Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4640955c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4640955c
编写于
1月 12, 2022
作者:
J
Jiabin Yang
提交者:
GitHub
1月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support test_auto_prune_partial (#38871)
上级
e7f2bf37
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
130 addition
and
59 deletion
+130
-59
paddle/fluid/eager/api/utils/tensor_utils.cc
paddle/fluid/eager/api/utils/tensor_utils.cc
+0
-1
paddle/fluid/eager/backward.cc
paddle/fluid/eager/backward.cc
+3
-1
paddle/fluid/eager/eager_tensor.h
paddle/fluid/eager/eager_tensor.h
+3
-5
paddle/fluid/eager/grad_node_info.cc
paddle/fluid/eager/grad_node_info.cc
+7
-38
paddle/fluid/eager/grad_node_info.h
paddle/fluid/eager/grad_node_info.h
+0
-1
paddle/fluid/eager/tests/data_structure_tests/grad_node_info_test.cc
...d/eager/tests/data_structure_tests/grad_node_info_test.cc
+3
-1
paddle/fluid/eager/tests/task_tests/backward_test.cc
paddle/fluid/eager/tests/task_tests/backward_test.cc
+21
-7
paddle/fluid/eager/tests/task_tests/cross_batch_accumulation_test.cc
...d/eager/tests/task_tests/cross_batch_accumulation_test.cc
+3
-1
paddle/fluid/eager/tests/task_tests/hook_test.cc
paddle/fluid/eager/tests/task_tests/hook_test.cc
+6
-2
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+44
-0
python/paddle/fluid/tests/unittests/test_egr_python_api.py
python/paddle/fluid/tests/unittests/test_egr_python_api.py
+27
-0
python/paddle/fluid/tests/unittests/test_imperative_auto_prune.py
...addle/fluid/tests/unittests/test_imperative_auto_prune.py
+13
-2
未找到文件。
paddle/fluid/eager/api/utils/tensor_utils.cc
浏览文件 @
4640955c
...
...
@@ -49,7 +49,6 @@ egr::EagerTensor CreateTensorWithValue(const pten::DDim& ddim,
egr
::
EagerTensor
out
=
egr
::
EagerTensor
();
out
.
set_tensor
(
std
::
make_shared
<
paddle
::
experimental
::
Tensor
>
(
tensor
));
auto
meta
=
EagerUtils
::
autograd_meta
(
&
out
);
if
(
is_leaf
)
{
auto
accumulation_node
=
std
::
make_shared
<
GradNodeAccumulation
>
();
meta
->
SetGradNode
(
accumulation_node
);
...
...
paddle/fluid/eager/backward.cc
浏览文件 @
4640955c
...
...
@@ -181,7 +181,9 @@ void RunBackward(const std::vector<egr::EagerTensor>& tensors,
PADDLE_ENFORCE
(
edges
.
size
()
==
grad_output_tensors
.
size
()
||
edges
.
empty
(),
paddle
::
platform
::
errors
::
Fatal
(
"Number of edges should be either empty ( for leaf node "
") or the same as number of output grad tensors"
));
") or the same as number of output grad tensors, but we "
"got edges size is: %d, grad_output size is: %d"
,
edges
.
size
(),
grad_output_tensors
.
size
()));
for
(
size_t
i
=
0
;
i
<
edges
.
size
();
i
++
)
{
for
(
size_t
j
=
0
;
j
<
edges
[
i
].
size
();
j
++
)
{
...
...
paddle/fluid/eager/eager_tensor.h
浏览文件 @
4640955c
...
...
@@ -195,7 +195,6 @@ class EagerTensor final {
}
tensor_
->
copy_
(
*
(
src
.
tensor_
.
get
()),
blocking
);
}
/* Part 6: Operator overloading */
EagerTensor
&
operator
=
(
const
EagerTensor
&
x
)
&
{
tensor_
=
x
.
tensor_
;
...
...
@@ -238,7 +237,7 @@ class EagerTensor final {
// Contruct framework::Tensor from egr::EagerTensor
auto
tensor_dense
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
tensor_
->
impl
());
if
(
tensor_dense
)
{
if
(
tensor_dense
&&
tensor_dense
.
get
()
)
{
paddle
::
experimental
::
SharesStorage
(
tensor_dense
.
get
(),
framework_tensor
);
}
else
{
...
...
@@ -292,11 +291,10 @@ class EagerTensor final {
template
<
typename
LEGACY_TYPE
,
typename
TYPE
>
void
SetImplWithLegacyTensor
()
{
const
auto
&
framework_tensor
=
var_
.
