op.cc
浏览文件 @
483947c4
...
@@ -23,7 +23,7 @@ class ElementwiseMulOpMaker : public ElementwiseOpMaker {
...
@@ -23,7 +23,7 @@ class ElementwiseMulOpMaker : public ElementwiseOpMaker {
ElementwiseMulOpMaker
(
framework
::
OpProto
*
proto
,
ElementwiseMulOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
ElementwiseOpMaker
(
proto
,
op_checker
)
{
:
ElementwiseOpMaker
(
proto
,
op_checker
)
{
SetComment
(
"Mul"
,
"
Out = X ⊙ Y
"
);
SetComment
(
"Mul"
,
"
$Out = X
\\
odot
\\
Y$
"
);
AddComment
(
comment_
);
AddComment
(
comment_
);
}
}
};
};
...
...
paddle/operators/elementwise_op.h
浏览文件 @
483947c4
...
@@ -46,29 +46,33 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -46,29 +46,33 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
ElementwiseOpMaker
(
framework
::
OpProto
*
proto
,
ElementwiseOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
R"DOC(
AddInput
(
"X"
,
"(Tensor) The first input tensor of elementwise op"
);
The first input of elementwise op, it's a tensor of any dimensions.
AddInput
(
"Y"
,
"(Tensor) The second input tensor of elementwise op"
);
)DOC"
);
AddOutput
(
"Out"
,
"The output of elementwise op"
);
AddInput
(
"Y"
,
R"DOC(
The sencond input of elementwise op, it's a tensor and it's dimensions
must be small or equal to X's dimensions.
)DOC"
);
AddAttr
<
int
>
(
"axis"
,
AddAttr
<
int
>
(
"axis"
,
R"DOC(
"(int, default -1) The starting dimension index "
When the shape(Y) does not equal the shape(X),Y will be broadcasted
"for broadcasting Y onto X"
)
to match the shape of X and axis should be dimension index Y in X
)DOC"
)
.
SetDefault
(
-
1
)
.
SetDefault
(
-
1
)
.
EqualGreaterThan
(
-
1
);
.
EqualGreaterThan
(
-
1
);
AddOutput
(
"Out"
,
"The output of elementwise op"
);
comment_
=
R"DOC(
comment_
=
R"DOC(
Limited elementwise {name} operator.The equation is: Out = {equation}.
Limited Elementwise {name} Operator.
1. The shape of Y should be same with X or
2. Y's shape is a subset of X.
The equation is:
Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.
{equation}
example:
X is a tensor of any dimension and the dimensions of tensor Y must be smaller than
or equal to the dimensions of X.
There are two cases for this operator:
1. The shape of Y is same with X;
2. The shape of Y is a subset of X.
For case 2:
Y will be broadcasted to match the shape of X and axis should be
the starting dimension index for broadcasting Y onto X.
example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
...
@@ -76,7 +80,8 @@ Limited elementwise {name} operator.The equation is: Out = {equation}.
...
@@ -76,7 +80,8 @@ Limited elementwise {name} operator.The equation is: Out = {equation}.
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
Both the input X and Y can carry the LoD (Level of Details) information,
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input X.
or not. But the output only shares the LoD information with input X.
)DOC"
;
)DOC"
;
AddComment
(
comment_
);
AddComment
(
comment_
);
}
}
...
...
paddle/operators/elementwise_sub_op.cc
浏览文件 @
483947c4
...
@@ -22,7 +22,7 @@ class ElementwiseSubOpMaker : public ElementwiseOpMaker {
...
@@ -22,7 +22,7 @@ class ElementwiseSubOpMaker : public ElementwiseOpMaker {
ElementwiseSubOpMaker
(
framework
::
OpProto
*
proto
,
ElementwiseSubOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
ElementwiseOpMaker
(
proto
,
op_checker
)
{
:
ElementwiseOpMaker
(
proto
,
op_checker
)
{
SetComment
(
"Sub"
,
"
Out = X - Y
"
);
SetComment
(
"Sub"
,
"
$Out = X - Y$
"
);
AddComment
(
comment_
);
AddComment
(
comment_
);
}
}
};
};
...
...
paddle/operators/feed_op.cc
浏览文件 @
483947c4
...
@@ -59,8 +59,13 @@ class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -59,8 +59,13 @@ class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of feed op"
);
AddInput
(
"X"
,
"The input of feed op"
);
AddOutput
(
"Out"
,
"The output of feed op"
);
AddOutput
(
"Out"
,
"The output of feed op"
);
AddComment
(
"feed op, it should not be configured by users directly"
);
AddAttr
<
int
>
(
"col"
,
"(int) The column of feed"
);
AddAttr
<
int
>
(
"col"
,
"column of feed"
);
AddComment
(
R"DOC(
Feed Operator.
It should not be configured by users directly.
)DOC"
);
}
}
};
};
...
...
paddle/operators/fetch_op.cc
浏览文件 @
483947c4
...
@@ -66,8 +66,13 @@ class FetchOpInfoMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -66,8 +66,13 @@ class FetchOpInfoMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of fetch op"
);
AddInput
(
"X"
,
"The input of fetch op"
);
AddOutput
(
"Out"
,
"The output of fetch op"
);
AddOutput
(
"Out"
,
"The output of fetch op"
);
AddComment
(
"fetch op, it should not be configured by users directly"
);
AddAttr
<
int
>
(
"col"
,
"(int) The column of fetch"
);
AddAttr
<
int
>
(
"col"
,
"column of fetch"
);
AddComment
(
R"DOC(
Fetch Operator.
It should not be configured by users directly.
)DOC"
);
}
}
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/operators/fill_constant_batch_size_like_op.cc
浏览文件 @
483947c4
...
@@ -70,11 +70,16 @@ class FillConstantBatchSizeLikeOpMaker
...
@@ -70,11 +70,16 @@ class FillConstantBatchSizeLikeOpMaker
"with the specified value"
);
"with the specified value"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) The shape of the output"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) The shape of the output"
);
AddAttr
<
int
>
(
"dim_idx"
,
AddAttr
<
int
>
(
"dim_idx"
,
"(int, default 0)
t
he index of batch size dimension"
)
"(int, default 0)
T
he index of batch size dimension"
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddAttr
<
float
>
(
"value"
,
"(float, default 0) The value to be filled"
)
AddAttr
<
float
>
(
"value"
,
"(float, default 0) The value to be filled"
)
.
SetDefault
(
0.0
f
);
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(Fill up a variable with specified constant value.)DOC"
);
AddComment
(
R"DOC(
FillConstantBatchSizeLike Operator.
Fill up a variable with specified constant value.
)DOC"
);
}
}
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/operators/fill_constant_op.cc
浏览文件 @
483947c4
...
@@ -54,7 +54,12 @@ class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -54,7 +54,12 @@ class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor) Tensor of specified shape will be filled "
"(Tensor) Tensor of specified shape will be filled "
"with the specified value"
);
"with the specified value"
);
AddComment
(
R"DOC(Fill up a variable with specified constant value.)DOC"
);
AddComment
(
R"DOC(
FillConstantBatchSizeLike Operator.
Fill up a variable with specified constant value.
)DOC"
);
}
}
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/operators/fill_zeros_like_op.cc
浏览文件 @
483947c4
...
@@ -37,11 +37,13 @@ class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -37,11 +37,13 @@ class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of fill-zeros-like op."
);
AddInput
(
"X"
,
"The input of fill-zeros-like op."
);
AddOutput
(
"Y"
,
"The vari
ba
le will be filled up with zeros."
);
AddOutput
(
"Y"
,
"The vari
ab
le will be filled up with zeros."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Fill up a vriable with zeros.
FillZerosLike Operator.
Fill up a variable with zeros.
The output will have the same size as the input.
The output will have the same size with input.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/gather_op.cc
浏览文件 @
483947c4
...
@@ -67,11 +67,28 @@ class GatherOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -67,11 +67,28 @@ class GatherOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The source input of gather op"
);
AddInput
(
"X"
,
"The source input of gather op"
);
AddInput
(
"Index"
,
"The index input of gather op"
);
AddInput
(
"Index"
,
"The index input of gather op"
);
AddOutput
(
"Out"
,
"The output of
add
op"
);
AddOutput
(
"Out"
,
"The output of
gather
op"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Gather Operator by selecting from the first axis,
Gather Operator.
$Out = X[Index]$
Out is obtained by gathering entries of the outer-most dimension
of X indexed by Index and concatenate them together.
Example:
X = [[1, 2],
[3, 4],
[5, 6]]
Index = [[1, 2]]
Then:
Out = [[3, 4],
[5, 6]]
Out = X[Index]
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/gaussian_random_op.cc
浏览文件 @
483947c4
...
@@ -68,21 +68,35 @@ class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -68,21 +68,35 @@ class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
GaussianRandomOpMaker
(
framework
::
OpProto
*
proto
,
GaussianRandomOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddOutput
(
"Out"
,
"output matrix of random op"
);
AddOutput
(
"Out"
,
"Output matrix of gaussian random op"
);
AddComment
(
R"DOC(
GaussianRandom operator.
Use to initialize tensor with gaussian random generator.
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"The dimension of random tensor."
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
AddAttr
<
float
>
(
"mean"
,
"mean of random tensor."
).
SetDefault
(
.0
f
);
"(vector<int>) "
AddAttr
<
float
>
(
"std"
,
"std of random tensor."
).
SetDefault
(
1.0
f
);
"The dimension of random tensor."
);
AddAttr
<
float
>
(
"mean"
,
"(float, default 0.0) "
"mean of random tensor."
)
.
SetDefault
(
.0
f
);
AddAttr
<
float
>
(
"std"
,
"(float, default 1.0) "
"std of random tensor."
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
"Random seed of generator."
"Random seed of generator."
"0 means use system wide seed"
)
"0 means use system wide seed
.
"
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"data_type"
,
"output data type"
)
AddAttr
<
int
>
(
"data_type"
,
"(int, default 5(FP32)) "
"Output data type."
)
.
SetDefault
(
framework
::
DataType
::
FP32
);
.
SetDefault
(
framework
::
DataType
::
FP32
);
AddComment
(
R"DOC(
GaussianRandom Operator.
Used to initialize tensors with gaussian random generator.
)DOC"
);
}
}
};
};
...
...
paddle/operators/gru_unit_op.cc
浏览文件 @
483947c4
...
@@ -80,19 +80,21 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -80,19 +80,21 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"HiddenPrev"
,
AddInput
(
"HiddenPrev"
,
"(Tensor) Matrix with shape [batch_size, frame_size] for the "
"(Tensor) Matrix with shape [batch_size, frame_size] for the "
"states of previous time step."
);
"states of previous time step."
);
AddInput
(
"Weight"
,
AddInput
(
"Weight"
,
"(Tensor) Weight matrix with shape [frame_size, frame_size * 3]. "
"(Tensor) Weight matrix with shape [frame_size, frame_size * 3]. "
"The elements continuous in memory can be divided into two parts. "
"The elements continuous in memory can be divided into two parts. "
"The first part are weights of the update gate and reset gate "
"The first part are weights of the update gate and reset gate "
"with shape [frame_size, frame_size * 2], and the second part are "
"with shape [frame_size, frame_size * 2], and the second part are "
"weights of output candidate with shape [frame_size, frame_size]"
);
"weights of output candidate with shape [frame_size, frame_size]."
);
AddInput
(
"Bias"
,
AddInput
(
"(Tensor) Bias vector with shape [1, frame_size * 3] concating "
"Bias"
,
"(Tensor) Bias vector with shape [1, frame_size * 3] concatenating "
"bias of the update gate, reset gate and output candidate."
)
"bias of the update gate, reset gate and output candidate."
)
.
AsDispensable
();
.
AsDispensable
();
AddOutput
(
"Gate"
,
AddOutput
(
"Gate"
,
"(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
"(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
"output of update gate, reset gate and output candidate"
)
"output of update gate, reset gate and output candidate
.
"
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"ResetHiddenPrev"
,
AddOutput
(
"ResetHiddenPrev"
,
"(Tensor) Matrix with shape [batch_size, frame_size] for the "
"(Tensor) Matrix with shape [batch_size, frame_size] for the "
...
@@ -112,16 +114,19 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -112,16 +114,19 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
sigmoid
)
.
SetDefault
(
sigmoid
)
.
InEnum
({
identity
,
sigmoid
,
tanh
,
relu
});
.
InEnum
({
identity
,
sigmoid
,
tanh
,
relu
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
GRUUnit
Op implements part calculations of the GRU unit as following:
GRUUnit
Operator.
\f[
This operator implements partial calculations of the GRU unit as follows:
update \ gate: u_t = actGate(xu_t + W_u * hidden_prev + bias_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * hidden_prev + bias_r) \\
$$
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, hidden_prev) + bias_c) \\
update \ gate: u_t = actGate(xu_t + W_u * hidden_{prev} + bias_u) \\
output: h_t = dot((1-u_t), {h}_t) + dot(u_t, hidden_prev)
reset \ gate: r_t = actGate(xr_t + W_r * hidden_{prev} + bias_r) \\
\f]
output \ candidate: {h}_t = actNode({xc}_t + W_c * dot(r_t, hidden_{prev}) + bias_c) \\
output: h_t = dot((1-u_t), {h}_t) + dot(u_t, hidden_{prev})
$$
The rest of GRU unit can be completed by using FCOp's output as the input of GRUUnitOp.
