提交 48324c32 编写于 作者: S sneaxiy

merge develop

test=develop
......@@ -139,10 +139,12 @@ endfunction()
message(STATUS "CUDA detected: " ${CUDA_VERSION})
if (${CUDA_VERSION} LESS 7.0)
set(paddle_known_gpu_archs ${paddle_known_gpu_archs})
add_definitions("-DPADDLE_CUDA_BINVER=\"60\"")
elseif (${CUDA_VERSION} LESS 8.0) # CUDA 7.x
set(paddle_known_gpu_archs ${paddle_known_gpu_archs7})
list(APPEND CUDA_NVCC_FLAGS "-D_MWAITXINTRIN_H_INCLUDED")
list(APPEND CUDA_NVCC_FLAGS "-D__STRICT_ANSI__")
add_definitions("-DPADDLE_CUDA_BINVER=\"70\"")
elseif (${CUDA_VERSION} LESS 9.0) # CUDA 8.x
set(paddle_known_gpu_archs ${paddle_known_gpu_archs8})
list(APPEND CUDA_NVCC_FLAGS "-D_MWAITXINTRIN_H_INCLUDED")
......@@ -150,6 +152,7 @@ elseif (${CUDA_VERSION} LESS 9.0) # CUDA 8.x
# CUDA 8 may complain that sm_20 is no longer supported. Suppress the
# warning for now.
list(APPEND CUDA_NVCC_FLAGS "-Wno-deprecated-gpu-targets")
add_definitions("-DPADDLE_CUDA_BINVER=\"80\"")
endif()
include_directories(${CUDA_INCLUDE_DIRS})
......
......@@ -89,6 +89,7 @@ if(CUDNN_FOUND)
if(NOT CUDNN_MAJOR_VERSION)
set(CUDNN_VERSION "???")
else()
add_definitions("-DPADDLE_CUDNN_BINVER=\"${CUDNN_MAJOR_VERSION}\"")
math(EXPR CUDNN_VERSION
"${CUDNN_MAJOR_VERSION} * 1000 +
${CUDNN_MINOR_VERSION} * 100 + ${CUDNN_PATCHLEVEL_VERSION}")
......
......@@ -32,4 +32,4 @@ endif()
add_dependencies(cub extern_cub)
LIST(APPEND externl_project_dependencies cub)
LIST(APPEND external_project_dependencies cub)
......@@ -28,4 +28,4 @@ endif()
add_dependencies(dlpack extern_dlpack)
LIST(APPEND externl_project_dependencies dlpack)
LIST(APPEND external_project_dependencies dlpack)
......@@ -110,7 +110,7 @@ function(op_library TARGET)
# Define operators that don't need pybind here.
foreach(manual_pybind_op "compare_op" "logical_op" "nccl_op"
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op"
"fusion_transpose_flatten_concat_op")
"fusion_transpose_flatten_concat_op" "fusion_conv_inception_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1)
endif()
......
......@@ -78,7 +78,7 @@ if (WITH_GPU)
endif()
cc_test(var_type_traits_test SRCS var_type_traits_test.cc DEPS var_type_traits)
cc_library(scope SRCS scope.cc DEPS glog threadpool var_type_traits)
cc_library(scope SRCS scope.cc DEPS glog threadpool xxhash var_type_traits)
cc_library(scope_pool SRCS scope_pool.cc DEPS scope)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_test(variable_test SRCS variable_test.cc DEPS tensor var_type_traits)
......@@ -189,9 +189,9 @@ cc_library(parallel_executor SRCS parallel_executor.cc DEPS
fast_threaded_ssa_graph_executor variable_helper)
if(WITH_PSLIB)
cc_library(async_executor SRCS async_executor.cc data_feed.cc data_feed_factory.cc executor_thread_worker.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass async_executor_proto variable_helper pslib_brpc pslib)
cc_library(async_executor SRCS async_executor.cc data_feed.cc data_feed_factory.cc executor_thread_worker.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass async_executor_proto variable_helper pslib_brpc pslib timer)
else()
cc_library(async_executor SRCS async_executor.cc data_feed.cc data_feed_factory.cc executor_thread_worker.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass async_executor_proto variable_helper)
cc_library(async_executor SRCS async_executor.cc data_feed.cc data_feed_factory.cc executor_thread_worker.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass async_executor_proto variable_helper timer)
endif(WITH_PSLIB)
......
......@@ -304,9 +304,14 @@ void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
// start executing ops in multiple threads
for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
if (debug) {
threads.push_back(std::thread(&ExecutorThreadWorker::TrainFilesWithTimer,
workers[thidx].get()));
} else {
threads.push_back(
std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
}
}
for (auto& th : threads) {
th.join();
......
......@@ -50,7 +50,7 @@ void AllReduceOpHandle::RunImpl() {
// FIXME(typhoonzero): If scope0(global scope) have NCCL_ID_VAR,
// this is a distributed or inter-process call, find a better way.
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if (NoDummyInputSize() == 1 &&
local_scopes_[0]->FindLocalVar(NCCL_ID_VARNAME) == nullptr) {
#else
......
......@@ -25,7 +25,7 @@ struct ExecutionStrategy {
size_t num_threads_{0};
bool use_cuda_{true};
bool allow_op_delay_{false};
size_t num_iteration_per_drop_scope_{100};
size_t num_iteration_per_drop_scope_{1};
ExecutorType type_{kDefault};
bool dry_run_{false};
};
......
......@@ -64,20 +64,26 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
}
platform::RecordEvent e("ScopeBufferedSSAGraphExecutorAfterRun", nullptr);
drop_scope_counter_ += 1;
++drop_scope_counter_;
if (!fetch_tensors.empty() ||
drop_scope_counter_ == strategy_.num_iteration_per_drop_scope_) {
drop_scope_counter_ = 0;
// Wait All computational streams
for (auto p : places_) {
platform::DeviceContextPool::Instance().Get(p)->Wait();
bool stream_end = false;
if (!fetch_tensors.empty()) {
WaitComputationalStreams();
stream_end = true;
}
if (drop_scope_counter_ == strategy_.num_iteration_per_drop_scope_) {
if (!stream_end) {
WaitComputationalStreams();
}
for (auto &scope : local_scopes_) {
auto &local_scope =
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>();
scope->DeleteScope(local_scope);
}
drop_scope_counter_ = 0;
}
if (eptr) {
std::rethrow_exception(eptr);
......
......@@ -47,6 +47,14 @@ class ScopeBufferedSSAGraphExecutor : public SSAGraphExecutor {
FeedFetchList Run(const std::vector<std::string>& fetch_tensors) override;
private:
inline void WaitComputationalStreams() {
// Wait All computational streams
for (auto p : places_) {
platform::DeviceContextPool::Instance().Get(p)->Wait();
}
}
private:
size_t drop_scope_counter_{0};
......
......@@ -29,6 +29,7 @@ limitations under the License. */
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/timer.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {
......@@ -180,6 +181,7 @@ void ExecutorThreadWorker::SetDevice() {
return;
#else
static unsigned concurrency_cap = std::thread::hardware_concurrency();
LOG(WARNING) << "concurrency capacity " << concurrency_cap;
int thread_id = this->thread_id_;
if (static_cast<unsigned>(thread_id) < concurrency_cap) {
......@@ -238,6 +240,55 @@ static void print_fetch_var(Scope* scope, const std::string& var_name) {
VLOG(1) << "print_fetch_var: unrecognized data type:" << tensor.type();
}
void ExecutorThreadWorker::TrainFilesWithTimer() {
platform::SetNumThreads(1);
SetDevice();
thread_reader_->Start();
std::vector<double> op_total_time;
std::vector<std::string> op_name;
for (auto& op : ops_) {
op_name.push_back(op->Type());
}
op_total_time.resize(ops_.size());
for (size_t i = 0; i < op_total_time.size(); ++i) {
op_total_time[i] = 0.0;
}
platform::Timer timeline;
double total_time = 0.0;
double read_time = 0.0;
int cur_batch;
int batch_cnt = 0;
timeline.Start();
while ((cur_batch = thread_reader_->Next()) > 0) {
timeline.Pause();
read_time += timeline.ElapsedSec();
total_time += timeline.ElapsedSec();
for (size_t i = 0; i < ops_.size(); ++i) {
timeline.Start();
ops_[i]->Run(*thread_scope_, place_);
timeline.Pause();
op_total_time[i] += timeline.ElapsedSec();
total_time += timeline.ElapsedSec();
}
++batch_cnt;
thread_scope_->DropKids();
if (thread_id_ == 0) {
if (batch_cnt > 0 && batch_cnt % 1000 == 0) {
for (size_t i = 0; i < ops_.size(); ++i) {
fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
op_name[i].c_str(), op_total_time[i] / batch_cnt);
}
fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
int fetch_var_num = fetch_var_names_.size();
for (int i = 0; i < fetch_var_num; ++i) {
print_fetch_var(thread_scope_, fetch_var_names_[i]);
}
}
}
timeline.Start();
}
}
void ExecutorThreadWorker::TrainFiles() {
platform::SetNumThreads(1);
......@@ -320,10 +371,12 @@ void AsyncExecutorThreadWorker::SetPSlibPtr(
std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {
_pslib_ptr = pslib_ptr;
}
void AsyncExecutorThreadWorker::SetPullDenseThread(
std::shared_ptr<DensePullThread> dpt) {
_pull_dense_thread = dpt;
}
void AsyncExecutorThreadWorker::TrainOneNetwork() {
PrepareParams();
......