Get
<
LEGACY_TYPE
>
();
if
(
this
->
initializ
ed
())
{
if
(
defin
ed
())
{
VLOG
(
8
)
<<
"Sync Var to initialized tensor for: "
<<
name
();
paddle
::
experimental
::
ReMakePtenDenseTensor
(
framework_tensor
,
static_cast
<
pten
::
DenseTensor
*>
(
this
->
impl
().
get
()));
framework_tensor
,
static_cast
<
pten
::
DenseTensor
*>
(
impl
().
get
()));
}
else
{
VLOG
(
8
)
<<
"Sync Var to uninitialized tensor for: "
<<
name
();
this
->
set_impl
(
std
::
move
(
...
...
paddle/fluid/eager/grad_node_info.cc
浏览文件 @
4640955c
...
...
@@ -47,48 +47,18 @@ void GradNodeBase::AddEdges(std::vector<AutogradMeta*>* metas, size_t slot_id) {
// adj_edges has as same rank as fwd inputs, and record it's output rank
// from
// its pre-ops
if
(
meta
)
{
if
(
meta
&&
!
meta
->
StopGradient
()
)
{
auto
node
=
meta
->
GetMutableGradNode
();
if
(
node
)
{
adj_edges_
[
slot_id
].
emplace_back
(
meta
->
GetMutableGradNode
(),
meta
->
OutRankInfo
());
}
else
{
if
(
!
meta
->
StopGradient
())
{
meta
->
SetGradNode
(
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
());
adj_edges_
[
slot_id
].
emplace_back
(
meta
->
GetMutableGradNode
(),
meta
->
OutRankInfo
());
}
}
}
}
}
void
GradNodeBase
::
AddEdges
(
const
std
::
vector
<
AutogradMeta
*>&
metas
,
size_t
slot_id
)
{
PADDLE_ENFORCE_LT
(
slot_id
,
adj_edges_
.
size
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"Given slot id is out of range of adj_edges outter size, "
"adj_edges is designed to has the same size of grad "
"inputs's slot num."
));
for
(
const
auto
&
meta
:
metas
)
{
// adj_edges has as same rank as fwd inputs, and record it's output rank
// from
// its pre-ops
if
(
meta
)
{
auto
node
=
meta
->
GetMutableGradNode
();
if
(
node
)
{
adj_edges_
[
slot_id
].
emplace_back
(
meta
->
GetMutableGradNode
(),
meta
->
OutRankInfo
());
}
else
{
if
(
!
meta
->
StopGradient
())
{
meta
->
SetGradNode
(
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
());
adj_edges_
[
slot_id
].
emplace_back
(
meta
->
GetMutableGradNode
(),
meta
->
OutRankInfo
());
}
}
}
}
}
void
GradNodeBase
::
AddEdges
(
AutogradMeta
*
meta
,
size_t
slot_id
)
{
...
...
@@ -98,19 +68,18 @@ void GradNodeBase::AddEdges(AutogradMeta* meta, size_t slot_id) {
"Given slot id is out of range of adj_edges outter size, "
"adj_edges is designed to has the same size of grad "
"inputs's slot num."
));
if
(
meta
)
{
if
(
meta
&&
!
meta
->
StopGradient
())
{
VLOG
(
6
)
<<
"Add Edges for slot: "
<<
slot_id
;
auto
node
=
meta
->
GetMutableGradNode
();
if
(
node
)
{
adj_edges_
[
slot_id
].
emplace_back
(
meta
->
GetMutableGradNode
(),
meta
->
OutRankInfo
());
}
else
{
if
(
!
meta
->
StopGradient
())
{
meta
->
SetGradNode
(
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
());
adj_edges_
[
slot_id
].
emplace_back
(
meta
->
GetMutableGradNode
(),
meta
->
OutRankInfo
());
}
}
}
}
const
std
::
vector
<
GradSlotMeta
>&
GradNodeBase
::
InputMeta
()
const
{
...
...
paddle/fluid/eager/grad_node_info.h
浏览文件 @
4640955c
...
...
@@ -106,7 +106,6 @@ class GradNodeBase {
* This one is called slot by slot
* **/
void
AddEdges
(
std
::
vector
<
AutogradMeta
*>*
metas
,
size_t
slot_id
);
void
AddEdges
(
const
std
::
vector
<
AutogradMeta
*>&
metas
,
size_t
slot_id
);
void
AddEdges
(
AutogradMeta
*
meta
,
size_t
slot_id
);
/**
...
...
paddle/fluid/eager/tests/data_structure_tests/grad_node_info_test.cc
浏览文件 @
4640955c
...
...