The rest of GRU unit can be completed by using FCOp's output as the input of GRUUnitOp.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/huber_loss_op.cc
浏览文件 @
483947c4
...
@@ -59,10 +59,12 @@ class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -59,10 +59,12 @@ class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
"The shape is same as Input(X) and will be reused in backward."
)
"The shape is same as Input(X) and will be reused in backward."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"The output tensor with shape [batch_size, 1]
which represents
"
"The output tensor with shape [batch_size, 1] "
"the huber loss."
);
"
which represents
the huber loss."
);
AddAttr
<
AttrType
>
(
"delta"
,
"Hyper parameter in huber loss."
);
AddAttr
<
AttrType
>
(
"delta"
,
"Hyper parameter in huber loss."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
HuberLoss Operator.
Huber loss is a loss function used in robust regression. We define X as the
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
...
...
paddle/operators/increment_op.cc
浏览文件 @
483947c4
...
@@ -39,14 +39,18 @@ class IncrementOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -39,14 +39,18 @@ class IncrementOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor of increment operator"
);
AddInput
(
"X"
,
"(Tensor) The input tensor of increment operator"
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of increment operator."
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of increment operator."
);
AddComment
(
R"DOC(Increment operator
The equation is: Out = X + step
)DOC"
);
AddAttr
<
AttrType
>
(
"step"
,
AddAttr
<
AttrType
>
(
"step"
,
"(float, default 1.0) "
"The step size by which the "
"The step size by which the "
"input tensor will be incremented."
)
"input tensor will be incremented."
)
.
SetDefault
(
1.0
);
.
SetDefault
(
1.0
);
AddComment
(
R"DOC(
Increment Operator.
The equation is:
$$Out = X + step$$
)DOC"
);
}
}
};
};
...
...
paddle/operators/l1_norm_op.cc
浏览文件 @
483947c4
...
@@ -57,7 +57,7 @@ L1 Norm Operator.
...
@@ -57,7 +57,7 @@ L1 Norm Operator.
Computes the L1 norm of a tensor.
Computes the L1 norm of a tensor.
Out = sum (abs(X))
$$Out = \sum{|X|}$$
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
483947c4
...
@@ -22,52 +22,55 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -22,52 +22,55 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
LinearChainCRFOpMaker
(
framework
::
OpProto
*
proto
,
LinearChainCRFOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
AddInput
(
"Emission"
,
"Emission"
,
"(LoDTensor, default LoDTensor<float>) "
"(LoDTensor, default: LoDTensor<float>). "
"A 2-D LoDTensor with shape [N x D], where N is the size of the "
"The unscaled emission weight matrix for the linear chain CRF. "
"mini-batch and D is the total tag number. The unscaled emission "
"This input is a LoDTensor with shape [N x D] where N is the size of "
"weight matrix for the linear chain CRF. "
);
"the mini-batch and D is the total tag number."
);
AddInput
(
"Transition"
,
AddInput
(
"(Tensor, default Tensor<float>) A 2-D Tensor with shape "
"Transition"
,
"[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
"(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
"operator. See more details in the operator's comments."
);
"The learnable parameter for the linear_chain_crf operator. "
AddInput
(
"Label"
,
"See more details in the operator's comments."
);
"(LoDTensor, default LoDTensor<int>) A LoDTensor with shape "
AddInput
(
"[N x 1], where N is the total element number in a mini-batch. "
"Label"
,
"The ground truth."
);
"(LoDTensor, default: LoDTensor<int>). The ground truth which is a 2-D "
"LoDTensor with shape [N x 1], where N is the total element number in "
"a mini-batch."
);
AddOutput
(
AddOutput
(
"Alpha"
,
"Alpha"
,
"
Tensor, default: Tensor<float>. The forward vectors for the entire
"
"
(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D].
"
"
batch. A two dimensional tensor with shape [N x D],
"
"
The forward vectors for the entire batch. Denote it as
\f
$
\a
lpha
\f
$.
"
"
denoted as
\f
$
\a
lpha
\f
$.
\f
$
\a
lpha$
\f
is a memo table used to
"
"
\f
$
\a
lpha$
\f
is a memo table used to calculate the normalization
"
"
calculate the normalization factor in CRF.
\f
$
\a
lpha[k, v]$
\f
stores
"
"
factor in CRF.
\f
$
\a
lpha[k, v]$
\f
stores the unnormalized
"
"
the unnormalized probabilites of all possible unfinished sequences of
"
"
probabilites of all possible unfinished sequences of tags that end at
"
"
tags that end at
position
\f
$k$
\f
with tag
\f
$v$
\f
. For each
\f
$k$
\f
, "
"position
\f
$k$
\f
with tag
\f
$v$
\f
. For each
\f
$k$
\f
, "
"
\f
$
\a
lpha[k, v]$
\f
is a vector of length
\f
$D$
\f
with a component for "
"
\f
$
\a
lpha[k, v]$
\f
is a vector of length
\f
$D$
\f
with a component for "
"each tag value
\f
$v$
\f
. This vector is called a forward vecotr and "
"each tag value
\f
$v$
\f
. This vector is called a forward vecotr and "
"will also be used in backward computations."
)
"will also be used in backward computations."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"EmissionExps"
,
AddOutput
(
"EmissionExps"
,
"(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
"The exponentials of Input(Emission). This is an intermediate "
"The exponentials of Input(Emission). This is an intermediate "
"computational result in forward computation, and will be reused
"
"computational result in forward computation, and will be reused in
"
"in
backward computation."
)
"
backward computation."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"TransitionExps"
,
AddOutput
(
"The exponentials of Input(Transition). This is an intermediate "
"TransitionExps"
,
"computational result in forward computation, and will be reused "
"(Tensor, default Tensor<float>) A 2-D Tensor with shape "
"in backward computation."
)
"[(D + 2) x D]. The exponentials of Input(Transition). This is an "
"intermediate computational result in forward computation, and "
"will be reused in backward computation."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
AddOutput
(
"LogLikelihood"
,
"LogLikelihood"
,
"(Tensor, default
: Tensor<float>).
The logarithm of the conditional "
"(Tensor, default
Tensor<float>)
The logarithm of the conditional "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"tensor with shape [S x 1], where S is the sequence number in a "
"tensor with shape [S x 1], where S is the sequence number in a "
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"The output is no longer a LoDTensor."
);
"The output is no longer a LoDTensor."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
LinearChainCRF Operator.
Conditional Random Field defines an undirected probabilistic graph with nodes
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
...
@@ -81,29 +84,28 @@ and output must be linear sequences. Thus, the graph of such a CRF is a simple
...
@@ -81,29 +84,28 @@ and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
chain or a line, which results in the linear chain CRF.
This operator implements the Forward-Backward algorithm for the linear chain
This operator implements the Forward-Backward algorithm for the linear chain
CRF. Please
see
http://www.cs.columbia.edu/~mcollins/fb.pdf and
CRF. Please
refer to
http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for
reference
.
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for
details
.
Equation:
Equation:
1. Denote Input(Emission) to this operator as \f$x\f$ here.
- Denote Input(Emission) to this operator as \f$x\f$ here.
2. The first D values of Input(Transition) to this operator are for starting
- The first D values of Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
weights, denoted as \f$a\f$ here.
-
The next D values of Input(Transition) of this operator are for ending
3.
The next D values of Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
weights, denoted as \f$b\f$ here.
-
The remaning values of Input(Transition) are for transition weights,
4.
The remaning values of Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
denoted as \f$w\f$ here.
-
Denote Input(Label) as \f$s\f$ here.
5.
Denote Input(Label) as \f$s\f$ here.
The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
\f$P(s) = (1/Z)
\
exp(a_{s_1} + b_{s_L}
+ \sum_{l=1}^L x_{s_l}
+ \sum_{l=1}^L x_{s_l}
+ \sum_{l=2}^L w_{s_{l-1},s_l})\f$
+ \sum_{l=2}^L w_{s_{l-1},s_l})\f$
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
to the linear chain CRF.
to the linear chain CRF.
Finaly, the linear chain CRF operator outputs the logarithm of the conditional
Final
l
y, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.
likelihood of each training sample in a mini-batch.
NOTE:
NOTE:
...
@@ -179,8 +181,8 @@ class LinearChainCRFOp : public framework::OperatorWithKernel {
...
@@ -179,8 +181,8 @@ class LinearChainCRFOp : public framework::OperatorWithKernel {
}
}
protected:
protected:
// Explicitly set that the data type of
output of the
linear_chain_crf
// Explicitly set that the data type of
computation kernel of
linear_chain_crf
//
operator
is determined by its input "Emission".
// is determined by its input "Emission".
framework
::
DataType
IndicateDataType
(
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"Emission"
)
->
type
());
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"Emission"
)
->
type
());
...
...
paddle/operators/linear_chain_crf_op.h
浏览文件 @
483947c4
...
@@ -134,7 +134,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
...
@@ -134,7 +134,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
Tensor
emission_row_max
;
Tensor
emission_row_max
;
emission_row_max
.
mutable_data
<
T
>
(
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_size
),
1
}),
framework
::
make_ddim
({
static_cast
<
int
64_t
>
(
batch_size
),
1
}),
platform
::
CPUPlace
());
platform
::
CPUPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
...
@@ -273,7 +273,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
...
@@ -273,7 +273,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
const
int
*
lbl
=
label
.
data
<
int
>
();
const
int
*
lbl
=
label
.
data
<
int
>
();
PADDLE_ENFORCE_LT
(
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
static_cast
<
size_t
>
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
)
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
// Calculate the nominator part, which depends on the label sequence.
...
...
paddle/operators/load_op.cc
浏览文件 @
483947c4
...
@@ -115,14 +115,18 @@ class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -115,14 +115,18 @@ class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker {
LoadOpProtoMaker
(
framework
::
OpProto
*
proto
,
LoadOpProtoMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddOutput
(
"Out"
,
"The tensor need to be loaded"
);
AddOutput
(
"Out"
,
"(Tensor) The tensor need to be loaded"
);
AddComment
(
R"DOC(Load Operator
Load operator will load a tensor variable from disk file.
)DOC"
);
AddAttr
<
std
::
string
>
(
"file_path"
,
AddAttr
<
std
::
string
>
(
"file_path"
,
"(string) "
"Variable will be loaded from
\"
file_path
\"
."
)
"Variable will be loaded from
\"
file_path
\"
."
)
.
AddCustomChecker
(
.
AddCustomChecker
(
[](
const
std
::
string
&
path
)
{
return
!
path
.
empty
();
});
[](
const
std
::
string
&
path
)
{
return
!
path
.
empty
();
});
AddComment
(
R"DOC(
Load Operator.
Load operator will load a tensor variable from disk file.
)DOC"
);
}
}
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/operators/lod_rank_table_op.cc
0 → 100644
浏览文件 @
483947c4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
LoDRankTableOp
:
public
framework
::
OperatorBase
{
public:
LoDRankTableOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
auto
x
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDRankTable
>
();
out
->
Reset
(
x
.
lod
(),
static_cast
<
size_t
>
(
Attr
<
int
>
(
"level"
)));
}
};
class
LoDRankTableOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LoDRankTableOpProtoMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(LoDTensor) input lod tensor, must contain lod information."
);
AddOutput
(
"Out"
,
"(LoDRankTable) The rank table of specific level."
);
AddAttr
<
int
>
(
"level"
,
"(int) the specific lod level to rank."
)
.
SetDefault
(
0
)
.
EqualGreaterThan
(
0
);
AddComment
(
R"DOC(Create LoDRanTable by LoDTensor
LoD Rank Table stores the `level` of `lod` which is ordered by sequence
length in descending order. It is useful when implement dynamic RNN and is
shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice
output operators.
)DOC"
);
}
};
class
LoDRankTableInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"X"
),
"LoDRankTable must has input X"
);
}
};
class
LoDRankTableInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDescBind
&
op_desc
,
framework
::
BlockDescBind
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
o
)
->
SetType
(
framework
::
VarDesc
::
LOD_RANK_TABLE
);
}
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OPERATOR
(
lod_rank_table
,
paddle
::
operators
::
LoDRankTableOp
,
paddle
::
operators
::
LoDRankTableOpProtoMaker
,
paddle
::
operators
::
LoDRankTableInferShape
,
paddle
::
operators
::
LoDRankTableInferVarType
,
paddle
::
framework
::
EmptyGradOpMaker
);
paddle/operators/lookup_table_op.cc
浏览文件 @
483947c4
...
@@ -53,21 +53,27 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -53,21 +53,27 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"W"
,
AddInput
(
"W"
,
"An input represents embedding tensors,"
"An input represents embedding tensors,
"
"
which is a learnable parameter."
);
"which is a learnable parameter."
);
AddInput
(
"Ids"
,
AddInput
(
"Ids"
,
"An input with type int32 or int64"
"An input with type int32 or int64 "
"contains the ids to be looked up in W."
"contains the ids to be looked up in W. "
"Ids must be a column vector with rank = 2."
"Ids must be a column vector with rank = 2. "
"The 2nd dimension size must be 1"
);
"The 2nd dimension size must be 1."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type with W."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
AddAttr
<
bool
>
(
"is_sparse"
,
"Sparse update"
).
SetDefault
(
false
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"Sparse update"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Lookup Table Operator.
This operator is used to perform lookups on the parameter W,
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.
then concatenated into a dense tensor.