......@@ -155,6 +155,8 @@ class ExecutorThreadWorker {
void SetDataFeed(const std::shared_ptr<DataFeed>& datafeed);
// A multi-thread training function
virtual void TrainFiles();
// with timer log
virtual void TrainFilesWithTimer();
// set fetch variable names from python interface assigned by users
void SetFetchVarNames(const std::vector<std::string>& fetch_var_names);
#ifdef PADDLE_WITH_PSLIB
......
......@@ -16,6 +16,8 @@ limitations under the License. */
#if !defined(_WIN32)
#include <pthread.h>
#else
#include <mutex> // NOLINT
#endif // !_WIN32
#include "paddle/fluid/platform/enforce.h"
......@@ -29,17 +31,17 @@ struct RWLock {
~RWLock() { pthread_rwlock_destroy(&lock_); }
void RDLock() {
inline void RDLock() {
PADDLE_ENFORCE_EQ(pthread_rwlock_rdlock(&lock_), 0,
"acquire read lock failed");
}
void WRLock() {
inline void WRLock() {
PADDLE_ENFORCE_EQ(pthread_rwlock_wrlock(&lock_), 0,
"acquire write lock failed");
}
void UNLock() {
inline void UNLock() {
PADDLE_ENFORCE_EQ(pthread_rwlock_unlock(&lock_), 0, "unlock failed");
}
......@@ -51,81 +53,46 @@ struct RWLock {
// https://stackoverflow.com/questions/7125250/making-pthread-rwlock-wrlock-recursive
// In windows, rw_lock seems like a hack. Use empty object and do nothing.
struct RWLock {
void RDLock() {}
void WRLock() {}
void UNLock() {}
// FIXME(minqiyang): use mutex here to do fake lock
inline void RDLock() { mutex_.lock(); }
inline void WRLock() { mutex_.lock(); }
inline void UNLock() { mutex_.unlock(); }
private:
std::mutex mutex_;
};
#endif
class RWLockGuard {
class AutoWRLock {
public:
enum Status { kUnLock, kWRLock, kRDLock };
RWLockGuard(RWLock* rw_lock, Status init_status)
: lock_(rw_lock), status_(Status::kUnLock) {
switch (init_status) {
case Status::kRDLock: {
RDLock();
break;
}
case Status::kWRLock: {
WRLock();
break;
}
case Status::kUnLock: {
break;
}
}
}
explicit AutoWRLock(RWLock* rw_lock) : lock_(rw_lock) { Lock(); }
void WRLock() {
switch (status_) {
case Status::kUnLock: {
lock_->WRLock();
status_ = Status::kWRLock;
break;
}
case Status::kWRLock: {
break;
}
case Status::kRDLock: {
PADDLE_THROW(
"Please unlock read lock first before invoking write lock.");
break;
}
}
}
~AutoWRLock() { UnLock(); }
void RDLock() {
switch (status_) {
case Status::kUnLock: {
lock_->RDLock();
status_ = Status::kRDLock;
break;
}
case Status::kRDLock: {
break;
}
case Status::kWRLock: {
PADDLE_THROW(
"Please unlock write lock first before invoking read lock.");
break;
}
}
}
private:
inline void Lock() { lock_->WRLock(); }
void UnLock() {
if (status_ != Status::kUnLock) {
lock_->UNLock();
status_ = Status::kUnLock;
}
}
inline void UnLock() { lock_->UNLock(); }
private:
RWLock* lock_;
};
class AutoRDLock {
public:
explicit AutoRDLock(RWLock* rw_lock) : lock_(rw_lock) { Lock(); }
~AutoRDLock() { UnLock(); }
private:
inline void Lock() { lock_->RDLock(); }
~RWLockGuard() { UnLock(); }
inline void UnLock() { lock_->UNLock(); }
private:
RWLock* lock_;
Status status_;
};
} // namespace framework
......
......@@ -47,9 +47,15 @@ DEFINE_bool(fast_eager_deletion_mode, false,
// the mutex will cause serious performance issue.
// So the mutex is disabled when `ON_INFER`.
#ifdef PADDLE_ON_INFERENCE
#define SCOPE_LOCK_GUARD
#define SCOPE_KIDS_READER_LOCK
#define SCOPE_KIDS_WRITER_LOCK
#define SCOPE_VARS_READER_LOCK
#define SCOPE_VARS_WRITER_LOCK
#else
#define SCOPE_LOCK_GUARD std::lock_guard<std::mutex> lock(mutex_);
#define SCOPE_KIDS_READER_LOCK AutoRDLock auto_lock(&kids_lock_);
#define SCOPE_KIDS_WRITER_LOCK AutoWRLock auto_lock(&kids_lock_);
#define SCOPE_VARS_READER_LOCK AutoRDLock auto_lock(&vars_lock_);
#define SCOPE_VARS_WRITER_LOCK AutoWRLock auto_lock(&vars_lock_);
#endif
namespace paddle {
......@@ -67,64 +73,69 @@ bool IsFastEagerDeletionModeEnabled() { return FLAGS_fast_eager_deletion_mode; }
Scope::~Scope() { DropKids(); }
Scope& Scope::NewScope() const {
SCOPE_LOCK_GUARD
kids_.push_back(new Scope(this));
return *kids_.back();
Scope* child = new Scope(this);
{
SCOPE_KIDS_WRITER_LOCK
kids_.push_back(child);
}
return *child;
}
Variable* Scope::Var(const std::string& name) {
SCOPE_LOCK_GUARD
SCOPE_VARS_WRITER_LOCK
return VarInternal(name);
}
Variable* Scope::Var(std::string* name) {
SCOPE_LOCK_GUARD
auto new_name = string::Sprintf("%p.%d", this, vars_.size());
if (name != nullptr) {
*name = new_name;
}
SCOPE_VARS_WRITER_LOCK
return VarInternal(new_name);
}
Variable* Scope::FindVar(const std::string& name) const {
SCOPE_LOCK_GUARD
SCOPE_VARS_READER_LOCK
return FindVarInternal(name);
}
Variable* Scope::FindLocalVar(const std::string& name) const {
SCOPE_LOCK_GUARD
SCOPE_VARS_READER_LOCK
return FindVarLocally(name);
}
const Scope* Scope::FindScope(const Variable* var) const {
SCOPE_LOCK_GUARD
SCOPE_VARS_READER_LOCK
return FindScopeInternal(var);
}
void Scope::DropKids() {
SCOPE_LOCK_GUARD
SCOPE_KIDS_WRITER_LOCK
for (Scope* s : kids_) delete s;
kids_.clear();
}
bool Scope::HasKid(const Scope* scope) const {
SCOPE_LOCK_GUARD
SCOPE_KIDS_READER_LOCK
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
return it != this->kids_.end();
}
std::vector<std::string> Scope::LocalVarNames() const {
SCOPE_LOCK_GUARD
std::vector<std::string> known_vars;
{
SCOPE_VARS_READER_LOCK
known_vars.reserve(this->vars_.size());
for (auto& p : vars_) {
known_vars.emplace_back(p.first);
}
}
return known_vars;
}
void Scope::DeleteScope(Scope* scope) const {
SCOPE_LOCK_GUARD
SCOPE_KIDS_WRITER_LOCK
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
PADDLE_ENFORCE(it != this->kids_.end(), "%p Cannot find %p as kid scope",
this, scope);
......@@ -138,8 +149,8 @@ void Scope::DeleteScope(Scope* scope) const {
}
void Scope::EraseVars(const std::vector<std::string>& var_names) {
SCOPE_LOCK_GUARD
std::set<std::string> var_set(var_names.begin(), var_names.end());
SCOPE_VARS_WRITER_LOCK
for (auto it = vars_.begin(); it != vars_.end();) {
if (var_set.find(it->first) != var_set.end()) {
it = vars_.erase(it);
......@@ -151,12 +162,12 @@ void Scope::EraseVars(const std::vector<std::string>& var_names) {
void Scope::Rename(const std::string& origin_name,
const std::string& new_name) const {
SCOPE_LOCK_GUARD
SCOPE_VARS_WRITER_LOCK
RenameInternal(origin_name, new_name);
}
std::string Scope::Rename(const std::string& origin_name) const {
SCOPE_LOCK_GUARD
SCOPE_VARS_WRITER_LOCK
auto new_name = string::Sprintf("%p.%d", this, vars_.size());
RenameInternal(origin_name, new_name);
return new_name;
......
......@@ -14,12 +14,18 @@ limitations under the License. */
#pragma once
extern "C" {
#include <xxhash.h>
}
#include <list>
#include <mutex> // NOLINT
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/rw_lock.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/macros.h"
......@@ -95,7 +101,14 @@ class Scope {
std::string Rename(const std::string& origin_name) const;
protected:
mutable std::unordered_map<std::string, std::unique_ptr<Variable>> vars_;
struct KeyHasher {
std::size_t operator()(const std::string& key) const {
return XXH32(key.c_str(), key.size(), 1);
}
};
mutable std::unordered_map<std::string, std::unique_ptr<Variable>, KeyHasher>
vars_;
private:
// Call Scope::NewScope for a sub-scope.
......@@ -124,7 +137,8 @@ class Scope {
DISABLE_COPY_AND_ASSIGN(Scope);
private:
mutable std::mutex mutex_;
mutable RWLock kids_lock_;
mutable RWLock vars_lock_;
};
// Generate some debug string about the inherience structure of scope, quite
......
