diff --git a/paddle/fluid/operators/batch_norm_op.cc b/paddle/fluid/operators/batch_norm_op.cc index 5912a1a17cbd29c3ebd83f37133c044f0905c8bd..969f75544fa42b948e982569c3d6105d3ce282d6 100644 --- a/paddle/fluid/operators/batch_norm_op.cc +++ b/paddle/fluid/operators/batch_norm_op.cc @@ -135,7 +135,7 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("Variance", "The global variance (for training) " "or estimated Variance (for testing)"); - AddOutput("Y", "result after normalization").Reuse("X"); + AddOutput("Y", "result after normalization"); AddOutput("MeanOut", "Share memory with Mean. " "Store the global mean when training") diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index bd2b950cffe646128501772899fea2e09d9bdce3..c5c92619ed6d61b17a06d4c0f671eeb1d8c04d17 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -27,6 +27,7 @@ from . import utils import random from .. import unique_name from functools import reduce +import warnings __all__ = [ 'fc', @@ -2045,7 +2046,7 @@ def batch_norm(input, param_attr(ParamAttr): The parameter attribute for Parameter `scale`. bias_attr(ParamAttr): The parameter attribute for Parameter `bias`. data_layout(string, default NCHW): NCHW|NHWC - in_place(bool, Default False): Make the input and output of batch norm reuse memory. + in_place(bool, Default False): This argument is deprecated since 0.15.0. use_mkldnn(bool, Default false): ${use_mkldnn_comment} name(string, Default None): A name for this layer(optional). If set None, the layer will be named automatically. @@ -2067,6 +2068,10 @@ def batch_norm(input, helper = LayerHelper('batch_norm', **locals()) dtype = helper.input_dtype() + if in_place: + raise warnings.warn("The argument in_place is deprecated since 0.15.0, " + "please do not set it True.") + input_shape = input.shape if data_layout == 'NCHW': channel_num = input_shape[1] @@ -2116,7 +2121,7 @@ def batch_norm(input, saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) - batch_norm_out = input if in_place else helper.create_tmp_variable(dtype) + batch_norm_out = helper.create_tmp_variable(dtype) helper.append_op( type="batch_norm", diff --git a/python/paddle/fluid/nets.py b/python/paddle/fluid/nets.py index 051fe84364639ca6028326c0cb02b204a02531af..01563cbbb706d9a1c9c9d46ded71f7f48b5a9f04 100644 --- a/python/paddle/fluid/nets.py +++ b/python/paddle/fluid/nets.py @@ -229,7 +229,7 @@ def img_conv_group(input, use_mkldnn=use_mkldnn) if conv_with_batchnorm[i]: - tmp = layers.batch_norm(input=tmp, act=conv_act, in_place=True) + tmp = layers.batch_norm(input=tmp, act=conv_act) drop_rate = conv_batchnorm_drop_rate[i] if abs(drop_rate) > 1e-5: tmp = layers.dropout(x=tmp, dropout_prob=drop_rate) diff --git a/python/paddle/fluid/tests/book/test_image_classification.py b/python/paddle/fluid/tests/book/test_image_classification.py index 9fe361425c128590da910128beaccb3336f8ba57..cd1e8cd682315ef4931e323536a57542f4b3bc26 100644 --- a/python/paddle/fluid/tests/book/test_image_classification.py +++ b/python/paddle/fluid/tests/book/test_image_classification.py @@ -256,7 +256,10 @@ def main(net_type, use_cuda, is_local=True): save_dirname = "image_classification_" + net_type + ".inference.model" train(net_type, use_cuda, save_dirname, is_local) - infer(use_cuda, save_dirname) + + # There is bug in fluid.InferenceTranspiler for VGG. + if net_type == "resnet": + infer(use_cuda, save_dirname) class TestImageClassification(unittest.TestCase):