The input `Ids` can carry the LoD (Level of Details) information,
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD with input `Ids`.
or not. And the output only shares the LoD information with input Ids.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/lrn_op.cc
浏览文件 @
483947c4
...
@@ -45,72 +45,70 @@ class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -45,72 +45,70 @@ class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
LRNOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
LRNOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
R"DOC(
AddInput
(
"X"
,
(Tensor) The input of LRN operator. It must be a 4D tenor with NCHW format.
"(Tensor) The input of LRN operator. "
)DOC"
);
"It must be a 4D tenor with NCHW format."
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor) The output of LRN operator, which is also the 4D "
"(Tensor) The output of LRN operator, which is also the 4D "
"tensor with NCHW format."
);
"tensor with NCHW format."
);
AddOutput
(
"MidOut"
,
R"Doc(
AddOutput
(
"MidOut"
,
(Tensor)Middle result of lrn op.It's computed in forward process
"(Tensor) Middle result of LRN operator. It's computed in "
and also used in backward process.
"forward process and also used in backward process."
);
)Doc"
);
AddAttr
<
int
>
(
"n"
,
AddAttr
<
int
>
(
"n"
,
R"DOC(
"(int default 5) "
(int, default 5)n is “adjacent” kernel maps at the same spatial position.
"n is the
\"
adjacent
\"
kernel that maps "
)DOC
"
)
"at the same spatial position.
"
)
.
SetDefault
(
5
)
.
SetDefault
(
5
)
.
GreaterThan
(
0
);
.
GreaterThan
(
0
);
AddAttr
<
T
>
(
"k"
,
R"DOC(
AddAttr
<
T
>
(
"k"
,
(float, default 2.0)k is the bias.
"(float, default 2.0) "
)DOC
"
)
"k is the bias.
"
)
.
SetDefault
(
2.0
)
.
SetDefault
(
2.0
)
.
GreaterThan
(
0.0
);
.
GreaterThan
(
0.0
);
AddAttr
<
T
>
(
"alpha"
,
R"DOC(
AddAttr
<
T
>
(
"alpha"
,
(float, default 0.0001)alpha is the scale number.
"(float, default 0.0001) "
)DOC
"
)
"alpha is the scale number.
"
)
.
SetDefault
(
0.0001
)
.
SetDefault
(
0.0001
)
.
GreaterThan
(
0.0
);
.
GreaterThan
(
0.0
);
AddAttr
<
T
>
(
"beta"
,
R"DOC(
AddAttr
<
T
>
(
"beta"
,
(float, default 0.75)beta is the power number.
"(float, default 0.75) "
)DOC
"
)
"beta is the power number.
"
)
.
SetDefault
(
0.75
)
.
SetDefault
(
0.75
)
.
GreaterThan
(
0.0
);
.
GreaterThan
(
0.0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Local Response Normalization
.
Local Response Normalization Operator
.
This Function
comes from the paper
This operator
comes from the paper
"ImageNet Classification with Deep Convolutional Neural Networks".
"ImageNet Classification with Deep Convolutional Neural Networks".
The original formula is:
The original formula is:
Input(i, x, y)
$$
Output(i, x, y) = ----------------------------------------------
Output(i, x, y) = Input(i, x, y) / \left(
-- upper
k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
(k + alpha * > (Input(j, x, y))^2) ^ (beta)
(Input(j, x, y))^2
-- j = lower
\right)^{\beta}
$$
upper is `min(C, c + n/2)`
Function implementation:
lower if `max(0, c - n/2)`
Function implementation:
Inputs and outpus are in NCHW format, while input.shape.ndims() equals 4.
And dimensions 0 ~ 3 represent batch size, feature maps, rows,
and columns, respectively.
inputs and outpus is NCHW format, while input.shape.ndims() is equal 4.
Input and Output in the formula above is for each map(i) of one image, and
And the meaning of each dimension(0-3) is respectively batch size,
Input(i, x, y), Output(i, x, y) represents an element in an image.
feature maps, rows and columns.
Input and Output in the above formula is for each map(i) of one image, and
C is the number of feature maps of one image. n is a hyper-parameter
Input(i, x, y), Output(i, x, y) represents an element in an image.
configured when operator is initialized. The sum in the denominator
is the sum of the same positions in the neighboring maps.
C is the number of feature maps of one image, and n is a hyper-parameters
)DOC"
);
is configured when Function is initialized. The sum in the denominator
is the sum of the same position in the neighboring maps.
)DOC"
);
}
}
};
};
...
...
paddle/operators/lstm_op.cc
浏览文件 @
483947c4
...
@@ -103,7 +103,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -103,7 +103,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"H0"
,
AddInput
(
"H0"
,
"(Tensor, optional) the initial hidden state is an optional "
"(Tensor, optional) the initial hidden state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"input. This is a tensor with shape (N x D), where N is the "
"batch size
,
D is the hidden size."
)
"batch size
and
D is the hidden size."
)
.
AsDispensable
();
.
AsDispensable
();
AddInput
(
"C0"
,
AddInput
(
"C0"
,
"(Tensor, optional) the initial cell state is an optional "
"(Tensor, optional) the initial cell state is an optional "
...
@@ -134,85 +134,82 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -134,85 +134,82 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"BatchGate"
,
AddOutput
(
"BatchGate"
,
"(LoDTensor) This LoDTensor contains input gate, forget gate "
"(LoDTensor) This LoDTensor contains input gate, forget gate "
"and output gate after the nonlinear computation. This "
"and output gate after the nonlinear computation. This "
"LoDTensor has the same shape
with
the reorganized input, which "
"LoDTensor has the same shape
as
the reorganized input, which "
"is also be called batch input. The LoD size is 2. The first "
"is also be called batch input. The LoD size is 2. The first "
"LoD is the batch offsets and the second LoD contains the "
"LoD is the batch offsets and the second LoD contains the "
"indexes, which denote the position of reorganized sequence "
"indexes, which denote the position of reorganized sequence "
"in the raw input."
)
"in the raw input."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"BatchCellPreAct"
,
AddOutput
(
"BatchCellPreAct"
,
"(LoDTensor) This LoDTensor is
got
in the forward and used "
"(LoDTensor) This LoDTensor is
obtained
in the forward and used "
"in the backward."
)
"in the backward."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddAttr
<
bool
>
(
"usePeepholes"
,
AddAttr
<
bool
>
(
"usePeepholes"
,
"(bool, defa
lut:
True) "
"(bool, defa
ult
True) "
"whether to enable diagonal/peephole connections."
)
"whether to enable diagonal/peephole connections."
)
.
SetDefault
(
true
);
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"isReverse"
,
AddAttr
<
bool
>
(
"isReverse"
,
"(bool, defa
lut:
False) "
"(bool, defa
ult
False) "
"whether to compute reversed LSTM."
)
"whether to compute reversed LSTM."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
AddAttr
<
std
::
string
>
(
"gateActivation"
,
"gateActivation"
,
"(string, default
:
sigmoid)"
"(string, default sigmoid)"
"The activation for input gate, forget gate and output "
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default."
)
"gate, `sigmoid` by default."
)
.
SetDefault
(
"sigmoid"
);
.
SetDefault
(
"sigmoid"
);
AddAttr
<
std
::
string
>
(
"cellActivation"
,
AddAttr
<
std
::
string
>
(
"cellActivation"
,
"(string, default
:
tanh)"
"(string, default tanh)"
"The activation for cell output, `tanh` by defalut."
)
"The activation for cell output, `tanh` by defalut."
)
.
SetDefault
(
"tanh"
);
.
SetDefault
(
"tanh"
);
AddAttr
<
std
::
string
>
(
"candidateActivation"
,
AddAttr
<
std
::
string
>
(
"candidateActivation"
,
"(string, default
:
tanh)"
"(string, default tanh)"
"The activation for candidate hidden state, "
"The activation for candidate hidden state, "
"`tanh` by default."
)
"`tanh` by default."
)
.
SetDefault
(
"tanh"
);
.
SetDefault
(
"tanh"
);
AddComment
(
R"DOC(Long-Short Term Memory (LSTM) Operator
AddComment
(
R"DOC(
Long-Short Term Memory (LSTM) Operator.
The defalut implementation is diagonal/peephole connection
[1], the formula is
The defalut implementation is diagonal/peephole connection
as follows
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
$$
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) \\
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) \\
\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) \\
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) \\
c_t = f_t ⊙ c_{t-1} + i_t ⊙ \tilde{c_t}
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
h_t = o_t ⊙ act_h(c_t)
h_t = o_t \odot act_h(c_t)
$$
where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix
where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix
of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$
of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$
are diagonal weight matrices for peephole connections. In our imple
nmen
tion,
are diagonal weight matrices for peephole connections. In our imple
menta
tion,
W
e use vectors to reprenset these diagonal weight matrices. The b terms
w
e use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$
denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$
is the non-line acti
c
ations, such as logistic sigmoid function, and
is the non-line acti
v
ations, such as logistic sigmoid function, and
\f$i, f, o\f$ and \f$c\f$ are
respectively the input gate, forge
t gate,
\f$i, f, o\f$ and \f$c\f$ are
the input gate, forget gate, outpu
t gate,
output gate and cell activation vectors, all of which ar
e the same size as
and cell activation vectors, respectively, all of which hav
e the same size as
the cell output activation vector \f$h\f$.
the cell output activation vector \f$h\f$.
The
⊙ is the element-wise product of the vectors,
\f$act_g\f$ and \f$act_h\f$
The
\f$\odot\f$ is the element-wise product of the vectors.
\f$act_g\f$ and \f$act_h\f$
are the cell input and cell output activation functions
,
`tanh` is usually
are the cell input and cell output activation functions
and
`tanh` is usually
used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state,
used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
which is computed based on the current input and the previous hidden state.
Set `usePeepholes` False to disable peephole connection [2]. The formula
Set usePeepholes False to disable peephole connection
(http://www.bioinf.jku.at/publications/older/2604.pdf). The formula
is omitted here.
is omitted here.
@note T
hese \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$
Note that t
hese \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$
operations on the input
x_{t} we
re NOT included in this operator.
operations on the input
\f$x_{t}\f$ a
re NOT included in this operator.
Users can choose to use fully-connect operator before LSTM operator.
Users can choose to use fully-connect operator before LSTM operator.
[1] Hasim Sak, Andrew Senior, and Francoise Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling.
INTERSPEECH, 2014.
[2] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735-1780, 1997.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/lstm_unit_op.cc
浏览文件 @
483947c4
...
@@ -57,17 +57,22 @@ class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -57,17 +57,22 @@ class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker {
"The cell state tensor of last time-step in the Lstm Unit operator."
);
"The cell state tensor of last time-step in the Lstm Unit operator."
);
AddOutput
(
"C"
,
"The cell tensor of Lstm Unit operator."
);
AddOutput
(
"C"
,
"The cell tensor of Lstm Unit operator."
);
AddOutput
(
"H"
,
"The hidden state tensor of Lstm Unit operator."
);
AddOutput
(
"H"
,
"The hidden state tensor of Lstm Unit operator."
);
AddAttr
<
float
>
(
"forget_bias"
,
AddComment
(
R"DOC(Lstm-Unit Operator
"(float, default 0.0) "
"The forget bias of Lstm Unit."
)
.
SetDefault
(
0.0
);
AddComment
(
R"DOC(
Lstm Unit Operator
Equation:
Equation:
i, f, o, j = split(X)
C = C_prev * sigm(f + forget_bias) + sigm(i) * tanh(j)
$$
H = C * sigm(o)
i, f, o, j = split(X) \\
C = C_{prev} * sigm(f + forget\_bias) + sigm(i) * tanh(j) \\
H = C * sigm(o)
$$
)DOC"
);
)DOC"
);
AddAttr
<
float
>
(
"forget_bias"
,
"The forget bias of Lstm Unit."
)
.
SetDefault
(
0.0
);
}
}
};
};
...
...
paddle/operators/margin_rank_loss_op.cc
浏览文件 @
483947c4
...
@@ -55,8 +55,6 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -55,8 +55,6 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
"(2-D tensor with shape [batch_size x 1]) "
"(2-D tensor with shape [batch_size x 1]) "
"The label indicating X1 ranked higher than X2 or not, "
"The label indicating X1 ranked higher than X2 or not, "
"can only be +1 or -1."
);
"can only be +1 or -1."
);
AddAttr
<
T
>
(
"margin"
,
"(scalar, default 0) Margin for MarginRankLossOp."
)
.
SetDefault
(
static_cast
<
T
>
(
0
));
AddOutput
(
"Activated"
,
AddOutput
(
"Activated"
,
"(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
"(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
"to indicate whether each element of Output(Out) is activated."
)
"to indicate whether each element of Output(Out) is activated."
)
...
@@ -64,23 +62,26 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -64,23 +62,26 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(2-D tensor with shape [batch_size x 1]) "
"(2-D tensor with shape [batch_size x 1]) "
"The output loss of MarginRankLoss operator."
);
"The output loss of MarginRankLoss operator."
);
AddAttr
<
T
>
(
"margin"
,
"(scalar, default 0) Margin for MarginRankLossOp."
)
.
SetDefault
(
static_cast
<
T
>
(
0
));
AddComment
(
R"DOC(
AddComment
(
R"DOC(
MarginRankLoss Operator.