......@@ -19,6 +19,10 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/platform/cudnn_helper.h"
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);
DECLARE_int64(cudnn_exhaustive_search_times);
namespace paddle {
namespace operators {
......@@ -45,6 +49,7 @@ static constexpr size_t kNUM_CUDNN_BWD_DATA_ALGS = 5;
template <typename TAlgorithm>
class AlgorithmsCache {
public:
AlgorithmsCache() : search_times_(0) { hash_.clear(); }
// Caches the best algorithm for a given
// combination of tensor dimensions & compute data type.
TAlgorithm GetAlgorithm(
......@@ -54,9 +59,14 @@ class AlgorithmsCache {
int algorithmFlags, // can set for different data type
std::function<TAlgorithm()> gen_func);
TAlgorithm GetAlgorithm(int64_t area, int search_times, int algorithmFlags,
std::function<TAlgorithm()> gen_func);
private:
std::unordered_map<int64_t, TAlgorithm> hash_;
std::mutex mutex_;
int search_times_;
};
template <typename TAlgorithm>
......@@ -107,5 +117,29 @@ TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
return hash_[seed];
}
template <typename TAlgorithm>
TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
int64_t area, int search_times, int algorithmFlags,
std::function<TAlgorithm()> gen_func) {
if (hash_.find(area) != hash_.end()) {
return hash_[area];
}
if (search_times_ < search_times) {
auto algo = gen_func();
hash_[area] = algo;
++search_times_;
return algo;
}
TAlgorithm algo;
int64_t min = static_cast<uint64_t>(INT_MAX);
for (const auto& m : hash_) {
if (m.first < min) {
min = m.first;
algo = m.second;
}
}
return algo;
}
} // namespace operators
} // namespace paddle
......@@ -28,6 +28,8 @@ namespace operators {
// x is Input,
// z is ResidualData,
// bias is Bias
// When `split_channels` is set, y will be splitted into multiple outputs,
// each output has split_channels[i] number of channels.
class Conv2DFusionOpMaker : public Conv2DOpMaker {
protected:
void Apply() override {
......@@ -36,8 +38,65 @@ class Conv2DFusionOpMaker : public Conv2DOpMaker {
"The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
"'relux' , 'tanh', 'band_pass'")
.SetDefault("relu");
AddAttr<std::vector<int>>(
"split_channels",
"When `split_channels` are set, there will be multiple outputs, the "
"output size is equal to the number of `split_channels`.")
.SetDefault({});
AddOutput("Outputs",
"This Outputs is used when setting `split_channels`."
"Usually used to fuse conv with same input and same filter size, "
"padding, stride, dilation size.")
.AsDuplicable()
.AsDispensable();
AddInput("AlgoCache",
"The cache of convolution algorithm, a RAW type variable.")
.AsDispensable();
AddAttr<int>(
"search_times",
"The number of exhaustive search times for convolution algorithm.")
.SetDefault(-1);
}
};
class Conv2DFusionOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of ConvOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of ConvOp should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
std::vector<int> dilations =
ctx->Attrs().Get<std::vector<int>>("dilations");
std::vector<int64_t> oshape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) {
oshape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
dilations[i], paddings[i], strides[i]));
}
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of ConvOp should not be null.");
ctx->SetOutputDim("Output", framework::make_ddim(oshape));
std::vector<int> channels =
ctx->Attrs().Get<std::vector<int>>("split_channels");
if (channels.size()) {
PADDLE_ENFORCE(ctx->HasOutputs("Outputs"),
"Output(Outputs) of ConvOp should not be null.");
std::vector<framework::DDim> oshapes;
oshapes.reserve(channels.size());
for (size_t i = 0; i < channels.size(); ++i) {
oshapes.push_back({oshape[0], channels[i], oshape[2], oshape[3]});
}
ctx->SetOutputsDim("Outputs", oshapes);
}
}
};
// TODO(qingqing): add gradient operator for conv2d_fusion
} // namespace operators
......@@ -45,4 +104,5 @@ class Conv2DFusionOpMaker : public Conv2DOpMaker {
namespace ops = paddle::operators;
REGISTER_OPERATOR(conv2d_fusion, ops::ConvOp, ops::Conv2DFusionOpMaker,
ops::ConvOpInferVarType, paddle::framework::EmptyGradOpMaker);
ops::Conv2DFusionOpInferShape, ops::ConvOpInferVarType,
paddle::framework::EmptyGradOpMaker);
......@@ -16,8 +16,9 @@ limitations under the License. */
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);
DEFINE_int64(cudnn_exhaustive_search_times, -1,
"Exhaustive search times for cuDNN convolution, "
"defalut is 1, only search once.");
namespace paddle {
namespace operators {
......@@ -117,20 +118,7 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
workspace_size_limit, &algo));
VLOG(3) << "cuDNN forward algo " << algo;
} else {
AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* algo_cache = nullptr;
if (ctx.scope().FindVar(kCUDNNFwdAlgoCache)) {
algo_cache =
ctx.scope()
.FindVar(kCUDNNFwdAlgoCache)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
} else {
algo_cache =
const_cast<framework::Scope&>(ctx.scope())
.Var(kCUDNNFwdAlgoCache)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
}
algo = algo_cache->GetAlgorithm(
x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
auto search_func = [&]() {
int returned_algo_count;
std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
fwd_perf_stat;
......@@ -138,20 +126,52 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
CUDNN_ENFORCE(
platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
handle, cudnn_input_desc, input_data, cudnn_filter_desc,
filter_data, cudnn_conv_desc, cudnn_output_desc,
output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
fwd_perf_stat.data(), cudnn_workspace,
workspace_size_limit));
filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit));
};
workspace_handle.RunFunc(cudnn_find_func, workspace_size_limit);
VLOG(3) << "Perf result: (algo: stat, time, memory)";
for (int i = 0; i < returned_algo_count; ++i) {
const auto& stat = fwd_perf_stat[i];
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
<< " " << stat.memory;
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
<< stat.memory;
}
return fwd_perf_stat[0].algo;
});
};
AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* algo_cache = nullptr;
int search_times = ctx.Attr<int>("search_times");
search_times = std::max(
static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
if (search_times > 0) {
// The searched algo will be cached by `search_times` times for
// different input dimension. For other dimensions, select the algo
// of closest area.
auto var_name = ctx.Inputs("AlgoCache")[0];
algo_cache =
ctx.scope()
.FindVar(var_name)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
algo = algo_cache->GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
search_func);
} else {
// Cache searched algo in Var(kCUDNNFwdAlgoCache).
// all conv ops use the same kCUDNNFwdAlgoCache variable.
if (ctx.scope().FindVar(kCUDNNFwdAlgoCache)) {
algo_cache =
ctx.scope()
.FindVar(kCUDNNFwdAlgoCache)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
} else {
// TODO(qingqing) remove const_cast
algo_cache =
const_cast<framework::Scope*>(ctx.scope().parent())
->Var(kCUDNNFwdAlgoCache)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
}
algo = algo_cache->GetAlgorithm(x_dims, f_dims, strides, paddings,
dilations, 0, search_func);
}
VLOG(3) << "choose algo " << algo;
}
......@@ -195,6 +215,27 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
};
workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
}
std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
if (channels.size()) {
auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
if (x_dims[0] == 1) {
// share data with Output
framework::Tensor t;
t.ShareDataWith(*output);
auto y_dims = output->dims();
t.Resize({y_dims[1], y_dims[2], y_dims[3]});
int s = 0;
for (size_t i = 0; i < channels.size(); ++i) {
int e = s + channels[i];
outs[i]->ShareDataWith(t.Slice(s, e));
outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
s = e;
}
} else {
// TODO(qingiqng): do copy when batch size large than 1
PADDLE_THROW("Batch size greater than 1 is Unsupported");
}
}
}
};
#endif
......
......@@ -52,12 +52,12 @@ std::unique_ptr<framework::Scope> GenerateVars(platform::Place place) {
framework::Scope* scope = new framework::Scope();
framework::Variable* var = scope->Var("var1");
auto* slr = var->GetMutable<framework::SelectedRows>();
slr->set_height(1000);
slr->set_height(20000);
auto* tensor = slr->mutable_value();
auto* rows = slr->mutable_rows();
tensor->Resize(framework::make_ddim({3, 5}));
tensor->Resize(framework::make_ddim({20000, 1024}));
tensor->mutable_data<float>(place);
paddle::operators::math::set_constant(ctx, tensor, 32.7);
......@@ -83,6 +83,7 @@ void Gather(const std::vector<distributed::RemoteVar>& vars,
}
TEST(PREFETCH, GPU) {
setenv("FLAGS_max_body_size", "2147483647", 1);
platform::CUDAPlace place;
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& ctx = *pool.Get(place);
......
include(operators)
register_operators(EXCLUDES fusion_transpose_flatten_concat_op)
register_operators(EXCLUDES fusion_transpose_flatten_concat_op fusion_conv_inception_op)
if (WITH_GPU)
op_library(fusion_transpose_flatten_concat_op)
op_library(fusion_conv_inception_op)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fusion_transpose_flatten_concat);\n")
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(conv2d_inception_fusion);\n")
endif()
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
namespace paddle {
namespace operators {
class ConvInceptionFusionOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
// 1 x
auto in_dims = ctx->GetInputDim("Input");
// 4 filters
auto w_dims = ctx->GetInputsDim("Filter");
PADDLE_ENFORCE(in_dims.size(), 4, "Conv intput should be 4-D tensor.");
PADDLE_ENFORCE_EQ(w_dims.size(), 4, "There should be 4 filters");
PADDLE_ENFORCE_EQ(w_dims[0][1], in_dims[1]);
PADDLE_ENFORCE_EQ(w_dims[1][1], in_dims[1]);
int n = in_dims[0];
// compute output channel
// 1st channel
int c = w_dims[0][0];
// add 2nd channel
c += (w_dims[1][0] - w_dims[2][1] * 2);
// add 3rd channel
c += (w_dims[2][0] - w_dims[3][1]);
// add 4-th channel
c += w_dims[3][0];
int h = in_dims[2];
int w = in_dims[3];
ctx->SetOutputDim("Output", {n, c, h, w});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
}
};
class ConvInceptionFusionOpMaker : public framework::OpProtoAndCheckerMaker {
protected:
void Make() override {
AddInput("Input", "(Tensor) NCHW layout.");
AddInput("Filter", "(vector<Tensor>) 4 aggregated filters").AsDuplicable();
AddInput("Bias", "(vector<Tensor>) it's lenght is equal to Filter")
.AsDuplicable();
AddOutput("Output",
"(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW.");
AddOutput("TempOutput", "").AsDuplicable();
AddAttr<std::string>(
"pooling_type",
"(string), pooling type, can be \"max\" for max-pooling "
"and \"avg\" for average-pooling.")