@@ -56,15 +56,17 @@ TEST(GradNodeInfo, GradNodeBase) {
VLOG
(
6
)
<<
"Test Add Edges"
;
egr
::
Edge
edge0
(
grad_test_node1
,
1
,
2
);
auto
auto_grad0
=
std
::
make_shared
<
egr
::
AutogradMeta
>
(
edge0
);
auto_grad0
->
SetStopGradient
(
false
);
egr
::
Edge
edge1
(
grad_test_node1
,
3
,
4
);
auto
auto_grad1
=
std
::
make_shared
<
egr
::
AutogradMeta
>
(
edge1
);
auto_grad1
->
SetStopGradient
(
false
);
grad_test_node0
->
AddEdges
(
auto_grad0
.
get
(),
0
);
CHECK_EQ
(
grad_test_node0
->
GetEdges
()[
0
][
0
].
GetEdgeRankInfo
().
first
,
size_t
(
1
));
CHECK_EQ
(
grad_test_node0
->
GetEdges
()[
0
][
0
].
GetEdgeRankInfo
().
second
,
size_t
(
2
));
std
::
vector
<
egr
::
AutogradMeta
*>
metas
=
{
auto_grad1
.
get
()};
grad_test_node0
->
AddEdges
(
metas
,
1
);
grad_test_node0
->
AddEdges
(
&
metas
,
1
);
CHECK_EQ
(
grad_test_node0
->
GetEdges
()[
1
][
0
].
GetEdgeRankInfo
().
first
,
size_t
(
3
));
CHECK_EQ
(
grad_test_node0
->
GetEdges
()[
1
][
0
].
GetEdgeRankInfo
().
second
,
...
...
paddle/fluid/eager/tests/task_tests/backward_test.cc
浏览文件 @
4640955c
...
...
@@ -69,9 +69,11 @@ TEST(Backward, SingleNodeEmptyGrad) {
// Connect Node0 -> AccumulationNode via Edge
auto
meta
=
egr
::
AutogradMeta
();
meta
.
SetStopGradient
(
false
);
meta
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta
.
SetGradNode
(
acc_node_ptr
);
node0_ptr
->
AddEdges
({
&
meta
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res
=
{
&
meta
};
node0_ptr
->
AddEdges
(
&
res
,
0
);
}
std
::
vector
<
egr
::
EagerTensor
>
outs
=
{
target_tensor
};
// Run Backward
...
...
@@ -130,9 +132,11 @@ TEST(Backward, SingleNodeCustomGrad) {
// Connect Node0 -> AccumulationNode via Edge
auto
meta
=
egr
::
AutogradMeta
();
meta
.
SetStopGradient
(
false
);
meta
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta
.
SetGradNode
(
acc_node_ptr
);
node0_ptr
->
AddEdges
({
&
meta
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res
=
{
&
meta
};
node0_ptr
->
AddEdges
(
&
res
,
0
);
}
// Run Backward
...
...
@@ -188,9 +192,11 @@ TEST(Backward, LinearNodes) {
// Connect Node0 -> Node1 via Edge
auto
meta0
=
egr
::
AutogradMeta
();
meta0
.
SetStopGradient
(
false
);
meta0
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta0
.
SetGradNode
(
node1_ptr
);
node0_ptr
->
AddEdges
({
&
meta0
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res0
=
{
&
meta0
};
node0_ptr
->
AddEdges
(
&
res0
,
0
);
// Connect Tensor and AccumulationNode via AutoGradMeta
auto
acc_node_ptr
=
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
();
...
...
@@ -204,9 +210,11 @@ TEST(Backward, LinearNodes) {
// Connect Node1 -> AccumulationNode via Edge
auto
meta1
=
egr
::
AutogradMeta
();
meta1
.
SetStopGradient
(
false
);
meta1
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta1
.
SetGradNode
(
acc_node_ptr
);
node1_ptr
->
AddEdges
({
&
meta1
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res1
=
{
&
meta1
};
node1_ptr
->
AddEdges
(
&
res1
,
0
);
}
// Use Empty Grad Tensor
...
...
@@ -283,15 +291,19 @@ TEST(Backward, WithAccumulation) {
// Connect Node0 -> Node2 via Edge
auto
meta0
=
egr
::
AutogradMeta
();
meta0
.
SetStopGradient
(
false
);
meta0
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta0
.
SetGradNode
(
node2_ptr
);
node0_ptr
->
AddEdges
({
&
meta0
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res0
=
{
&
meta0
};
node0_ptr
->
AddEdges
(
&
res0
,
0
);
// Connect Node1 -> Node2 via Edge
auto
meta1
=
egr
::
AutogradMeta
();
meta1
.
SetStopGradient
(
false
);
meta1
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta1
.