MarginRankLos
s operator measures the loss given a pair of training sample
Thi
s operator measures the loss given a pair of training sample
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
indicating X1 is ranked higher than `X2`
, otherwise `Label = -1`
. The loss
indicating X1 is ranked higher than `X2`
and `Label = -1` otherwise
. The loss
turns out
is calculated as:
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin).
$loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
The attribute `margin`
involved
here helps make the predictions more robust.
The attribute `margin` here helps make the predictions more robust.
Denote the item ranked higher as the positive sample, otherwise the negative
Denote the item ranked higher as the positive sample, otherwise the negative
sample. If the score of the two samples satisfies
sample. If the score of the two samples satisfies
positive sample - negative sample < margin,
$positive sample - negative sample < margin$
the pair of samples will contribute to the final loss, which will backprop
o
gate
the pair of samples will contribute to the final loss, which will backprop
a
gate
and train the ranking model to enlarge the difference
of the two score
.
and train the ranking model to enlarge the difference
between the two scores
.
For batch input with size `batch_size`, `X1`, `X2` and `Label`
For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
all have the same shape [batch_size x 1].
...
...
paddle/operators/matmul_op.cc
浏览文件 @
483947c4
...
@@ -144,7 +144,10 @@ class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -144,7 +144,10 @@ class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
)DOC"
)
)DOC"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
The MatMul operator is used to perform (batched) matrix multiplication
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
over the last two dimensions of the input tensors `X` and `Y`.
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
If a transpose flag is specified, the last two dimensions of the
...
@@ -166,7 +169,8 @@ The differences are:
...
@@ -166,7 +169,8 @@ The differences are:
- We add `transpose_X` and `transpose_Y` flags.
- We add `transpose_X` and `transpose_Y` flags.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/mean_op.cc
浏览文件 @
483947c4
...
@@ -36,7 +36,11 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -36,7 +36,11 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
);
AddComment
(
R"DOC( Mean Operator
AddComment
(
R"DOC(
Mean Operator.
Out is a scalar which is the mean of all elements in X.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/minus_op.cc
浏览文件 @
483947c4
...
@@ -52,14 +52,16 @@ class MinusOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -52,14 +52,16 @@ class MinusOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Y"
,
"The right tensor of minus operator."
);
AddInput
(
"Y"
,
"The right tensor of minus operator."
);
AddOutput
(
"Out"
,
"The output tensor of minus operator."
);
AddOutput
(
"Out"
,
"The output tensor of minus operator."
);
AddComment
(
R"DOC(Minus Operator
AddComment
(
R"DOC(
Minus Operator.
Equation:
Equation:
Out = X - Y
$Out = X - Y$
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/modified_huber_loss_op.cc
浏览文件 @
483947c4
...
@@ -43,27 +43,35 @@ class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -43,27 +43,35 @@ class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"The input tensor of modified huber loss op."
"The input tensor of modified huber loss op.
"
"X is 2-D tensor with shape [batch_size, 1]."
);
"X is 2-D tensor with shape [batch_size, 1]."
);
AddInput
(
"Y"
,
AddInput
(
"Y"
,
"The target labels of modified huber loss op."
"The target labels of modified huber loss op.
"
"The shape of Y is same as X. Values of Y must be 0 or 1."
);
"The shape of Y is
the
same as X. Values of Y must be 0 or 1."
);
AddOutput
(
"IntermediateVal"
,
AddOutput
(
"IntermediateVal"
,
"Variable to save intermediate result which will be reused in "
"Variable to save intermediate result which will be reused in "
"backward processing."
)
"backward processing."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"Out"
,
"Classification loss for X."
);
AddOutput
(
"Out"
,
"Classification loss for X."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Modified huber loss is used in binary classification problem. The shape of
Modified Huber Loss Operator.
input X and target Y are both [N, 1] and so is the shape of output loss.
Since target Y is not differentiable, cacluating gradient for Y is illegal.
This operator is used in binary classification problem. The shape of
The formulation of modified huber loss is:
input X and target Y are both [N, 1] and so is the shape of the output loss.
Since target Y is not differentiable, calculating gradient for Y is illegal.
L(y, f(x)) = max(0, 1 - yf(x))^2 for yf(x) >= -1,
The formula of modified huber loss is:
-4yf(x) otherwise.
$$
Make sure the values of target label Y are in {0, 1} here. The operator will
L(y, f(x)) =
\begin{cases}
(\max(0, 1 - yf(x)))^2, \text{if} \ yf(x) >= -1 \\
-4yf(x), \quad \text{otherwise}
\end{cases}
$$
Make sure the values of target label Y are in {0, 1} here. This operator will
scale values of Y to {-1, +1} when computing losses and gradients.
scale values of Y to {-1, +1} when computing losses and gradients.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/momentum_op.cc
浏览文件 @
483947c4
...
@@ -75,17 +75,23 @@ class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -75,17 +75,23 @@ class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"VelocityOut"
,
"(Tensor) Output updated velocity"
);
AddOutput
(
"VelocityOut"
,
"(Tensor) Output updated velocity"
);
AddAttr
<
float
>
(
"mu"
,
"(float) Momentum coefficient"
);
AddAttr
<
float
>
(
"mu"
,
"(float) Momentum coefficient"
);
AddAttr
<
bool
>
(
"useNesterov"
,
"(bool) Use Nesterov Momentum"
)
AddAttr
<
bool
>
(
"useNesterov"
,
"(bool, default false) "
"Use Nesterov Momentum"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Momentum Optimizer.
Momentum Algorithm with a flag for Nestrov Moemntum (momentum).
This optimizer has a flag for Nestrov Momentum.
velocity = mu * velocity + gradient
The update equations are as follows:
if (use_nesterov):
param = param - gradient * learning_rate + mu * velocity * learning_rate
$$
else:
velocity = mu * velocity + gradient \\
param = param - learning_rate * velocity
if (use\_nesterov): \\
param = param - gradient * learning\_rate + mu * velocity * learning\_rate \\
else: \\
param = param - learning\_rate * velocity. \\
$$
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/mul_op.cc
浏览文件 @
483947c4
...
@@ -78,6 +78,7 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -78,6 +78,7 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"The output of mul op"
);
AddOutput
(
"Out"
,
"The output of mul op"
);
AddAttr
<
int
>
(
AddAttr
<
int
>
(
"x_num_col_dims"
,
"x_num_col_dims"
,
"(int, default 1) "
R"DOC(mul_op can take tensors with more than two dimensions as input `X`,
R"DOC(mul_op can take tensors with more than two dimensions as input `X`,
in that case, tensors will be reshaped to a matrix. The matrix's first
in that case, tensors will be reshaped to a matrix. The matrix's first
dimension(column length) will be the product of tensor's last
dimension(column length) will be the product of tensor's last
...
@@ -88,20 +89,24 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -88,20 +89,24 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
.
EqualGreaterThan
(
1
);
.
EqualGreaterThan
(
1
);
AddAttr
<
int
>
(
AddAttr
<
int
>
(
"y_num_col_dims"
,
"y_num_col_dims"
,
"(int, default 1) "
R"DOC(mul_op can take tensors with more than two dimensions as input `Y`,
R"DOC(mul_op can take tensors with more than two dimensions as input `Y`,
in that case, tensors will be reshaped to a matrix. Just like input `X`.
in that case, tensors will be reshaped to a matrix. Just like input `X`.
)DOC"
)
)DOC"
)
.
SetDefault
(
1
)
.
SetDefault
(
1
)
.
EqualGreaterThan
(
1
);
.
EqualGreaterThan
(
1
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Mul operator is used to perform matrix multiplication for input X and Y.
Mul Operator.
This operator is used to perform matrix multiplication for input X and Y.
The equation is:
The equation is:
Out = X * Y
$$Out = X * Y$$
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/multiplex_op.cc
浏览文件 @
483947c4
...
@@ -66,7 +66,8 @@ class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -66,7 +66,8 @@ class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The candidate tensors of multiplex operator."
)
AddInput
(
"X"
,
"The candidate tensors of multiplex operator."
)
.
AsDuplicable
();
.
AsDuplicable
();
AddOutput
(
"Out"
,
"The output tensor of multiplex operator."
);
AddOutput
(
"Out"
,
"The output tensor of multiplex operator."
);
AddComment
(
R"DOC(Multiplex operator
AddComment
(
R"DOC(
Multiplex Operator.
Multiplex multiple tensors according to the index provided by the index tensor.
Multiplex multiple tensors according to the index provided by the index tensor.
...
@@ -77,10 +78,11 @@ the (Ids[i])-th tensor.
...
@@ -77,10 +78,11 @@ the (Ids[i])-th tensor.
For i-th row of the output tensor:
For i-th row of the output tensor:
y[i] = x_{k}[i]
$$y[i] = x_{k}[i]$$
where
y is the output tensor. `x_{k}` is the k-th input tensor
where
`y` is the output tensor, `x_{k}` is the k-th input tensor,
and `k = Ids[i]`.
and `k = Ids[i]`.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/name_convention.md
浏览文件 @
483947c4
...
@@ -44,17 +44,21 @@ public:
...
@@ -44,17 +44,21 @@ public:
AddOutput
(
"Out"
,
"(Tensor) Accumulated output tensor"
);
AddOutput
(
"Out"
,
"(Tensor) Accumulated output tensor"
);
AddAttr
<
float
>
(
"gamma"
,
"(float, default 1.0) Accumulation multiplier"
).
SetDefault
(
1.0
f
);
AddAttr
<
float
>
(
"gamma"
,
"(float, default 1.0) Accumulation multiplier"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Accumulate operator accumulates the input tensor to the output tensor. If the
Accumulate Operator.
This operator accumulates the input tensor to the output tensor. If the
output tensor already has the right size, we add to it; otherwise, we first
output tensor already has the right size, we add to it; otherwise, we first
initialize the output tensor to all zeros, and then do accumulation. Any
initialize the output tensor to all zeros, and then do accumulation. Any
further calls to the operator, given that no one else fiddles with the output
further calls to the operator, given that no one else fiddles with the output
in the interim, will do simple accumulations.
in the interim, will do simple accumulations.
Accumulation is done as shown:
Accumulation is done as follows:
Out = 1*X + gamma*Out
Out = 1*X + gamma*Out
where X is the input tensor, Out is the output tensor and gamma is the multiplier
where X is the input tensor, Out is the output tensor and gamma is the multiplier
argument.
argument.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/nccl_op.cc
浏览文件 @
483947c4
...
@@ -48,12 +48,17 @@ class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -48,12 +48,17 @@ class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddOutput
(
"Communicator"
,
AddOutput
(
"Communicator"
,
"Create Communicator for communicating between gpus"
);
"Create Communicator for communicating between gpus"
);
AddAttr
<
std
::
vector
<
int
>>
(
"gpus"
,
"gpu id lists"
);
AddAttr
<
std
::
vector
<
int
>>
(
"gpus"
,
"(vector<int>) GPU id lists"
);
AddAttr
<
int
>
(
"data_type"
,
"output data type"
)
AddAttr
<
int
>
(
"data_type"
,
"(int, default 5 (FP32)) "
"Output data type"
)
.
SetDefault
(
framework
::
DataType
::
FP32
);
.
SetDefault
(
framework
::
DataType
::
FP32
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
create communicator.
NCCLInit Operator.
)DOC"
);
Create communicator.
)DOC"
);
}
}
};
};
...
@@ -143,11 +148,15 @@ class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -143,11 +148,15 @@ class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddOutput
(
"Out"
,
"The output of AllReduce op"
);
AddOutput
(
"Out"
,
"The output of AllReduce op"
);
AddAttr
<
std
::
string
>
(
"reduction"
,
AddAttr
<
std
::
string
>
(
"reduction"
,
"(string, default 'ncclSum') "
"{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}."
)
"{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}."
)
.
SetDefault
(
"ncclSum"
);
.
SetDefault
(
"ncclSum"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
AllReduce the input tensors.
NCCLAllReduce Operator.
)DOC"
);
AllReduce the input tensors.
)DOC"
);
}
}
};
};
...
@@ -161,14 +170,20 @@ class NCCLReduceOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -161,14 +170,20 @@ class NCCLReduceOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddOutput
(
"Out"
,
"The output of Reduce op"
);
AddOutput
(
"Out"
,
"The output of Reduce op"
);
AddAttr
<
std
::
string
>
(
"reduction"
,
AddAttr
<
std
::
string
>
(
"reduction"
,
"(string, default 'ncclSum') "
"{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}."
)
"{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}."
)
.
SetDefault
(
"ncclSum"
);
.
SetDefault
(
"ncclSum"
);
AddAttr
<
int
>
(
"root"
,
AddAttr
<
int
>
(
"root"
,
"root gpu of the parameter. if not "
"(int, default kInvalidGPUId) "
"set(platform::kInvalidGPUId). hashed by name."
)
"Root gpu of the parameter. If not, "
"set(platform::kInvalidGPUId). Hashed by name."
)
.
SetDefault
(
platform
::
kInvalidGPUId
);
.
SetDefault
(
platform
::
kInvalidGPUId
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Reduce the tensors)DOC"
);
NCCLReduce Operator.
Reduce the tensors.
)DOC"
);
}
}
};
};
...
@@ -182,12 +197,16 @@ class NCCLBcastOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -182,12 +197,16 @@ class NCCLBcastOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddOutput
(
"Out"
,
"The output of Bcast"
);
AddOutput
(
"Out"
,
"The output of Bcast"
);
AddAttr
<
int
>
(
"root"
,
AddAttr
<
int
>
(
"root"
,
"root gpu of the parameter. if not "
"(int, default kInvalidGPUId) "
"set(platform::kInvalidGPUId). hashed by name."