.InEnum({"max", "avg"});
AddAttr<bool>(
"exclusive",
"(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True.")
.SetDefault(true);
AddAttr<std::string>(
"activation",
"The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
"'relux' , 'tanh', 'band_pass'")
.SetDefault("relu");
AddAttr<int>("workspace_size_MB",
"Only used in cudnn kernel. Need set use_cudnn to true."
"workspace size for cudnn, in MB, "
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"better hardware. This size should be chosen carefully.")
.SetDefault(4096);
AddComment(R"DOC(
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(conv2d_inception_fusion, ops::ConvInceptionFusionOp,
ops::ConvInceptionFusionOpMaker,
paddle::framework::EmptyGradOpMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"
DECLARE_uint64(conv_workspace_size_limit);
namespace paddle {
namespace operators {
#if CUDNN_VERSION >= 7001
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto* input = ctx.Input<Tensor>("Input");
auto filters = ctx.MultiInput<framework::Tensor>("Filter");
auto bias = ctx.MultiInput<framework::Tensor>("Bias");
auto* output = ctx.Output<Tensor>("Output");
auto temp_outs = ctx.MultiOutput<framework::Tensor>("TempOutput");
const std::string pool_type = ctx.Attr<std::string>("pooling_type");
const std::string activation = ctx.Attr<std::string>("activation");
const bool exclusive = ctx.Attr<bool>("exclusive");
int64_t user_workspace_size =
static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
const T* input_data = input->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
T* temp_data = temp_outs[0]->mutable_data<T>(input->dims(), ctx.GetPlace());
DataLayout layout = DataLayout::kNCHW;
std::vector<int> in_dim = framework::vectorize2int(input->dims());
// ------------------- cudnn descriptors ---------------------
PoolingMode pooling_mode;
if (pool_type == "max") {
pooling_mode = PoolingMode::kMaximum;
} else {
pooling_mode = exclusive ? PoolingMode::kAverageExclusive
: (PoolingMode::kAverageInclusive);
}
std::vector<int> k0x0 = {0, 0};
std::vector<int> k1x1 = {1, 1};
std::vector<int> k1x1_2 = {1, 1};
std::vector<int> k3x3 = {3, 3};
ScopedPoolingDescriptor pool_desc;
ScopedActivationDescriptor act_desc;
ScopedTensorDescriptor out_pool_desc;
ScopedTensorDescriptor input_desc;
cudnnPoolingDescriptor_t cudnn_pool_desc =
pool_desc.descriptor(pooling_mode, k3x3, k1x1, k1x1);
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
layout, framework::vectorize2int(input->dims()));
cudnnTensorDescriptor_t pool_out_desc = out_pool_desc.descriptor<T>(
layout, framework::vectorize2int(input->dims()));
cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
cudnnTensorDescriptor_t* out_desc = new cudnnTensorDescriptor_t[4];
cudnnFilterDescriptor_t* filter_desc = new cudnnFilterDescriptor_t[4];
cudnnTensorDescriptor_t* bias_desc = new cudnnTensorDescriptor_t[4];
cudnnTensorDescriptor_t* in_desc = new cudnnTensorDescriptor_t[4];
cudnnConvolutionDescriptor_t* conv_desc =
new cudnnConvolutionDescriptor_t[4];
for (int i = 0; i < 4; ++i) {
CUDNN_ENFORCE(
platform::dynload::cudnnCreateFilterDescriptor(&filter_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnCreateTensorDescriptor(&bias_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnCreateTensorDescriptor(&in_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnCreateTensorDescriptor(&out_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnCreateConvolutionDescriptor(&conv_desc[i]));
}
std::vector<std::vector<int>> filter_dims;
std::vector<std::vector<int>> bias_dims;
std::vector<std::vector<int>> in_dims;
std::vector<std::vector<int>> out_dims;
std::vector<std::vector<int>> in_strides;
std::vector<std::vector<int>> out_strides;
std::vector<std::vector<int>> bias_strides;
cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
int n = in_dim[0];
int h = in_dim[2];
int w = in_dim[3];
int oc = output->dims()[1];
cudnnDataType_t compute_type = (cudnn_dtype == CUDNN_DATA_DOUBLE)
? CUDNN_DATA_DOUBLE
: CUDNN_DATA_FLOAT;
for (int i = 0; i < 4; ++i) {
filter_dims.push_back(framework::vectorize2int(filters[i]->dims()));
CUDNN_ENFORCE(platform::dynload::cudnnSetFilterNdDescriptor(
filter_desc[i], cudnn_dtype, format, 4, filter_dims[i].data()));
bias_dims.push_back({1, filter_dims[i][0], 1, 1});
bias_strides.push_back({filter_dims[i][0], 1, 1, 1});
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
bias_desc[i], cudnn_dtype, 4, bias_dims[i].data(),
bias_strides[i].data()));
in_dims.push_back({n, filter_dims[i][1], h, w});
out_dims.push_back({n, filter_dims[i][0], h, w});
in_strides.push_back({filter_dims[i][1] * h * w, h * w, w, 1});
out_strides.push_back({oc * h * w, h * w, w, 1});
if (i < 2) {
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionNdDescriptor(
conv_desc[i], 2, k0x0.data(), k1x1.data(), k1x1.data(),
CUDNN_CROSS_CORRELATION, compute_type));
} else {
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionNdDescriptor(
conv_desc[i], 2, k1x1.data(), k1x1.data(), k1x1.data(),
CUDNN_CROSS_CORRELATION, compute_type));
}
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
conv_desc[i], CUDNN_DEFAULT_MATH));
}
in_dims[2][1] *= 2;
in_strides[2][0] = oc * h * w;
out_strides[2][0] = filter_dims[2][0] * h * w; // this out is continuous.
in_strides[3][0] = filter_dims[2][0] * h * w;
CUDNN_ENFORCE(
platform::dynload::cudnnSetConvolutionGroupCount(conv_desc[2], 2));
cudnnConvolutionFwdAlgo_t algo[4];
auto handle = dev_ctx.cudnn_handle();
size_t workspace_size_in_bytes = 0; // final workspace to allocate.
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
int64_t max_user_size =
std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
user_workspace_size);
workspace_size_limit = max_user_size * 1024 * 1024;
}
for (int i = 0; i < 4; ++i) {
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
in_desc[i], cudnn_dtype, 4, in_dims[i].data(), in_strides[i].data()));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
out_desc[i], cudnn_dtype, 4, out_dims[i].data(),
out_strides[i].data()));
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit,
&algo[i]));
size_t tmp_size = 0;
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
algo[i], &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
cudnnActivationDescriptor_t cudnn_act_desc =
act_desc.descriptor<T>(activation);
int oc0 = filter_dims[0][0];
int oc1 = filter_dims[1][0] - filter_dims[2][1] * 2;
int oc3 = filter_dims[3][0];
int oc2 = oc - oc0 - oc1 - oc3;
// branch1: pool + 1x1 conv
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
CUDNN_ENFORCE(platform::dynload::cudnnPoolingForward(
handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
pool_out_desc, temp_data));
std::vector<const void*> in_datas;
in_datas.push_back(static_cast<const void*>(temp_data));
in_datas.push_back(static_cast<const void*>(input_data));
in_datas.push_back(
static_cast<const void*>(output_data + (oc0 + oc1) * h * w));
T* temp2_data = temp_outs[1]->mutable_data<T>(
framework::make_ddim(out_dims[2]), ctx.GetPlace());
in_datas.push_back(static_cast<const void*>(temp2_data + oc2 * h * w));
std::vector<void*> out_datas;
out_datas.push_back(static_cast<void*>(output_data));
out_datas.push_back(static_cast<void*>(output_data + oc0 * h * w));
out_datas.push_back(static_cast<void*>(temp2_data));
out_datas.push_back(
static_cast<void*>(output_data + (oc0 + oc1 + oc2) * h * w));
for (int i = 0; i < 4; ++i) {
auto func = [&](void* cudnn_workspace) {
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBiasActivationForward(
handle, &alpha, in_desc[i], in_datas[i], filter_desc[i],
static_cast<const void*>(filters[i]->data<T>()), conv_desc[i],
algo[i], cudnn_workspace, workspace_size_in_bytes, &beta,
out_desc[i], out_datas[i], bias_desc[i],
static_cast<const void*>(bias[i]->data<T>()), cudnn_act_desc,
out_desc[i], out_datas[i]));
};
auto workspace_handle = dev_ctx.cudnn_workspace_handle();
workspace_handle.RunFunc(func, workspace_size_in_bytes);
}
cudnnTensorDescriptor_t x_desc;
cudnnTensorDescriptor_t y_desc;
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&x_desc));
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&y_desc));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
x_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[2].data()));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
y_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[3].data()));
CUDNN_ENFORCE(platform::dynload::cudnnTransformTensor(
handle, CudnnDataType<T>::kOne(), x_desc,
static_cast<const void*>(out_datas[2]), CudnnDataType<T>::kZero(),
y_desc, static_cast<void*>(output_data + (oc0 + oc1) * h * w)));
for (int i = 0; i < 4; ++i) {
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyTensorDescriptor(in_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyTensorDescriptor(out_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyFilterDescriptor(filter_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyTensorDescriptor(bias_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyConvolutionDescriptor(conv_desc[i]));
}
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(x_desc));
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(y_desc));
}
};
#endif
} // namespace operators
} // namespace paddle
#if CUDNN_VERSION >= 7001
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_inception_fusion,
ops::CUDNNConvInceptionFusionOpKernel<float>,
ops::CUDNNConvInceptionFusionOpKernel<double>);
#endif
......@@ -84,6 +84,9 @@ cc_test(init_test SRCS init_test.cc DEPS device_context)
nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda)
nv_test(transform_test SRCS transform_test.cu DEPS memory place device_context)
cc_library(timer SRCS timer.cc)
cc_test(timer_test SRCS timer_test.cc DEPS timer)
cc_library(device_tracer SRCS device_tracer.cc DEPS boost profiler_proto framework_proto ${GPU_CTX_DEPS})
cc_library(profiler SRCS profiler.cc DEPS device_context device_tracer)
cc_test(profiler_test SRCS profiler_test.cc DEPS profiler)
......
......@@ -38,6 +38,10 @@ CUDNN_DNN_ROUTINE_EACH_AFTER_R4(DEFINE_WRAP);
CUDNN_DNN_ROUTINE_EACH_R5(DEFINE_WRAP);
#endif
#ifdef CUDNN_DNN_ROUTINE_EACH_R6
CUDNN_DNN_ROUTINE_EACH_R6(DEFINE_WRAP);
#endif
#ifdef CUDNN_DNN_ROUTINE_EACH_R7
CUDNN_DNN_ROUTINE_EACH_R7(DEFINE_WRAP);
#endif
......
......@@ -53,6 +53,12 @@ namespace platform {
namespace dynload {
static constexpr char cupti_lib_path[] = CUPTI_LIB_PATH;
#if defined(_WIN32) && defined(PADDLE_WITH_CUDA)
static constexpr char* win_cublas_lib = "cublas64_" PADDLE_CUDA_BINVER ".dll";
static constexpr char* win_curand_lib = "curand64_" PADDLE_CUDA_BINVER ".dll";
static constexpr char* win_cudnn_lib = "cudnn64_" PADDLE_CUDNN_BINVER ".dll";
#endif
static inline std::string join(const std::string& part1,
const std::string& part2) {
// directory separator
......@@ -165,6 +171,8 @@ static inline void* GetDsoHandleFromSearchPath(const std::string& search_root,
void* GetCublasDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.dylib");
#elif defined(_WIN32) && defined(PADDLE_WITH_CUDA)
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, win_cublas_lib);
#else
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.so");
#endif
......@@ -173,6 +181,8 @@ void* GetCublasDsoHandle() {
void* GetCUDNNDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
return GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.dylib", false);
#elif defined(_WIN32) && defined(PADDLE_WITH_CUDA)
return GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, win_cudnn_lib);
#else
return GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.so", false);
#endif
......@@ -193,6 +203,8 @@ void* GetCUPTIDsoHandle() {
void* GetCurandDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.dylib");
#elif defined(_WIN32) && defined(PADDLE_WITH_CUDA)
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, win_curand_lib);
#else
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.so");
#endif
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/timer.h"
namespace paddle {
namespace platform {
void Timer::Reset() {
_start.tv_sec = 0;
_start.tv_usec = 0;
_count = 0;
_elapsed = 0;
_paused = true;
}
void Timer::Start() {
Reset();
Resume();
}
void Timer::Pause() {
if (_paused) {
return;
}
_elapsed += Tickus();
++_count;
_paused = true;
}
void Timer::Resume() {
gettimeofday(&_start, NULL);
_paused = false;
}
int Timer::Count() { return _count; }
double Timer::ElapsedUS() { return static_cast<double>(_elapsed); }
double Timer::ElapsedMS() { return _elapsed / 1000.0; }
double Timer::ElapsedSec() { return _elapsed / 1000000.0; }
int64_t Timer::Tickus() {
gettimeofday(&_now, NULL);
return (_now.tv_sec - _start.tv_sec) * 1000 * 1000L +
(_now.tv_usec - _start.tv_usec);
}
} // namespace platform
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stdlib.h>
#include "paddle/fluid/platform/port.h"
#ifdef _WIN32
static unsigned sleep(unsigned seconds) {
Sleep(seconds * 1000);
return 0;
}
#endif
namespace paddle {
namespace platform {
// A Standard Timer implementation for debugging
class Timer {
public:
// a timer class for profiling
// Reset() will be called during initialization
// all timing variables will be set 0 in Reset()
Timer() { Reset(); }
void Reset();
void Start();
void Pause();
// Resume will get current system time
void Resume();
int Count();
// return elapsed time in us
double ElapsedUS();
// return elapsed time in ms
double ElapsedMS();
// return elapsed time in sec
double ElapsedSec();
private:
struct timeval _start;
struct timeval _now;
int _count;
int _elapsed;
bool _paused;
// get us difference between start and now
int64_t Tickus();
};
} // namespace platform
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/platform/timer.h"
#include "gtest/gtest.h"
TEST(Timer, Reset) {
paddle::platform::Timer timeline;
timeline.Start();
sleep(3);
timeline.Pause();
timeline.Reset();
}
TEST(Timer, Start) {
paddle::platform::Timer timeline;
timeline.Start();
sleep(3);
timeline.Pause();
}
TEST(Timer, Pause) {
paddle::platform::Timer timeline;
timeline.Start();
sleep(3);
timeline.Pause();
}
TEST(Timer, Resume) {
paddle::platform::Timer timeline;
timeline.Start();
sleep(3);
timeline.Pause();
timeline.Resume();
}
......@@ -84,11 +84,15 @@ bool IsCompiledWithCUDA() {
}
bool IsCompiledWithBrpc() {
#if defined(PADDLE_WITH_BRPC) || defined(PADDLE_WITH_BRPC_RDMA)
return true;
#else
#ifndef PADDLE_WITH_DISTRIBUTE
return false;
#endif
#ifdef PADDLE_WITH_GRPC
return false;
#endif
return true;
}
bool IsCompiledWithDIST() {
......
......@@ -28,20 +28,53 @@ int main(int argc, char** argv) {
for (int i = 0; i < argc; ++i) {
new_argv.push_back(argv[i]);
}
std::vector<std::string> envs;
std::vector<std::string> undefok;
#if defined(PADDLE_WITH_DISTRIBUTE) && !defined(PADDLE_WITH_GRPC)
envs.push_back("max_body_size");
#endif
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
new_argv.push_back(
strdup("--tryfromenv=fraction_of_gpu_memory_to_use,allocator_strategy"));
envs.push_back("fraction_of_gpu_memory_to_use");
envs.push_back("allocator_strategy");
#elif __clang__
new_argv.push_back(
strdup("--tryfromenv=use_mkldnn,initial_cpu_memory_in_"
"mb,allocator_strategy"));
new_argv.push_back(strdup("--undefok=use_mkldnn,initial_cpu_memory_in_mb"));
envs.push_back("use_mkldnn");
envs.push_back("initial_cpu_memory_in_mb");
envs.push_back("allocator_strategy");
undefok.push_back("use_mkldnn");
undefok.push_back("initial_cpu_memory_in_mb");
#else
new_argv.push_back(
strdup("--tryfromenv=use_pinned_memory,use_mkldnn,initial_cpu_memory_in_"
"mb,allocator_strategy"));
new_argv.push_back(strdup("--undefok=use_mkldnn,initial_cpu_memory_in_mb"));
envs.push_back("use_pinned_memory");
envs.push_back("use_mkldnn");
envs.push_back("initial_cpu_memory_in_mb");
envs.push_back("allocator_strategy");
undefok.push_back("use_mkldnn");
undefok.push_back("initial_cpu_memory_in_mb");
#endif
if (envs.size() > 0) {
std::string env_string = "--tryfromenv=";
for (auto t : envs) {
env_string += t + ",";
}
env_string = env_string.substr(0, env_string.length() - 1);
new_argv.push_back(strdup(env_string.c_str()));
VLOG(1) << "gtest env_string:" << env_string;
}
if (undefok.size() > 0) {
std::string undefok_string = "--undefok=";
for (auto t : undefok) {
undefok_string += t + ",";
}
undefok_string = undefok_string.substr(0, undefok_string.length() - 1);
new_argv.push_back(strdup(undefok_string.c_str()));
VLOG(1) << "gtest undefok_string:" << undefok_string;
}
int new_argc = static_cast<int>(new_argv.size());
char** new_argv_address = new_argv.data();
google::ParseCommandLineFlags(&new_argc, &new_argv_address, false);
......