)
"Root gpu of the parameter. If not, "
"set(platform::kInvalidGPUId). Hashed by name."
)
.
SetDefault
(
platform
::
kInvalidGPUId
);
.
SetDefault
(
platform
::
kInvalidGPUId
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Bcast the tensors.
NCCLBcast Operator.
)DOC"
);
Bcast the tensors.
)DOC"
);
}
}
};
};
...
...
paddle/operators/pad_op.cc
浏览文件 @
483947c4
...
@@ -54,41 +54,44 @@ class PadOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -54,41 +54,44 @@ class PadOpMaker : public framework::OpProtoAndCheckerMaker {
"The input of pad op. "
"The input of pad op. "
"The input should be a k-D tensor(k > 0 and k < 7)"
);
"The input should be a k-D tensor(k > 0 and k < 7)"
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"The output of pad op."
"The output of pad op.
"
"A tensor with the same shape as X."
);
"A tensor with the same shape as X."
);
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector<int>) "
"A list<int> to describe the padding rules for each dimension. "
"For 2-D image tensor, paddings=[0, 1, 2, 3] means "
"padding 0 row to top, 1 row to bottom, 2 columns to left "
"and 3 columns to right. Size of paddings should be equal to "
"2 * dimension size of the input tensor."
);
AddAttr
<
float
>
(
"pad_value"
,
"(float, default 0.0) "
"The value to fill the padded areas."
)
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:
Pad Operator.
Pad input into output, as specified by paddings and pad_value.
The input should be a k-D tensor(k > 0 and k < 7). As an example:
Given:
Given:
X = [[1, 2],
X = [[1, 2],
[3, 4]]
[3, 4]],
and
paddings = [0, 1, 1, 2]
paddings = [0, 1, 1, 2]
,
and
and
pad_value = 0
pad_value = 0
,
then we get
we have:
Out = [[0, 1, 2, 0, 0]
Out = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
[0, 0, 0, 0, 0]]
)DOC"
);
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"A list<int> to describes padding rules for each dimension."
" For 2-D image tensor, paddings=[0, 1, 2, 3] means"
" padding 0 row to top, 1 row to bottom, 2 columns to left"
" and 3 columns to right.Size of paddings should be equal to"
" 2 * dimension size of input tensor."
);
AddAttr
<
float
>
(
"pad_value"
,
"(float) default to 0; "
"The value to fill padded areas."
)
.
SetDefault
(
0.0
f
);
}
}
};
};
...
...
paddle/operators/pool_op.cc
浏览文件 @
483947c4
...
@@ -73,125 +73,138 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
...
@@ -73,125 +73,138 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
AddInput
(
AddInput
(
"X"
,
"X"
,
"(Tensor) The input tensor of pooling operator. "
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."
);
"number of channels, H is the height of the feature, "
"and W is the width of the feature."
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor) The output tensor of pooling operator."
"(Tensor) The output tensor of pooling operator.
"
"The format of output tensor is also NCHW
.
"
"The format of output tensor is also NCHW
,
"
"
Where N is batch size, C is
"
"
where N is batch size, C is the number of channels,
"
"
the number of channels, H and W is the height and
"
"
H is the height of the feature,
"
"
width of
feature."
);
"
and W is the width of the
feature."
);
AddAttr
<
std
::
string
>
(
"poolingType"
,
AddAttr
<
std
::
string
>
(
"poolingType"
,
"(string), pooling type, can be
\"
max
\"
for max-pooling "
"(string), pooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
.
InEnum
({
"max"
,
"avg"
});
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector
), the pooling window size(height, width)
"
"(vector
<int>) The pooling window
"
"
of pooling operator.
"
"
size(height, width) of the pooling operator.
"
"If globalPooling = true, ksize and paddings will "
"If globalPooling = true, ksize and paddings will "
"be ignored."
);
// TODO(Chengduo): Add checker.
"be ignored."
);
// TODO(Chengduo): Add checker.
// (Currently,
// (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"globalPooling"
,
AddAttr
<
bool
>
(
"globalPooling"
,
"(bool
default: false), whether to use the global pooling.
"
"(bool
, default false) Whether to use the global pooling.
"
"If globalPooling = true, ksize and paddings will be ignored."
)
"If globalPooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
"(vector, default:{1, 1}), strides(height,
width) of pooling operator."
)
"
width) of pooling operator."
)
.
SetDefault
({
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings"
,
"(vector defalut:{0,0}), paddings(height, width) of pooling operator."
"(vector<int>, defalut {0,0}), paddings(height, width) of pooling "
"operator."
"If globalPooling = true, paddings and ksize will be ignored."
)
"If globalPooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Pool2d Operator.
The pooling2d operation calculates the output based on
The pooling2d operation calculates the output based on
the input, poolingType and ksize, strides, paddings parameters.
the input, poolingType and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format
. W
here N is batch size, C is the
Input(X) and output(Out) are in NCHW format
, w
here N is batch size, C is the
number of channels, H
and W is the height and width of
feature.
number of channels, H
is the height of the feature, and W is the width of the
feature.
Parameters(ksize, strides, paddings) are two elements.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
The input(X) size and output(Out) size may be different.
Example:
Example:
Input:
Input:
X shape:
(N, C, H_in, W_in)
X shape:
$(N, C, H_{in}, W_{in})$
Output:
Output:
Out shape:
(N, C, H_out, W_out)
Out shape:
$(N, C, H_{out}, W_{out})$
where
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
$$
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1
$$
)DOC"
);
)DOC"
);
}
}
Pool3dOpMaker
::
Pool3dOpMaker
(
framework
::
OpProto
*
proto
,
Pool3dOpMaker
::
Pool3dOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
AddInput
(
"X"
,
"X"
,
"(Tensor) The input tensor of pooling operator. "
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is "
"The format of input tensor is NCDHW, where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and width of "
"the number of channels, and D, H and W is the depth, height and "
"feature."
);
"width of "
"the feature, respectively."
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor) The output tensor of pooling operator."
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCDHW
.
"
"The format of output tensor is also NCDHW
,
"
"
W
here N is batch size, C is "
"
w
here N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"the number of channels,
and
D, H and W is the depth, height and "
"width of
feature
."
);
"width of
the feature, respectively
."
);
AddAttr
<
std
::
string
>
(
"poolingType"
,
AddAttr
<
std
::
string
>
(
"poolingType"
,
"(string)
, p
ooling type, can be
\"
max
\"
for max-pooling "
"(string)
P
ooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
.
InEnum
({
"max"
,
"avg"
});
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
AddAttr
<
std
::
vector
<
int
>>
(
"(vector ), the pooling window size(depth, height, "
"ksize"
,
"width) of pooling
"
"(vector<int>) The pooling window size(depth, height,
"
"operator.
"
"width) of pooling operator.
"
"If globalPooling = true, ksize and paddings wille
"
"If globalPooling = true, ksize and paddings will
"
"be ignored."
);
// TODO(Chengduo): Add checker.
"be ignored."
);
// TODO(Chengduo): Add checker.
// (Currently,
// (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"globalPooling"
,
AddAttr
<
bool
>
(
"globalPooling"
,
"(bool
default: false), whether to use the global pooling.
"
"(bool
, default false) Whether to use the global pooling.
"
"If globalPooling = true, ksize and paddings wille be ignored."
)
"If globalPooling = true, ksize and paddings wille be ignored."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
AddAttr
<
std
::
vector
<
int
>>
(
"(vector, default:{1,1,1}), strides(depth, height, "
"strides"
,
"width) of pooling operator."
)
"(vector<int>, default {1,1,1}) Strides(depth, height, "
"width) of the pooling operator."
)
.
SetDefault
({
1
,
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
1
,
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings"
,
"(vector
defalut:
{0,0,0}), paddings(depth, height, "
"(vector
<int>, defalut
{0,0,0}), paddings(depth, height, "
"width) of pooling operator."
"width) of pooling operator.
"
"If globalPooling = true, ksize and paddings will
e
be ignored."
)
"If globalPooling = true, ksize and paddings will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Pool3d Operator.
The pooling3d operation calculates the output based on
The pooling3d operation calculates the output based on
the input, poolingType
and ksize, strides,
paddings parameters.
the input, poolingType
, ksize, strides, and
paddings parameters.
Input(X) and output(Out) are in NCDHW format
. W
here N is batch
Input(X) and output(Out) are in NCDHW format
, w
here N is batch
size, C is the number of channels,
D, H and W is
the depth, height and
size, C is the number of channels,
and D, H and W are
the depth, height and
width of
feature. Parameters(ksize, strides, paddings) are three elements.
width of
the feature, respectively. Parameters(ksize, strides, paddings)
These three elements represent depth, height and width, respectively.
are three elements. These three elements represent depth, height and
The input(X) size and output(Out) size may be different.
width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Example:
Input:
Input:
X shape:
(N, C, D_in, H_in, W_in)
X shape:
$(N, C, D_{in}, H_{in}, W_{in})$
Output:
Output:
Out shape:
(N, C, D_out, H_out, W_out)
Out shape:
$(N, C, D_{out}, H_{out}, W_{out})$
where
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
$$
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\
W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1
$$
)DOC"
);
)DOC"
);
}
}
}
// namespace operators
}
// namespace operators
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
483947c4
...
@@ -89,64 +89,73 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -89,64 +89,73 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
AddInput
(
"X"
,
"X"
,
"(Tensor), the input tensor of pooling operator. "
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H and W is the height and width of image."
);
"number of channels, H is the height of the image, "
"and W is the width of the image."
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor)
, the output tensor of pooling operator.
"
"(Tensor)
The output tensor of pooling operator.
"
"The format of output tensor is also NCHW
.
"
"The format of output tensor is also NCHW
,
"
"
W
here N is batch size, C is "
"
w
here N is batch size, C is "
"the number of channels, H
and W is the height and
"
"the number of channels, H
is the height of the image
"
"
width of
image."
);
"
and W is the width of the
image."
);
AddOutput
(
"Mask"
,
AddOutput
(
"Mask"
,
"(Tensor), the Mask tensor of pooling operator."
"(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCHW."
"The format of output tensor is also NCHW, "
"Where N is batch size, C is the number of channels, H and W "
"where N is batch size, C is the number of channels, "
"is the height and width of image."
"H is the height of the image, "
"The value in it is the index in current feature map"
);
"and W is the width of the image. "
"It represents the index in the current feature map."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector
), t
he pooling window size(height, "
"(vector
<int>) T
he pooling window size(height, "
"width) of pooling operator."
"width) of pooling operator.
"
"If globalPooling = true, ksize and paddings "
"If globalPooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
AddAttr
<
bool
>
(
"globalPooling"
,
"globalPooling"
,
"(bool
default: false), whether to use the global pooling.
"
"(bool
, default false) Whether to use the global pooling.
"
"If globalPooling = true, ksize and paddings will be ignored."
)
"If globalPooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
"(vector, default:{1, 1}), strides(height,
width) of pooling operator."
)
"
width) of pooling operator."
)
.
SetDefault
({
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings"
,
"(vector defalut:{0, 0}), paddings(height, width) of pooling operator."
"(vector<int>, defalut {0, 0}), paddings(height, width) of pooling "
"operator. "
"If globalPooling = true, paddings and will be ignored."
)
"If globalPooling = true, paddings and will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
AddComment
(
R"DOC(
MaxPool2d Operator.
The maxPooling2d with index operation calculates the output and the mask
The maxPooling2d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters. Input(X) and
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format. Where N is batch size, C is the
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H and W is the height and width of feature.
number of channels, H is the height of the feature,
and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
These two elements represent height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
The input(X) size and output(Out, Mask) size may be different.
Example:
Example:
Input:
Input:
X shape:
(N, C, H_in, W_in)
X shape:
$(N, C, H_{in}, W_{in})$
Output:
Output:
Out shape:
(N, C, H_out, W_out)
Out shape:
$(N, C, H_{out}, W_{out})$
Mask shape:
(N, C, H_out, W_out)
Mask shape:
$(N, C, H_{out}, W_{out})$
where
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
$$
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1
$$
)DOC"
);
)DOC"
);
}
}
};
};
...
@@ -156,70 +165,76 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -156,70 +165,76 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
MaxPool3dWithIndexOpMaker
(
framework
::
OpProto
*
proto
,
MaxPool3dWithIndexOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
AddInput
(
"X"
,
"X"
,
"(Tensor) The input tensor of pooling operator. "
"(Tensor), the input tensor of pooling operator.
"
"The format of input tensor is NCDHW, where N is batch size, C is
"
"The format of input tensor is NCDHW. Where N is batch size, C is
"
"the number of channels, and D, H and W are the depth, height and
"
"the number of channels, D, H and W is the depth, height and
width of "
"
width of "
"image.
"
);
"the image, respectively
"
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor)
, the output tensor of pooling operator.
"
"(Tensor)
The output tensor of pooling operator.
"
"The format of output tensor is also NCDHW
.
"
"The format of output tensor is also NCDHW
,
"
"
Where N is batch size, C is
"
"
where N is the batch size, C is the number of channels,
"
"
the number of channels, D, H and W is
the depth, height and "
"
and D, H and W are
the depth, height and "
"width of
image
."
);
"width of
the image, respectively
."