......@@ -151,12 +151,21 @@ def __bootstrap__():
read_env_flags.append('rpc_get_thread_num')
read_env_flags.append('rpc_prefetch_thread_num')
read_env_flags.append('rpc_disable_reuse_port')
if core.is_compiled_with_brpc():
read_env_flags.append('max_body_size')
#set brpc max body size
os.environ['FLAGS_max_body_size'] = "2147483647"
if core.is_compiled_with_cuda():
read_env_flags += [
'fraction_of_gpu_memory_to_use', 'cudnn_deterministic',
'enable_cublas_tensor_op_math', 'conv_workspace_size_limit',
'cudnn_exhaustive_search', 'memory_optimize_debug', 'selected_gpus'
'fraction_of_gpu_memory_to_use',
'cudnn_deterministic',
'enable_cublas_tensor_op_math',
'conv_workspace_size_limit',
'cudnn_exhaustive_search',
'memory_optimize_debug',
'selected_gpus',
'cudnn_exhaustive_search_times',
]
core.init_gflags([sys.argv[0]] +
......
......@@ -272,8 +272,7 @@ class DataFeeder(object):
dict: the result of conversion.
Raises:
ValueError: If drop_last is False and the data batch which cannot
fit for devices.
ValueError: If drop_last is False and the data batch which cannot fit for devices.
"""
def __reader_creator__():
......
......@@ -647,20 +647,16 @@ class Operator(object):
self.desc.set_input(in_proto.name, [])
if outputs is not None:
given = set()
need = set()
for n in outputs:
given.add(n)
for m in proto.outputs:
need.add(m.name)
if not given == need:
raise ValueError(("Incorrect setting for output(s) of "
"operator \"%s\". Need: [%s] Given: [%s]") %
(type,
", ".join(six.binary_type(e) for e in need),
", ".join(six.binary_type(e) for e in given)))
if (m.name not in outputs) and m.dispensable:
continue
if not ((m.name in outputs) or m.dispensable):
raise ValueError(
("Incorrect setting for output(s) of "
"operator \"%s\", should set: [%s].") % (type, m.name))
for out_proto in proto.outputs:
if out_proto.name not in outputs:
continue
out_args = outputs[out_proto.name]
if not isinstance(out_args, list):
out_args = [out_args]
......@@ -1638,8 +1634,8 @@ class Program(object):
parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
to print.
Returns
(str): The debug string.
Returns:
str : The debug string.
Raises:
ValueError: If any of required fields is not set and throw_on_error is
......
......@@ -1452,6 +1452,7 @@ class DynamicRNN(object):
def step_input(self, x):
"""
Mark a sequence as a dynamic RNN input.
Args:
x(Variable): The input sequence.
......@@ -1505,6 +1506,7 @@ class DynamicRNN(object):
"""
Mark a variable as a RNN input. The input will not be scattered into
time steps.
Args:
x(Variable): The input variable.
......@@ -1629,13 +1631,11 @@ class DynamicRNN(object):
Args:
init(Variable|None): The initialized variable.
shape(list|tuple): The memory shape. NOTE the shape does not contain
batch_size.
shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size.
value(float): the initalized value.
need_reorder(bool): True if the initialized memory depends on the
input sample.
need_reorder(bool): True if the initialized memory depends on the input sample.
dtype(str|numpy.dtype): The data type of the initialized memory.
......@@ -1714,6 +1714,7 @@ class DynamicRNN(object):
"""
Update the memory from ex_mem to new_mem. NOTE that the shape and data
type of :code:`ex_mem` and :code:`new_mem` must be same.
Args:
ex_mem(Variable): the memory variable.
new_mem(Variable): the plain variable generated in RNN block.
......
......@@ -65,7 +65,7 @@ def rpn_target_assign(bbox_pred,
rpn_negative_overlap=0.3,
use_random=True):
"""
** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **
**Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
This layer can be, for given the Intersection-over-Union (IoU) overlap
between anchors and ground truth boxes, to assign classification and
......@@ -148,6 +148,7 @@ def rpn_target_assign(bbox_pred,
cls_logits=cls_logits,
anchor_box=anchor_box,
gt_boxes=gt_boxes)
"""
helper = LayerHelper('rpn_target_assign', **locals())
......@@ -1525,20 +1526,23 @@ def anchor_generator(input,
anchors, e.g. [0.5, 1.0, 2.0].
variance(list|tuple): The variances to be used in box regression deltas.
Default:[0.1, 0.1, 0.2, 0.2].
stride(list|turple): The anchors stride across width and height,
e.g. [16.0, 16.0]
stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
offset(float): Prior boxes center offset. Default: 0.5
name(str): Name of the prior box op. Default: None.
Returns:
Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
H is the height of input, W is the width of input,
num_anchors is the box count of each position.
Anchors(Variable),Variances(Variable):
two variables:
- Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
H is the height of input, W is the width of input, \
num_anchors is the box count of each position. \
Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
Variances(Variable): The expanded variances of anchors
with a layout of [H, W, num_priors, 4].
H is the height of input, W is the width of input
num_anchors is the box count of each position.
- Variances(Variable): The expanded variances of anchors \
with a layout of [H, W, num_priors, 4]. \
H is the height of input, W is the width of input \
num_anchors is the box count of each position. \
Each variance is in (xcenter, ycenter, w, h) format.
......@@ -1748,7 +1752,7 @@ def generate_proposals(scores,
eta=1.0,
name=None):
"""
** Generate proposal Faster-RCNN **
**Generate proposal Faster-RCNN**
This operation proposes RoIs according to each box with their probability to be a foreground object and
the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
......@@ -1762,7 +1766,6 @@ def generate_proposals(scores,
4. Remove predicted boxes with small area.
5. Apply NMS to get final proposals as output.
Args:
scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
N is batch size, A is number of anchors, H and W are height and width of the feature map.
......@@ -1777,6 +1780,7 @@ def generate_proposals(scores,
nms_thresh(float): Threshold in NMS, 0.5 by default.
min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default.
eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
"""
helper = LayerHelper('generate_proposals', **locals())
......
......@@ -949,12 +949,11 @@ def shuffle(reader, buffer_size):
is determined by argument buf_size.
Args:
param reader: the original reader whose output will be shuffled.
type reader: callable
param buf_size: shuffle buffer size.
type buf_size: int
return: the new reader whose output is shuffled.
rtype: callable
reader(callable): the original reader whose output will be shuffled.
buf_size(int): shuffle buffer size.
Returns:
callable: the new reader whose output is shuffled.
"""
return __create_unshared_decorated_reader__(
'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
......
......@@ -233,7 +233,7 @@ def fc(input,
dimensions will be flatten to form the first dimension of the final matrix (height of
the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
form the second dimension of the final matrix (width of the matrix). For example, suppose
`X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
`X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
parameters/weights of this layer.
......@@ -505,31 +505,33 @@ def lstm(input,
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
.. math::
i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)
$$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$
f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)
$$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$
o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)
$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$
\\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$
c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
$$ h_t = o_t \\odot tanh(c_t) $$
h_t &= o_t \odot tanh(c_t)
- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
- $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state,
- The :math:`\odot` is the element-wise product of the vectors.
- :math:`tanh` is the activation functions.
- :math:`\\tilde{c_t}` is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
X represensts a matrix multiplication
......@@ -556,13 +558,17 @@ def lstm(input,
Returns:
rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
rnn_out(Tensor),last_h(Tensor),last_c(Tensor):
Three tensors, rnn_out, last_h, last_c:
- rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
last_h(Tensor): the hidden state of the last step of LSTM
shape is ( num_layers x batch_size x hidden_size )
- last_h is the hidden state of the last step of LSTM \
shape is ( num_layers x batch_size x hidden_size ) \
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
last_c(Tensor): the cell state of the last step of LSTM
shape is ( num_layers x batch_size x hidden_size )
- last_c(Tensor): the cell state of the last step of LSTM \
shape is ( num_layers x batch_size x hidden_size ) \
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
......@@ -1220,6 +1226,8 @@ def dropout(x,
probability) the outputs of some units to zero, while others are remain
unchanged.
dropout op can be removed from the program to make the program more efficient.
Args:
x (Variable): The input tensor variable.
dropout_prob (float): Probability of setting units to zero.
......@@ -1230,20 +1238,22 @@ def dropout(x,
units will be dropped. DO NOT use a fixed seed in training.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']
1. downgrade_in_infer(default), downgrade the outcome at inference
train: out = input * mask
inference: out = input * dropout_prob
(make is a tensor same shape with input, value is 0 or 1
- train: out = input * mask
- inference: out = input * dropout_prob
(mask is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
2. upscale_in_train, upscale the outcome at training time
train: out = input * mask / ( 1.0 - dropout_prob )
inference: out = input
(make is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
dropout op can be removed from the program.
the program will be efficient
- train: out = input * mask / ( 1.0 - dropout_prob )
- inference: out = input
(mask is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
Returns:
......@@ -1333,11 +1343,15 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
A 2-D tensor with shape [N x 1], the cross entropy loss.
Raises:
`ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
2) when `soft_label == True`, and the 2nd dimension of
`input` and `label` are not equal.
3) when `soft_label == False`, and the 2nd dimension of
`label` is not 1.
ValueError:
1. the 1st dimension of ``input`` and ``label`` are not equal.
2. when ``soft_label == True``, and the 2nd dimension of
``input`` and ``label`` are not equal.
3. when ``soft_label == False``, and the 2nd dimension of
``label`` is not 1.
Examples:
.. code-block:: python
......@@ -1458,7 +1472,7 @@ def chunk_eval(input,
F1-score of chunk detection.
For some basics of chunking, please refer to
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.
`Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
......@@ -2292,7 +2306,8 @@ def sequence_slice(input, offset, length, name=None):
out.lod = [[2, 1]],
out.dims = (3, 2).
NOTE: The first dimension size of **input**, **offset** and **length**
Note:
The first dimension size of **input**, **offset** and **length**
should be equal. The **offset** should start from 0.
Args:
......@@ -2570,12 +2585,7 @@ def adaptive_pool2d(input,
raise ValueError(
"invalid setting 'require_index' true when 'pool_type' is 'avg'.")
def _is_list_or_tuple_(data):
return (isinstance(data, list) or isinstance(data, tuple))
if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
raise ValueError(
"'pool_size' should be a list or tuple with length as 2.")
pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
if pool_type == "max":
l_type = 'max_pool2d_with_index'
......@@ -2671,12 +2681,7 @@ def adaptive_pool3d(input,
raise ValueError(
"invalid setting 'require_index' true when 'pool_type' is 'avg'.")
def _is_list_or_tuple_(data):
return (isinstance(data, list) or isinstance(data, tuple))
if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
raise ValueError(
"'pool_size' should be a list or tuple with length as 3.")
pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
if pool_type == "max":
l_type = 'max_pool3d_with_index'
......@@ -3013,7 +3018,7 @@ def group_norm(input,
"""
**Group Normalization Layer**
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args:
input(Variable): The input tensor variable.
......@@ -3140,8 +3145,8 @@ def conv2d_transpose(input,
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Args:
input(Variable): The input image with [N, C, H, W] format.
......@@ -4704,9 +4709,9 @@ def ctc_greedy_decoder(input, blank, name=None):
name (str): The name of this layer. It is optional.
Returns:
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
'Lp' is the sum if all output sequences' length. If all the sequences
in result were empty, the result LoDTensor will be [-1] with
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
'Lp' is the sum if all output sequences' length. If all the sequences \
in result were empty, the result LoDTensor will be [-1] with \
LoD [[]] and dims [1, 1].
Examples:
......@@ -5072,6 +5077,7 @@ def hsigmoid(input,
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
......@@ -5079,7 +5085,6 @@ def hsigmoid(input,
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
Args:
input (Variable): The input tensor variable with shape
:math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
......@@ -5485,11 +5490,11 @@ def softmax_with_cross_entropy(logits,
.. math::
max_j = \\max_{i=0}^{K}{\\text{logit}_i}
max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
and then cross entropy loss is calculated by softmax and label.
......@@ -5515,10 +5520,10 @@ def softmax_with_cross_entropy(logits,
along with the cross entropy loss. Default: False
Returns:
Variable or Tuple of two Variables: Return the cross entropy loss if
`return_softmax` is False, otherwise the tuple
(loss, softmax), where the cross entropy loss is
a 2-D tensor with shape [N x 1], and softmax is a
Variable or Tuple of two Variables: Return the cross entropy loss if \
`return_softmax` is False, otherwise the tuple \
(loss, softmax), where the cross entropy loss is \
a 2-D tensor with shape [N x 1], and softmax is a \
2-D tensor with shape [N x K].
Examples:
......@@ -5792,15 +5797,21 @@ def squeeze(input, axes, name=None):
the single dimensions will be removed from the shape. If an axis is
selected with shape entry not equal to one, an error is raised.
Examples:
For example:
.. code-block:: text
Case 1:
Given
X.shape = (1, 3, 1, 5)
and
axes = [0]
we get:
Out.shape = (3, 1, 5)
Case 2:
Given
X.shape = (1, 3, 1, 5)
and
......@@ -5842,6 +5853,9 @@ def unsqueeze(input, axes, name=None):
Dimension indices in axes are as seen in the output tensor.
For example:
.. code-block:: text
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
......@@ -6729,8 +6743,11 @@ def sequence_scatter(input, index, updates, name=None):
the columns to update in each row of X.
Here is an example:
Given the following input:
.. code-block:: text
input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
......@@ -6743,7 +6760,9 @@ def sequence_scatter(input, index, updates, name=None):
updates.lod = [[ 0, 3, 8, 12]]
Then we have the output:
.. code-block:: text
out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
[1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
......@@ -6759,7 +6778,7 @@ def sequence_scatter(input, index, updates, name=None):
name (str|None): The output variable name. Default None.
Returns:
output (Variable): The output is a tensor with the same shape as input.
Variable: The output is a tensor with the same shape as input.
Examples:
......@@ -6933,7 +6952,7 @@ def mean_iou(input, label, num_classes):
.. math::
IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
The predictions are accumulated in a confusion matrix and mean-IOU
is then calculated from it.
......@@ -6946,9 +6965,13 @@ def mean_iou(input, label, num_classes):
num_classes (int): The possible number of labels.
Returns:
mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
mean_iou (Variable),out_wrong(Variable),out_correct(Variable):
Three variables:
- mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
- out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
- out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
Examples:
......@@ -7144,7 +7167,7 @@ def affine_grid(theta, out_shape, name=None):
Args:
theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
out_shape can be a Variable or a list or tuple.
``out_shape`` can be a Variable or a list or tuple.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
......@@ -7157,6 +7180,7 @@ def affine_grid(theta, out_shape, name=None):
Examples:
.. code-block:: python
theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
data = fluid.layers.affine_grid(theta, out_shape)
......@@ -7192,9 +7216,10 @@ def affine_grid(theta, out_shape, name=None):
def rank_loss(label, left, right, name=None):
"""
**Rank loss layer for RankNet**
RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
`RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
is a pairwise ranking model with a training sample consisting of a pair
of documents, A and B. Label P indicates whether A is ranked higher than B
or not:
......@@ -7202,16 +7227,19 @@ def rank_loss(label, left, right, name=None):
P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
about the rank of the input pair.
Rank loss layer takes three inputs: left (o_i), right (o_j) and
label (P_{i,j}). The inputs respectively represent RankNet's output scores
Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
for documents A and B and the value of label P. The following equation
computes rank loss C_{i,j} from the inputs:
$$
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
o_{i,j} = o_i - o_j \\
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
$$
.. math::
C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\
o_{i,j} &= o_i - o_j \\\\
\\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}
Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).
......@@ -7237,7 +7265,6 @@ def rank_loss(label, left, right, name=None):
right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
out = fluid.layers.rank_loss(label, left, right)
"""
helper = LayerHelper('rank_loss', **locals())
......@@ -7269,7 +7296,7 @@ def margin_rank_loss(label, left, right, margin=0.1, name=None):
.. math::
rank\_loss &= max(0, -label * (left - right) + margin)
rank\_loss = max(0, -label * (left - right) + margin)
Args:
label (Variable): Indicates whether the left is ranked higher than the right or not.
......@@ -7278,12 +7305,17 @@ def margin_rank_loss(label, left, right, margin=0.1, name=None):
margin (float): Indicates the given margin.
name (str|None): A name for this layer (optional). If set None, the layer
will be named automatically.
Returns:
Variable: The ranking loss.
Raises:
ValueError: Any of label, left, and right is not a Variable.
Examples:
.. code-block:: python
label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
......@@ -7587,7 +7619,8 @@ def prelu(x, mode, param_attr=None, name=None):
"""
Equation:
y = \max(0, x) + alpha * \min(0, x)
.. math::
y = \max(0, x) + \\alpha * \min(0, x)
Args:
x (Variable): The input tensor.
......@@ -7730,20 +7763,29 @@ def flatten(x, axis=1, name=None):
**Flatten layer**
Flattens the input tensor into a 2D matrix.
Examples:
For Example:
.. code-block:: text
Case 1:
Given
X.shape = (3, 100, 100, 4)
and
axis = 2
We get:
Out.shape = (3 * 100, 4 * 100)
Case 2:
Given
X.shape = (3, 100, 100, 4)
and
axis = 0
We get:
Out.shape = (1, 3 * 100 * 100 * 4)
......@@ -7759,9 +7801,9 @@ def flatten(x, axis=1, name=None):
will be named automatically.
Returns:
Variable: A 2D tensor with the contents of the input tensor, with input
dimensions up to axis flattened to the outer dimension of
the output and remaining input dimensions flattened into the
Variable: A 2D tensor with the contents of the input tensor, with input \
dimensions up to axis flattened to the outer dimension of \
the output and remaining input dimensions flattened into the \
inner dimension of the output.
Raises:
......@@ -7801,15 +7843,19 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples:
.. code-block:: text
Case 1:
Input:
X.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]]
X.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
Out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
......@@ -8896,6 +8942,7 @@ def similarity_focus(input, axis, indexes, name=None):
SimilarityFocus Operator
Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
......@@ -8969,14 +9016,16 @@ def similarity_focus(input, axis, indexes, name=None):
indexes(list): Indicating the indexes of the selected dimension.
Returns:
Variable: A tensor variable with the same shape and same type
Variable: A tensor variable with the same shape and same type \
as the input.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[2, 3, 2, 2], dtype='float32')
x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
"""
helper = LayerHelper('similarity_focus', **locals())
# check attrs
......@@ -9055,6 +9104,7 @@ def hash(input, hash_size, num_hash=1, name=None):
Examples:
.. code-block:: python
word_dict = paddle.dataset.imdb.word_dict()
x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
......@@ -9075,13 +9125,15 @@ def hash(input, hash_size, num_hash=1, name=None):
def grid_sampler(x, grid, name=None):
"""
This operation samples input X by using bilinear interpolation based on
flow field grid, which is usually gennerated by affine_grid. The grid of
flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
with shape [N, H, W] each, where grid_x is indexing the 4th dimension
(in width dimension) of input data x and grid_y is indexng the 3rd
dimention (in height dimension), finally results is the bilinear
interpolation value of 4 nearest corner points.