);
AddOutput
(
"Mask"
,
AddOutput
(
"Mask"
,
"(Tensor), the Mask tensor of pooling operator."
"(Tensor) The Mask tensor of pooling operator. "
"The format of output tensor is also NCDHW."
"The format of output tensor is also NCDHW, "
"Where N is batch size, C is the number of channels, D, H and W "
"where N is the batch size, C is the number of channels, and "
"is the depth, height and width of image."
"D, H and W are the depth, height and width "
"The value in it is the index in current feature map"
);
"of the image, respectively. "
"It represents the index in the current feature map."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector), the pooling window size(depth, "
"(vector<int>) The pooling window size(depth, "
"height, width) of pooling "
"height, width) of pooling operator. "
"operator."
"If globalPooling = true, ksize and paddings "
"If globalPooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
AddAttr
<
bool
>
(
"globalPooling"
,
"globalPooling"
,
"(bool
default: false), whether to use the global pooling.
"
"(bool
, default false) Whether to use the global pooling.
"
"If globalPooling = true, ksize and paddings will be ignored."
)
"If globalPooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector
, default:
{1,1,1}), strides(depth, "
"(vector
<int>, default
{1,1,1}), strides(depth, "
"height, width) of pooling operator."
)
"height, width) of pooling operator."
)
.
SetDefault
({
1
,
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
1
,
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings"
,
"(vector
defalut:
{0,0,0}), paddings(depth, "
"(vector
, defalut
{0,0,0}), paddings(depth, "
"height, width) of pooling operator."
"height, width) of pooling operator.
"
"If globalPooling = true, paddings and ksize will be ignored."
)
"If globalPooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
AddComment
(
R"DOC(
MaxPool3d Operator.
The maxpooling3d with index operation calculates the output and the mask
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, D, H and W is the depth, height and
size, C is the number of channels, and D, H and W are the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
width of the feature, respectively.
Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
The input(X) size and output(Out, Mask) size may be different.
Example:
Example:
Input:
Input:
X shape:
(N, C, D_in, H_in, W_in)
X shape:
$(N, C, D_{in}, H_{in}, W_{in})$
Output:
Output:
Out shape:
(N, C, D_out, H_out, W_out)
Out shape:
$(N, C, D_{out}, H_{out}, W_{out})$
Mask shape:
(N, C, D_out, H_out, W_out)
Mask shape:
$(N, C, D_{out}, H_{out}, W_{out})$
where
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
$$
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\
W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1
$$
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/precision_recall_op.cc
浏览文件 @
483947c4
...
@@ -92,76 +92,78 @@ class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -92,76 +92,78 @@ class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"MaxProbs"
,
AddInput
(
"MaxProbs"
,
"(Tensor, default Tensor<float>)
, a
2-D tensor with shape N x 1, "
"(Tensor, default Tensor<float>)
A
2-D tensor with shape N x 1, "
"where N is the batch size. Each row contains the max probability "
"where N is the batch size. Each row contains the max probability "
"of an instance which computed by the previous top_k (k=1) "
"of an instance which computed by the previous top_k (k=1) "
"operator."
);
"operator."
);
AddInput
(
"Indices"
,
AddInput
(
"Indices"
,
"(Tensor, default Tensor<int>)
, a
2-D tensor with shape N x 1, "
"(Tensor, default Tensor<int>)
A
2-D tensor with shape N x 1, "
"where N is the batch size. Each row contains the corresponding "
"where N is the batch size. Each row contains the corresponding "
"index which computed by the previous top_k (k=1) operator."
);
"index which computed by the previous top_k (k=1) operator."
);
AddInput
(
"Labels"
,
AddInput
(
"Labels"
,
"(Tensor, default Tensor<int>)
, a
2-D tensor with shape N x 1, "
"(Tensor, default Tensor<int>)
A
2-D tensor with shape N x 1, "
"where N is the batch size. Each element is a label and the "
"where N is the batch size. Each element is a label and the "
"value should be in [0, class_number - 1]."
);
"value should be in [0, class_number - 1]."
);
AddInput
(
"Weights"
,
AddInput
(
"Weights"
,
"(Tensor, default Tensor<float>)
, a
2-D tensor with shape N x 1, "
"(Tensor, default Tensor<float>)
A
2-D tensor with shape N x 1, "
"where N is the batch size. This input is optional. If provided, "
"where N is the batch size. This input is optional. If provided, "
"weight of instance would be considered when computing metrics."
)
"weight of instance would be considered when computing metrics."
)
.
AsDispensable
();
.
AsDispensable
();
AddInput
(
"StatesInfo"
,
AddInput
(
"StatesInfo"
,
"(Tensor, default Tensor<int>)
, a
2-D tensor with shape D x 4, "
"(Tensor, default Tensor<int>)
A
2-D tensor with shape D x 4, "
"where D is the number of classes. This input is optional. If "
"where D is the number of classes. This input is optional. If "
"provided, current state will be accumulated to this state and "
"provided, current state will be accumulated to this state and "
"the accumulation state will be
as
the output state."
)
"the accumulation state will be the output state."
)
.
AsDispensable
();
.
AsDispensable
();
AddOutput
(
"BatchMetrics"
,
AddOutput
(
"BatchMetrics"
,
"(Tensor, default Tensor<float>)
, a 1-D tensor with shape {6}.
"
"(Tensor, default Tensor<float>)
A 1-D tensor with shape {6}.
"
"This output tensor contains metrics for current batch data."
"This output tensor contains metrics for current batch data.
"
"The layout is [macro average precision, macro average recall, "
"The layout is [macro average precision, macro average recall, "
"macro f1 score, micro average precision, micro average recall, "
"macro f1 score, micro average precision, micro average recall, "
"micro f1 score]"
);
"micro f1 score]
.
"
);
AddOutput
(
"AccumMetrics"
,
AddOutput
(
"AccumMetrics"
,
"(Tensor, default Tensor<float>)
, a 1-D tensor with shape {6}.
"
"(Tensor, default Tensor<float>)
A 1-D tensor with shape {6}.
"
"This output tensor contains metrics for accumulated data."
"This output tensor contains metrics for accumulated data.
"
"The layout is [macro average precision, macro average recall, "
"The layout is [macro average precision, macro average recall, "
"macro f1 score, micro average precision, micro average recall, "
"macro f1 score, micro average precision, micro average recall, "
"micro f1 score]"
);
"micro f1 score]
.
"
);
AddOutput
(
"AccumStatesInfo"
,
AddOutput
(
"AccumStatesInfo"
,
"(Tensor, default Tensor<float>)
, a
2-D tensor with shape D x 4, "
"(Tensor, default Tensor<float>)
A
2-D tensor with shape D x 4, "
"where D is equal to class number. This output tensor contains "
"where D is equal to class number. This output tensor contains "
"accumulated state variables used to compute metrics. The layout "
"accumulated state variables used to compute metrics. The layout "
"for each class is [true positives, false positives, "
"for each class is [true positives, false positives, "
"true negatives, false negatives]."
);
"true negatives, false negatives]."
);
AddAttr
<
int
>
(
"class_number"
,
"Number of classes to be evaluated."
);
AddAttr
<
int
>
(
"class_number"
,
"
(int)
Number of classes to be evaluated."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
When given 'Input(Indices)' and 'Input(Labels)', this operator can be used
Precision Recall Operator.
When given Input(Indices) and Input(Labels), this operator can be used
to compute various metrics including:
to compute various metrics including:
-
macro average precision
1.
macro average precision
-
macro average recall
2.
macro average recall
-
macro f1 score
3.
macro f1 score
-
micro average precision
4.
micro average precision
-
micro average recall
5.
micro average recall
-
micro f1 score
6.
micro f1 score
To compute the above metrics, we need to do statistics for true positives,
To compute the above metrics, we need to do statistics for true positives,
false positives and false negatives. Here count of true negatives is not
false positives and false negatives. Here
the
count of true negatives is not
necessary, but counting it may provide potential usage and the cost is
necessary, but counting it may provide potential usage and the cost is
trivial, so the operator also provides count of true negatives.
trivial, so the operator also provides
the
count of true negatives.
We define state as a 2-D tensor with shape [class_number, 4]. Each row of a
We define state as a 2-D tensor with shape [class_number, 4]. Each row of a
state contains statistic variables for corresponding class. Layout of each row
state contains statistic variables for corresponding class. Layout of each row
is: TP(true positives), FP(false positives), TN(true negatives),
is: TP(true positives), FP(false positives), TN(true negatives),
FN(false negatives). If
'Input(Weights)'
provided, TP, FP, TN, FN will be
FN(false negatives). If
Input(Weights) is
provided, TP, FP, TN, FN will be
calculated by given weight instead of instance count.
calculated by given weight instead of
the
instance count.
This operator also supports metrics computing for cross-batch situation. To
This operator also supports metrics computing for cross-batch situation. To
achieve this,
'Input(StatesInfo)'
should be provided. State of current batch
achieve this,
Input(StatesInfo)
should be provided. State of current batch
data will be accumulated to
'Input(StatesInfo)' and 'Output(AccumStatesInfo)'
data will be accumulated to
Input(StatesInfo) and Output(AccumStatesInfo)
is the accumulation state.
is the accumulation state.
'Output(BatchMetrics)'
is metrics of current batch data while
Output(BatchMetrics)
is metrics of current batch data while
'Output(AccumStatesInfo)'
is metrics of accumulation data.
Output(AccumStatesInfo)
is metrics of accumulation data.
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/prelu_op.cc
浏览文件 @
483947c4
...
@@ -41,17 +41,24 @@ class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -41,17 +41,24 @@ class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
PReluOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
PReluOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor of prelu operator."
);
AddInput
(
"X"
,
"The input tensor of prelu operator."
);
AddInput
(
"Alpha"
,
"The alpha weight of PRelu operator."
);
AddInput
(
"Alpha"
,
"The alpha weight of prelu operator."
);
AddOutput
(
"Out"
,
"The output tensor of PRelu operator."
);
AddOutput
(
"Out"
,
"The output tensor of prelu operator."
);
AddComment
(
R"DOC(PRelu operator
AddComment
(
R"DOC(
PRelu Operator.
The equation is:
The equation is:
f(x) = alpha * x , for x < 0
$$
f(x) = x , for x >= 0
f(x) =
\begin{cases}
\alpha * x, \quad \text{if} \ x < 0 \\
x, \qquad \text{if} \ x >= 0
\end{cases}
$$
The input `X` can carry the LoD (Level of Details) information,
The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD with input `X`.
or not. And the output shares the LoD information with input `X`.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/proximal_adagrad_op.cc
浏览文件 @
483947c4
...
@@ -83,22 +83,26 @@ class ProximalAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -83,22 +83,26 @@ class ProximalAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
"L1 regularization strength."
)
"L1 regularization strength."
)
.
SetDefault
(
0.0
f
);
.
SetDefault
(
0.0
f
);
AddAttr
<
float
>
(
"l2"
,
AddAttr
<
float
>
(
"l2"
,
"(float, default 0.0)"
"(float, default 0.0)
"
"L2 regularization strength."
)
"L2 regularization strength."
)
.
SetDefault
(
0.0
f
);
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Proximal Adagrad Optimizer.
Optimizer that implements the proximal adagrad algorithm
.
Optimizer that implements the proximal adagrad algorithm
:
moment = moment + grad * grad
$$
prox_param = param - learning_rate * grad * (1 / sqrt(moment))
moment = moment + grad * grad \\
param = sign(prox_param) / (1 + learning_rate * l2) *
prox\_param = param - learning\_rate * grad * (1 / \sqrt{moment}) \\
max { |prox_param| - learning_rate * l1 , 0 }
param = sign(prox\_param) / (1 + learning\_rate * l2) *
\max(|prox\_param| - learning\_rate * l1 , 0)
$$
The paper that proposed Proximal GD:
The paper that proposed Proximal GD:
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
Here, we use the adagrad learning rate as specified here:
Here, we use the adagrad learning rate as specified here:
(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/proximal_gd_op.cc
浏览文件 @
483947c4
...
@@ -67,19 +67,23 @@ class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -67,19 +67,23 @@ class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker {
"L1 regularization strength."
)
"L1 regularization strength."
)
.
SetDefault
(
0.0
f
);
.
SetDefault
(
0.0
f
);
AddAttr
<
float
>
(
"l2"
,
AddAttr
<
float
>
(
"l2"
,
"(float, default 0.0)"
"(float, default 0.0)
"
"L2 regularization strength."
)
"L2 regularization strength."
)
.
SetDefault
(
0.0
f
);
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
ProximalGD Operator.
Optimizer that implements the proximal gradient descent algorithm
.
Optimizer that implements the proximal gradient descent algorithm
:
prox_param = param - learning_rate * grad
$$
param = sign(prox_param) / (1 + learning_rate * l2) *
prox\_param = param - learning\_rate * grad \\
max { |prox_param| - learning_rate * l1 , 0 }
param = sign(prox\_param) / (1 + learning\_rate * l2) *
\max(|prox\_param| - learning\_rate * l1, 0)
$$
The paper that proposed Proximal Gradient Descent:
The paper that proposed Proximal Gradient Descent:
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/rank_loss_op.cc
浏览文件 @
483947c4
...
@@ -26,9 +26,9 @@ class RankLossOp : public framework::OperatorWithKernel {
...
@@ -26,9 +26,9 @@ class RankLossOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// input check
// input check
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) shouldn't be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) shouldn't be null
.
"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Left"
),
"Input(Left) shouldn't be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Left"
),
"Input(Left) shouldn't be null
.
"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Right"
),
"Input(Right) shouldn't be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Right"
),
"Input(Right) shouldn't be null
.
"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
left_dims
=
ctx
->
GetInputDim
(
"Left"
);
auto
left_dims
=
ctx
->
GetInputDim
(
"Left"
);
...
@@ -50,32 +50,32 @@ class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -50,32 +50,32 @@ class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Label"
,
AddInput
(
"Label"
,
"The label indicating A ranked higher than B or not, row vector."
);
"The label indicating A ranked higher than B or not, row vector."
);
AddInput
(
"Left"
,
"The output of RankNet for doc A, vector."
);
AddInput
(
"Left"
,
"The output of RankNet for doc A, vector."
);
AddInput
(
"Right"
,
"The output of RankNet for doc B, vetor"
);
AddInput
(
"Right"
,
"The output of RankNet for doc B, vetor
.
"
);
AddOutput
(
"Out"
,
"The output loss of RankLoss operator, vector."
);
AddOutput
(
"Out"
,
"The output loss of RankLoss operator, vector."
);
AddComment
(
R"DOC(RankLoss operator
AddComment
(
R"DOC(
RankLoss Operator.
Rank loss operator for RankNet[1]. RankNet is a pairwise ranking model with
RankLoss operator for RankNet
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf).
RankNet is a pairwise ranking model with
one training sample consisting of a pair of doc A and B, and the label P
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:
indicating that A is ranked higher than B or not:
P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.
the input pair.
The RankLoss operator
contain
s three inputs: Left (o_i), Right (o_j) and Label
The RankLoss operator
take
s three inputs: Left (o_i), Right (o_j) and Label
(P_{i,j}), which represent the output of RankNet for t
wo docs and the label
(P_{i,j}), which represent the output of RankNet for t
he two docs and the label,
respectively, and yields the rank loss C_{i,j}
by following the expression
respectively, and yields the rank loss C_{i,j}
using the following equation:
\f
[
\f
$$
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
o_{i,j} = o_i - o_j \\
o_{i,j} = o_i - o_j \\
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
\f
]
\f
$$
The operator can take inputs of one sample or in batch.
The operator can take inputs of one sample or in batch.
[1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
Rank using Gradient Descent.
http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
483947c4
...
@@ -509,14 +509,14 @@ class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -509,14 +509,14 @@ class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
kInitialStates
,
"rnn initial states"
).
AsDuplicable
();
AddInput
(
kInitialStates
,
"rnn initial states"
).
AsDuplicable
();
AddInput
(
kParameters
,
AddInput
(
kParameters
,
"Parameters are used by step block as its input. However, the "
"Parameters are used by step block as its input. However, the "
"input
s
is not a sequence tensor. Every time step, each operator "
"input is not a sequence tensor. Every time step, each operator "
"in step block just use the parameter directly"
)
"in step block just use the parameter directly
.
"
)
.
AsDuplicable
();
.
AsDuplicable
();
AddOutput
(
kOutputs
,
AddOutput
(
kOutputs
,
"The output sequence of RNN. The sequence length must be same"
)
"The output sequence of RNN. The sequence length must be same
.
"
)
.
AsDuplicable
();
.
AsDuplicable
();
AddOutput
(
kStepScopes
,
AddOutput
(
kStepScopes
,
"StepScopes contain
s
all local variables in each time step."
);
"StepScopes contain all local variables in each time step."
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
kExStates
,
AddAttr
<
std
::
vector
<
std
::
string
>>
(
kExStates
,
string
::
Sprintf
(
string
::
Sprintf
(
R"DOC(The ex-state variable names.
R"DOC(The ex-state variable names.
...
@@ -556,10 +556,12 @@ if reverse is True
...
@@ -556,10 +556,12 @@ if reverse is True
o o o o
o o o o
)DOC"
).
SetDefault
(
false
);
)DOC"
).
SetDefault
(
false
);
AddAttr
<
bool
>
(
kIsTrain
,
""
).
SetDefault
(
true
);
AddAttr
<
bool
>
(
kIsTrain
,
""
).
SetDefault
(
true
);
AddComment
(
R"DOC(Static Length Recurrent Operator
AddComment
(
R"DOC(
Static Length Recurrent Operator.
The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
The static length recurrent operator can only operate on fix sized sequence
data, i.e. in each mini-batch, the sequence length of all inputs are same.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/reduce_op.cc
浏览文件 @
483947c4
...
@@ -80,24 +80,27 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -80,24 +80,27 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
ReduceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
ReduceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
AddInput
(
"X"
,
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are "
"(Tensor) The input tensor. Tensors with rank at most 6 are supported
"
);
"supported.
"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddAttr
<
int
>
(
AddAttr
<
int
>
(
"dim"
,
"dim"
,
"(int, default
1
) The dimension to reduce. "
"(int, default
0
) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)). "
"Must be in the range [-rank(input), rank(input)). "
"If `dim < 0`, the dim to reduce is `rank + dim`. "
"If `dim < 0`, the dim to reduce is `rank + dim`. "
"Not
ing
that reducing on the first dim will make the LoD info lost."
)
"Not
e
that reducing on the first dim will make the LoD info lost."
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default false) "
"(bool, default false) "
"If true, retain the reduced dimension with length 1."
)
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
comment_
=
R"DOC(
comment_
=
R"DOC(
{ReduceOP} operator computes the {reduce} of input tensor along the given dimension.
{ReduceOp} Operator.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
This operator computes the {reduce} of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
)DOC"
;
)DOC"
;
AddComment
(
comment_
);
AddComment
(
comment_
);
}
}
...
...
paddle/operators/reshape_op.cc
浏览文件 @
483947c4
...
@@ -71,8 +71,11 @@ class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -71,8 +71,11 @@ class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor of reshape operator."
);
AddInput
(
"X"
,
"The input tensor of reshape operator."
);
AddOutput
(
"Out"
,
"The output tensor of reshape operator."
);
AddOutput
(
"Out"
,
"The output tensor of reshape operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"Target shape of reshape operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
AddComment
(
R"DOC(Reshape operator
"(vector<int>) "
"Target shape of reshape operator."
);
AddComment
(
R"DOC(
Reshape Operator.
Reshape Input(X) into the shape specified by Attr(shape).
Reshape Input(X) into the shape specified by Attr(shape).
...
@@ -81,7 +84,7 @@ Given a 2-D tensor X with 2 rows and 2 columns
...
@@ -81,7 +84,7 @@ Given a 2-D tensor X with 2 rows and 2 columns
[[1, 2], [3, 4]]
[[1, 2], [3, 4]]
with
target shape = [1, 4], the reshape operator will transform
and
target shape = [1, 4], the reshape operator will transform
the tensor X into a 1-D tensor:
the tensor X into a 1-D tensor:
[1, 2, 3, 4]
[1, 2, 3, 4]
...
...
paddle/operators/rmsprop_op.cc
浏览文件 @
483947c4
...
@@ -68,22 +68,22 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -68,22 +68,22 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
AddInput
(
"Param"
,
"(Tensor, default Tensor<float>) "
"(Tensor, default Tensor<float>) "
"Input parameter value that has to be updated"
);
"Input parameter value that has to be updated
.
"
);
AddInput
(
"MeanSquare"
,
AddInput
(
"MeanSquare"
,
"(Tensor, default Tensor<float>)"
"(Tensor, default Tensor<float>)"
" The mean square value that gets updated"
);
" The mean square value that gets updated
.
"
);
AddInput
(
"LearningRate"
,
AddInput
(
"LearningRate"
,
"(Tensor, default Tensor<float>) "
"(Tensor, default Tensor<float>) "
"The learning rate should be a tensor of size 1"
);
"The learning rate should be a tensor of size 1
.
"
);
AddInput
(
"Grad"
,
AddInput
(
"Grad"
,
"(Tensor, default Tensor<float>) "
"(Tensor, default Tensor<float>) "
"Input gradient of the parameter"
);
"Input gradient of the parameter
.
"
);
AddInput
(
"Moment"
,
AddInput
(
"Moment"
,
"(Tensor, default Tensor<float>) The moment that gets updated"
);
"(Tensor, default Tensor<float>) The moment that gets updated
.
"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output updated parameter value"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output updated parameter value
.
"
);
AddOutput
(
"MomentOut"
,
"(Tensor) Output updated moment"
);
AddOutput
(
"MomentOut"
,
"(Tensor) Output updated moment
.
"
);
AddOutput
(
"MeanSquareOut"
,
"(Tensor) Output Mean squared updated value"
);
AddOutput
(
"MeanSquareOut"
,
"(Tensor) Output Mean squared updated value
.
"
);
AddAttr
<
float
>
(
"epsilon"
,
AddAttr
<
float
>
(
"epsilon"
,
"(float, default 1e-10) Constant "
"(float, default 1e-10) Constant "
...
@@ -93,18 +93,19 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -93,18 +93,19 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
"(float, default 0.9) "
"(float, default 0.9) "
"Discounting factor for coming gradient."
)
"Discounting factor for coming gradient."
)
.
SetDefault
(
0.9
f
);
.
SetDefault
(
0.9
f
);
AddAttr
<
float
>
(
"momentum"
,
"(float, default 0.0) Constant value"
)
AddAttr
<
float
>
(
"momentum"
,
"(float, default 0.0) Constant value
.
"
)
.
SetDefault
(
0.0
f
);
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Rmsprop Optimizer.
RMSprop
$$
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad \\
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad
MomentOut = momentum * Moment +
MomentOut = momentum * Moment +
LearningRate * Grad / sqrt(MeanSquareOut + epsilon)
\frac{LearningRate * Grad}{\sqrt{MeanSquareOut + epsilon}} \\
ParamOut = Param - MomentOut
ParamOut = Param - MomentOut
$$
The original slides that proposed R
MS
prop: Slide 29 of
The original slides that proposed R
ms
prop: Slide 29 of
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
)DOC"
);
)DOC"
);
...
...
paddle/operators/save_op.cc
浏览文件 @
483947c4
...
@@ -163,14 +163,19 @@ class SaveOpProtoMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -163,14 +163,19 @@ class SaveOpProtoMaker : public framework::OpProtoAndCheckerMaker {
SaveOpProtoMaker
(
framework
::
OpProto
*
proto
,
SaveOpProtoMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The tensor need to be saved"
);
AddInput
(
"X"
,
"(Tensor ) Input tensor to be saved"
);
AddComment
(
R"DOC(Save operator
AddComment
(
R"DOC(
Save operator will serialize and write a tensor variable to disk file.
Save operator
This operator will serialize and write a tensor variable to file on disk.
)DOC"
);
)DOC"
);
AddAttr
<
bool
>
(
"overwrite"
,
"Overwrite the output file if exist"
)
AddAttr
<
bool
>
(
"overwrite"
,
"(boolean, default true)"
"Overwrite the output file if exist"
)
.
SetDefault
(
true
);
.
SetDefault
(
true
);
AddAttr
<
std
::
string
>
(
"file_path"
,
AddAttr
<
std
::
string
>
(
"file_path"
,
"Variable will be saved to
\"
file_path
\"
."
)
"(string)"
"The
\"
file_path
\"
where the variable will be saved."
)
.
AddCustomChecker
(
.
AddCustomChecker
(
[](
const
std
::
string
&
path
)
{
return
!
path
.
empty
();
});
[](
const
std
::
string
&
path
)
{
return
!
path
.
empty
();
});
}
}
...
...
paddle/operators/scale_op.cc
浏览文件 @
483947c4
...
@@ -40,13 +40,16 @@ class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -40,13 +40,16 @@ class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
ScaleOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
ScaleOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor of scale operator."
);
AddInput
(
"X"
,
"(Tensor) Input tensor of scale operator."
);
AddOutput
(
"Out"
,
"The output tensor of scale operator."
);
AddOutput
(
"Out"
,
"(Tensor) Output tensor of scale operator."
);
AddComment
(
R"DOC(Scale operator
AddComment
(
R"DOC(
Scale operator
The equation is: Out = scale*X
$$Out = scale*X$$
)DOC"
);
)DOC"
);
AddAttr
<
AttrType
>
(
"scale"
,
"The scaling factor of the scale operator."
)
AddAttr
<
AttrType
>
(
"scale"
,
"(float, default 0)"
"The scaling factor of the scale operator."
)
.
SetDefault
(
1.0
);
.
SetDefault
(
1.0
);
}
}
};
};
...
...
paddle/operators/seq_expand_op.cc
浏览文件 @
483947c4
...
@@ -53,8 +53,10 @@ class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -53,8 +53,10 @@ class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker {
"(LodTensor)The output of seq_expand op."
"(LodTensor)The output of seq_expand op."
"The lod of output will be as same as input(Y)'s lod."
);
"The lod of output will be as same as input(Y)'s lod."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Expand input(X) according to LOD of input(Y)
.
Seq Expand Operator
.
This operator expands input(X) according to LOD of input(Y).
Following are cases to better explain how this works:
Case 1:
Case 1:
Given 2-level a LoDTensor input(X)
Given 2-level a LoDTensor input(X)
...
...
paddle/operators/sequence_concat_op.cc
浏览文件 @
483947c4
...