.. code-block:: text
Step 1:
Get (x, y) grid coordinates and scale to [0, H-1/W-1].
......@@ -9126,16 +9178,18 @@ def grid_sampler(x, grid, name=None):
name (str, default None): The name of this layer.
Returns:
out(Variable): Output of shape [N, C, H, W] data samples input X
Variable: Output of shape [N, C, H, W] data samples input X
using bilnear interpolation based on input grid.
Exmples:
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
out = fluid.layers.grid_sampler(x=x, grid=grid)
"""
helper = LayerHelper("grid_sampler", **locals())
......@@ -9203,19 +9257,19 @@ def add_position_encoding(input, alpha, beta, name=None):
"""
**Add Position Encoding Layer**
This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
output Tensor of shape [N x M x P] with positional encoding value.
Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .
Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
.. math::
PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})} \\\\
PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})} \\\\
Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})} \\\\
PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})} \\\\
Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
Where:
* PE(pos, 2i): the increment for the number at even position
* PE(pos, 2i + 1): the increment for the number at odd position
- :math:`PE(pos, 2i)` : the increment for the number at even position
- :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
Args:
input (Variable): 3-D input tensor with shape [N x M x P]
......@@ -9230,6 +9284,7 @@ def add_position_encoding(input, alpha, beta, name=None):
.. code-block:: python
position_tensor = fluid.layers.add_position_encoding(input=tensor)
"""
helper = LayerHelper('add_position_encoding', **locals())
dtype = helper.input_dtype()
......@@ -9262,13 +9317,13 @@ def bilinear_tensor_product(x,
For example:
.. math::
out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
In this formula:
- :math:`x`: the first input contains M elements, shape is [batch_size, M].
- :math:`y`: the second input contains N elements, shape is [batch_size, N].
- :math:`W_{i}`: the i-th learned weight, shape is [M, N]
- :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
- :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
- :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.
Args:
......
......@@ -393,9 +393,6 @@ def fill_constant_batch_size_like(input,
It also sets *stop_gradient* to True.
>>> data = fluid.layers.fill_constant_batch_size_like(
>>> input=like, shape=[1], value=0, dtype='int64')
Args:
input(${input_type}): ${input_comment}.
......@@ -411,6 +408,14 @@ def fill_constant_batch_size_like(input,
Returns:
${out_comment}.
Examples:
.. code-block:: python
data = fluid.layers.fill_constant_batch_size_like(
input=like, shape=[1], value=0, dtype='int64')
"""
helper = LayerHelper("fill_constant_batch_size_like", **locals())
out = helper.create_variable_for_type_inference(dtype=dtype)
......
......@@ -362,7 +362,7 @@ class ChunkEvaluator(MetricBase):
compute the precision recall and F1-score using the accumulated counter
numbers.
For some basics of chunking, please refer to
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.
`Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
ChunkEvalEvaluator computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
......@@ -391,6 +391,7 @@ class ChunkEvaluator(MetricBase):
def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks):
"""
Update the states based on the layers.chunk_eval() ouputs.
Args:
num_infer_chunks(int|numpy.array): The number of chunks in Inference on the given minibatch.
num_label_chunks(int|numpy.array): The number of chunks in Label on the given mini-batch.
......@@ -450,9 +451,9 @@ class EditDistance(MetricBase):
distance, instance_error = distance_evaluator.eval()
In the above example:
'distance' is the average of the edit distance in a pass.
'instance_error' is the instance error rate in a pass.
- 'distance' is the average of the edit distance in a pass.
- 'instance_error' is the instance error rate in a pass.
"""
......@@ -567,12 +568,15 @@ class DetectionMAP(object):
Calculate the detection mean average precision (mAP).
The general steps are as follows:
1. calculate the true positive and false positive according to the input
of detection and labels.
2. calculate mAP value, support two versions: '11 point' and 'integral'.
Please get more information from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
Args:
......@@ -615,8 +619,10 @@ class DetectionMAP(object):
In the above example:
'cur_map_v' is the mAP of current mini-batch.
'accum_map_v' is the accumulative mAP of one pass.
- 'cur_map_v' is the mAP of current mini-batch.
- 'accum_map_v' is the accumulative mAP of one pass.
"""
def __init__(self,
......
......@@ -32,6 +32,8 @@ class TestConv2dFusionOp(OpTest):
self.activation = 'relu'
self.add_bias = True
self.add_residual_data = True
self.channels = None
self.outputs = None
self.init_group()
self.init_dilation()
......@@ -49,7 +51,7 @@ class TestConv2dFusionOp(OpTest):
input = np.random.random(self.input_size).astype(self.dtype)
filter = np.random.random(self.filter_size).astype(self.dtype)
output = conv2d_forward_naive(input, filter, self.groups,
self.output = conv2d_forward_naive(input, filter, self.groups,
conv2d_param).astype(self.dtype)
self.inputs = {
......@@ -58,19 +60,20 @@ class TestConv2dFusionOp(OpTest):
}
if self.add_residual_data:
residual_data = np.random.random(output.shape).astype(self.dtype)
residual_data = np.random.random(self.output.shape).astype(
self.dtype)
self.inputs['ResidualData'] = OpTest.np_dtype_to_fluid_dtype(
residual_data)
output += residual_data
self.output += residual_data
if self.add_bias:
bias = np.random.random(self.filter_size[0]).astype(self.dtype)
self.inputs['Bias'] = OpTest.np_dtype_to_fluid_dtype(bias)
output = output + bias.reshape((1, bias.size, 1, 1))
self.output = self.output + bias.reshape((1, bias.size, 1, 1))
assert self.activation in ['relu', 'identity']
if self.activation == 'relu':
output = np.maximum(output, 0)
self.output = np.maximum(self.output, 0)
self.attrs = {
'strides': self.stride,
......@@ -79,9 +82,12 @@ class TestConv2dFusionOp(OpTest):
'dilations': self.dilations,
'data_format': self.data_format,
'exhaustive_search': self.exhaustive_search,
'activation': self.activation
'activation': self.activation,
'split_channels': self.channels
}
self.outputs = {'Output': output}
self.outputs = {'Output': self.output}
self.set_outputs()
def testcuda(self):
return core.is_compiled_with_cuda()
......@@ -117,6 +123,9 @@ class TestConv2dFusionOp(OpTest):
def set_search_method(self):
self.exhaustive_search = False
def set_outputs(self):
pass
class TestWithoutResidual(TestConv2dFusionOp):
def init_bias_residual(self):
......@@ -160,5 +169,21 @@ class TestCUDNNExhaustiveSearch(TestConv2dFusionOp):
self.exhaustive_search = True
class TestMultipleOutputs(TestConv2dFusionOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [1, 32, 17, 17] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [126, f_c, 3, 3]
self.channels = [84, 42]
def set_outputs(self):
out1 = self.output[:, 0:84, :, :]
out2 = self.output[:, 84:126, :, :]
self.outputs['Outputs'] = [('out1', out1), ('out2', out2)]
if __name__ == '__main__':
unittest.main()
......@@ -243,6 +243,10 @@ class TestBook(unittest.TestCase):
pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
self.assertIsNotNone(pool)
self.assertIsNotNone(mask)
self.assertIsNotNone(layers.adaptive_pool2d(x, 3, pool_type='avg'))
pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
self.assertIsNotNone(pool)
self.assertIsNotNone(mask)
def test_adaptive_pool3d(self):
program = Program()
......@@ -255,6 +259,10 @@ class TestBook(unittest.TestCase):
x, [3, 3, 3], require_index=True)
self.assertIsNotNone(pool)
self.assertIsNotNone(mask)
self.assertIsNotNone(layers.adaptive_pool3d(x, 3, pool_type='avg'))
pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
self.assertIsNotNone(pool)
self.assertIsNotNone(mask)
def test_lstm_unit(self):
program = Program()
......
......@@ -137,9 +137,9 @@ def append_input_output(block, op_proto, np_list, is_input, dtype):
var_dict = {}
for var_proto in proto_list:
var_name = str(var_proto.name)
if is_input:
if (var_name not in np_list) and var_proto.dispensable:
continue
if is_input:
assert (var_name in np_list) or (var_proto.dispensable), \
"Missing {} as input".format(var_name)
if var_proto.duplicable:
......
......@@ -125,14 +125,23 @@ def slice_variable(var_list, slice_count, min_block_size):
class DistributeTranspilerConfig(object):
"""
Args:
slice_var_up (bool): Do Tensor slice for pservers, default is True.
split_method (PSDispatcher): RoundRobin or HashName can be used
try to choose the best method to balance loads for pservers.
min_block_size (int): Minimum splitted element number in block.
According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
.. py:attribute:: slice_var_up (bool)
Do Tensor slice for pservers, default is True.
.. py:attribute:: split_method (PSDispatcher)
RoundRobin or HashName can be used.
Try to choose the best method to balance loads for pservers.
.. py:attribute:: min_block_size (int)
Minimum number of splitted elements in block.
According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
We can use bandwidth effiently when data size is larger than 2MB.If you
want to change it, please be sure you see the slice_variable function.
want to change it, please be sure you have read the slice_variable function.
"""
slice_var_up = True
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册