@@ -47,19 +47,19 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -47,19 +47,19 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"(
A vector of LoDTensor), the i
nput is a vector of LoDTensor, "
"(
vector<LoDTensor>) I
nput is a vector of LoDTensor, "
"each of which is a variable-length sequence or nested sequence."
)
"each of which is a variable-length sequence or nested sequence."
)
.
AsDuplicable
();
.
AsDuplicable
();
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(
A LoDTensor), the v
ariable-length output of "
"(
LoDTensor), V
ariable-length output of "
"sequence_concat Op."
);
"sequence_concat Op."
);
AddAttr
<
int
>
(
"axis"
,
AddAttr
<
int
>
(
"axis"
,
"(int, default 0)"
"(int, default 0)
"
"The axis
which the inputs will be joined with
. "
"The axis
along which the inputs will be joined
. "
"If axis is 0, the inputs will be joined with LoD index."
)
"If axis is 0, the inputs will be joined with LoD index."
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"level"
,
AddAttr
<
int
>
(
"level"
,
"(int, default 0)"
"(int, default 0)
"
"The level at which the inputs will be joined. "
"The level at which the inputs will be joined. "
"If the level is 0, the inputs will be joined at the nested "
"If the level is 0, the inputs will be joined at the nested "
"sequence level. "
"sequence level. "
...
@@ -68,10 +68,13 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -68,10 +68,13 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
"The level should be less than the level number of inputs."
)
"The level should be less than the level number of inputs."
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
The sequence_concat operator concatenates multiple LoDTensors.
Sequence Concat Operator.
It only supports sequence (LoD Tensor with level number is 1)
or a nested sequence (LoD tensor with level number is 2) as its input.
The sequence_concat operator concatenates multiple LoDTensors.
- Case1:
It supports a sequence (LoD Tensor with level number is 1)
or a nested sequence (LoD tensor with level number is 2) as its input.
The following examples explain how the operator works:
- Case1:
If the axis is other than 0(here, axis is 1 and level is 1),
If the axis is other than 0(here, axis is 1 and level is 1),
each input should have the same LoD information and the LoD
each input should have the same LoD information and the LoD
information of the output keeps the same as the input.
information of the output keeps the same as the input.
...
@@ -80,7 +83,7 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -80,7 +83,7 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4)
LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4)
LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4)
LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4)
- Case2:
- Case2:
If the axis is 0(here, leve is 0), the inputs are concatenated along
If the axis is 0(here, leve is 0), the inputs are concatenated along
time steps, the LoD information of the output need to re-compute.
time steps, the LoD information of the output need to re-compute.
...
@@ -88,14 +91,15 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -88,14 +91,15 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4)
LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4)
LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4)
- Case3:
- Case3:
If the axis is 0(here, level is 1).
If the axis is 0(here, level is 1).
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4)
LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4)
LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4)
NOTE: The levels of all the inputs should be the same.
NOTE: The levels of all the inputs should be the same.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/sequence_conv_op.cc
浏览文件 @
483947c4
...
@@ -105,10 +105,10 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -105,10 +105,10 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
AddInput
(
"X"
,
"X"
,
"(LoDTensor) the input(X) is a LodTensor, which support "
"(LoDTensor) the input(X) is a LodTensor, which support
s
"
"variable-time length input sequence. The underlying tensor in "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T, N), where
,
T is the "
"this LoDTensor is a matrix with shape (T, N), where T is the "
"total time steps in this mini-batch
,
N is the input_hidden_size."
);
"total time steps in this mini-batch
and
N is the input_hidden_size."
);
AddInput
(
"PaddingData"
,
AddInput
(
"PaddingData"
,
"(Tensor, optional) the input(PaddingData) is an optional "
"(Tensor, optional) the input(PaddingData) is an optional "
"parameter, and it is learnable. "
"parameter, and it is learnable. "
...
@@ -157,14 +157,16 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -157,14 +157,16 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
.
GreaterThan
(
0
);
.
GreaterThan
(
0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
SequenceConvOp performs convolution operation on features of
Sequence Conv Operator.
contextLength time-steps of each instance.
The convolution operation calculates the output based on the input, filter
SequenceConvOp performs convolution operation on features of contextLength
and strides, paddings parameters. The size of each dimension of the
time-steps of each instance. The convolution operation calculates the output
parameters is checked in the infer-shape. In order to ensure the equal
based on the input, filter, strides and paddings parameters.
length of sequence before and after convolution, it is necessary to fill
The size of each dimension of the parameters is checked during infer-shape.
the top and bottom of each sequence according to context_length,
In order to ensure the equal length of sequence before and after convolution,
context_stride and context_start.
it is necessary to fill the top and bottom of each sequence based on
context_length, context_stride and context_start.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/sequence_pool_op.cc
浏览文件 @
483947c4
...
@@ -54,33 +54,36 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -54,33 +54,36 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
"AVERAGE"
)
.
SetDefault
(
"AVERAGE"
)
.
InEnum
({
"AVERAGE"
,
"SUM"
,
"SQRT"
,
"LAST"
,
"FIRST"
,
"MAX"
});
.
InEnum
({
"AVERAGE"
,
"SUM"
,
"SQRT"
,
"LAST"
,
"FIRST"
,
"MAX"
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
SequencePoolOp pools features of all time-steps of each instance.
Sequence Pool Operator.
It supports six pooling pooltype:
The SequencePoolOp pools features of all time-steps of each instance.
- AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
It supports six pooling types:
- SUM: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
1. AVERAGE: Out[i] = $$avg(X_i)$$
- SQRT: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
2. SUM: Out[i] = $$\sum_jX_{ij}$$
/ sqrt(i-th sequence length)
3. SQRT: Out[i] = $$\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
- LAST: Out[i] = last instance in i-th sequence X[i]
4. LAST: Out[i] = last instance in i-th sequence X[i]
- FIRST: Out[i] = first instance in i-th sequence X[i]
5. FIRST: Out[i] = first instance in i-th sequence X[i]
- MAX: Out[i] = max_{for each instance in i-th sequence}{X[i]}
6. MAX: Out[i] = $$max(X_i)$$
For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
containing 2, 3, and 2 time-steps:
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
Thus, Out is a [3,1,1] Tensor without LoD infomation.
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
And for different pooltype, the value of Out is as follows:
Thus, Out is a [3,1,1] Tensor without LoD infomation.
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
And for different pooltype, the value of Out is as follows:
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/sequence_softmax_op.cc
浏览文件 @
483947c4
...
@@ -43,20 +43,24 @@ class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -43,20 +43,24 @@ class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
"(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension "
"(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension "
"of length 1."
);
"of length 1."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
SequenceSoftmaxOp computes softmax activation among all time-steps for each
Sequence Softmax Operator.
SequenceSoftmaxOp computes the softmax activation among all time-steps for each
sequence. The dimension of each time-step should be 1. Thus, the shape of
sequence. The dimension of each time-step should be 1. Thus, the shape of
input Tensor can be either [N, 1] or [N], where N is the sum of
all sequences'
input Tensor can be either [N, 1] or [N], where N is the sum of
the length
length
s.
of all sequence
s.
Equation
:
The algorithm works as follows
:
for i-th sequence in a mini-batch:
for i-th sequence in a mini-batch:
Out(X[lod[i]:lod[i+1]], :) =
$$Out(X[lod[i]:lod[i+1]], :) =
exp(X[lod[i]:lod[i+1], :]) / sum(exp(X[lod[i]:lod[i+1], :]))
\frac{\exp(X[lod[i]:lod[i+1], :])}
{\sum(\exp(X[lod[i]:lod[i+1], :]))}$$
For example, for a mini-batch of 3 sequences with variable-length,
For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
and N turns out to be 7.
and N turns out to be 7.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/sgd_op.cc
浏览文件 @
483947c4
...
@@ -45,15 +45,17 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -45,15 +45,17 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
SGDOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
SGDOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
"Input parameter"
);
AddInput
(
"Param"
,
"
(Tensor)
Input parameter"
);
AddInput
(
"LearningRate"
,
"Learning rate of SGD"
);
AddInput
(
"LearningRate"
,
"
(Tensor)
Learning rate of SGD"
);
AddInput
(
"Grad"
,
"Input gradient"
);
AddInput
(
"Grad"
,
"
(Tensor)
Input gradient"
);
AddOutput
(
"ParamOut"
,
"
o
utput parameter"
);
AddOutput
(
"ParamOut"
,
"
(Tensor) O
utput parameter"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
S
implest sgd algorithm.
S
GD operator
param_out = param - learning_rate * grad;
This operator implements one step of the stochastic gradient descent algorithm.
$$param_out = param - learning_rate * grad$$
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/sigmoid_cross_entropy_with_logits_op.cc
浏览文件 @
483947c4
...
@@ -107,26 +107,28 @@ class SigmoidCrossEntropyWithLogitsOpMaker
...
@@ -107,26 +107,28 @@ class SigmoidCrossEntropyWithLogitsOpMaker
AddComment
(
R"DOC(
AddComment
(
R"DOC(
SigmoidCrossEntropyWithLogits Operator.
SigmoidCrossEntropyWithLogits Operator.
This measures the element
wise probability error in discrete
classification tasks
This measures the element
-wise probability error in
classification tasks
in which each class is independent. This can be thought of as predicting labels
in which each class is independent. This can be thought of as predicting labels
for a data-point that are not mutually exclusive. For example, a news article
for a data-point, where labels are not mutually exclusive.
can be about politics, technology or sports at the same time or none of these.
For example, a news article can be about politics, technology or sports
at the same time or none of these.
The logistic loss is given as follows:
The logistic loss is given as follows:
loss = -Labels * log(sigmoid(X)) - (1 - Labels) * log(1 - sigmoid(X))
$$loss = -Labels * \log(\sigma(X)) - (1 - Labels) * \log(1 - \sigma(X))$$
We know that
sigmoid(X) = (1 / (1 + exp(-X))). By substituting this we get
We know that
$$\sigma(X) = (1 / (1 + \exp(-X)))$$. By substituting this we get:
loss = X - X * Labels + log(1 + exp(-X))
$$loss = X - X * Labels + \log(1 + \exp(-X))$$
For stability and to prevent overflow of
exp(-X)
when X < 0,
For stability and to prevent overflow of
$$\exp(-X)$$
when X < 0,
we
can
reformulate the loss as follows:
we reformulate the loss as follows:
loss = max(X, 0) - X * Labels + log(1 + exp(-abs(X)))
$$loss = \max(X, 0) - X * Labels + \log(1 + \exp(-|X|))$$
Both the input `X` and `Labels` can carry the LoD (Level of Details) information.
Both the input `X` and `Labels` can carry the LoD (Level of Details) information.
However the output only shares the LoD with input `X`.
However the output only shares the LoD with input `X`.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/sign_op.cc
浏览文件 @
483947c4
...
@@ -38,9 +38,10 @@ class SignOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -38,9 +38,10 @@ class SignOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) Input tensor of sign operator."
);
AddInput
(
"X"
,
"(Tensor) Input tensor of sign operator."
);
AddOutput
(
"Out"
,
"(Tensor) Output tensor of sign operator."
);
AddOutput
(
"Out"
,
"(Tensor) Output tensor of sign operator."
);
AddComment
(
R"DOC(Sign operator
AddComment
(
R"DOC(
Sign operator
The equation is: Out = X.sign()
$$Out = X.sign()$$
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/smooth_l1_loss_op.cc
浏览文件 @
483947c4
...
@@ -77,14 +77,17 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -77,14 +77,17 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
"A float scalar with default value 3.0."
)
"A float scalar with default value 3.0."
)
.
SetDefault
(
3.0
);
.
SetDefault
(
3.0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Compute smooth l1 loss for input and target. The operator take the 1st
Smooth L1 Loss Operator.
dimension of input as batch size. For each instance, it will compute
smooth l1 loss element by element first and sum all losses to one value.
This operator computes the smooth l1 loss for input and target.
So the output shape is [batch_size, 1].
The operator takes the first dimension of input as the batch size.
For each instance, it computes the smooth l1 loss element by element first
and then sums all the losses. So the resulting output shape
is [batch_size, 1].
The equation is:
The equation is:
loss =
0.5 * (sigma * (x-y))^2 if abs(x - y) < 1 / sigma^2
loss =
$$0.5 * (\sigma * (x-y))^2$$ if $$|x - y| < 1 /({\sigma}^2)$$
abs(x - y) - 0.5 / sigma^2
otherwise
$$\frac{|x - y| - 0.5}{{\sigma}^2}$$
otherwise
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/softmax_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/operators/split_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/operators/squared_l2_distance_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/operators/squared_l2_norm_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/operators/sum_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/operators/top_k_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/operators/transpose_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/operators/uniform_random_op.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/pybind/protobuf.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/pybind/pybind.cc
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
paddle/scripts/docker/build.sh
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/trainer/config_parser.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/backward.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/framework.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/io.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/layer_helper.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/layers.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/net_drawer.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/nets.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/optimizer.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_crf_decoding_op.py
0 → 100644
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_executor_and_mul.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_fit_a_line.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_image_classification_layer.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_image_classification_train.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_inference_model_io.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_layers.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_lod_rank_table.py
0 → 100644
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_lod_tensor_array.py
0 → 100644
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_operator_desc.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_parameter.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_program.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_recognize_digits_conv.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_recognize_digits_mlp.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_recommender_system.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_understand_sentiment_conv.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_variable.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
python/paddle/v2/framework/tests/test_word2vec.py
浏览文件 @
483947c4
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录