SetGradNode
(
node2_ptr
);
node1_ptr
->
AddEdges
({
&
meta1
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res1
=
{
&
meta1
};
node1_ptr
->
AddEdges
(
&
res1
,
0
);
// Connect Tensor and AccumulationNode via AutoGradMeta
auto
acc_node_ptr
=
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
();
...
...
@@ -305,9 +317,11 @@ TEST(Backward, WithAccumulation) {
// Connect Node2 -> AccumulationNode via Edge
auto
meta2
=
egr
::
AutogradMeta
();
meta2
.
SetStopGradient
(
false
);
meta2
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta2
.
SetGradNode
(
acc_node_ptr
);
node2_ptr
->
AddEdges
({
&
meta2
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res2
=
{
&
meta2
};
node2_ptr
->
AddEdges
(
&
res2
,
0
);
}
RunBackward
(
target_tensors
,
grad_tensors
);
...
...
paddle/fluid/eager/tests/task_tests/cross_batch_accumulation_test.cc
浏览文件 @
4640955c
...
...
@@ -62,8 +62,10 @@ TEST(CrossBatchAccumulation, SingleScaleNode) {
auto
meta
=
AutogradMeta
();
meta
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta
.
SetStopGradient
(
false
);
meta
.
SetGradNode
(
acc_node_ptr
);
scale_node_ptr
->
AddEdges
({
&
meta
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res
=
{
&
meta
};
scale_node_ptr
->
AddEdges
(
&
res
,
0
);
AutogradMeta
*
auto_grad_meta1
=
EagerUtils
::
autograd_meta
(
&
leaf_tensor
);
auto_grad_meta1
->
SetGradNode
(
...
...
paddle/fluid/eager/tests/task_tests/hook_test.cc
浏览文件 @
4640955c
...
...
@@ -105,9 +105,11 @@ TEST(RetainGrad, HookBeforeRetainGrad) {
// Connect ScaleNode -> AccumulationNode via Edge
{
auto
meta
=
AutogradMeta
();
meta
.
SetStopGradient
(
false
);
meta
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta
.
SetGradNode
(
acc_node_ptr
);
scale_node_ptr
->
AddEdges
({
&
meta
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res
=
{
&
meta
};
scale_node_ptr
->
AddEdges
(
&
res
,
0
);
}
// Retain Grad for leaf tensor1
...
...
@@ -180,9 +182,11 @@ TEST(RetainGrad, HookAfterRetainGrad) {
// Connect ScaleNode -> AccumulationNode via Edge
{
auto
meta
=
AutogradMeta
();
meta
.
SetStopGradient
(
false
);
meta
.
SetSingleOutRankWithSlot
(
0
,
0
);
meta
.
SetGradNode
(
acc_node_ptr
);
scale_node_ptr
->
AddEdges
({
&
meta
},
0
);
std
::
vector
<
egr
::
AutogradMeta
*>
res
=
{
&
meta
};
scale_node_ptr
->
AddEdges
(
&
res
,
0
);
}
// Retain Grad for leaf tensor1
...
...
paddle/fluid/pybind/eager_method.cc
浏览文件 @
4640955c
...
...
@@ -234,6 +234,44 @@ static PyObject* eager_tensor__zero_grads(EagerTensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
eager_tensor__share_buffer_to
(
EagerTensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_SYNC_TRY
egr
::
EagerTensor
*
src_ptr
=
&
(
reinterpret_cast
<
EagerTensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
eager_tensor
);
PADDLE_ENFORCE_EQ
(
self
->
eager_tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
self
->
eager_tensor
.
name
()));
src_ptr
->
set_impl
(
self
->
eager_tensor
.
impl
());
Py_INCREF
(
Py_None
);
return
Py_None
;
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
eager_tensor__is_shared_buffer_with
(
EagerTensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_SYNC_TRY
egr
::
EagerTensor
src_tensor
=
CastPyArg2EagerTensor
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
PADDLE_ENFORCE_EQ
(
src_tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
src_tensor
.
name
()));
bool
res
=
false
;
if
(
!
self
->
eager_tensor
.
defined
()
||
!
src_tensor
.
defined
())
{
return
ToPyObject
(
res
);
}
res
=
(
self
->
eager_tensor
.
impl
().
get
()
==
src_tensor
.
impl
().
get
());
return
ToPyObject
(
res
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
eager_tensor_method_detach
(
EagerTensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_SYNC_TRY
...
...
@@ -278,6 +316,12 @@ PyMethodDef variable_methods[] = {
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_zero_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
eager_tensor__zero_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_shared_buffer_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
eager_tensor__share_buffer_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_buffer_with"
,
(
PyCFunction
)(
void
(
*
)(
void
))
eager_tensor__is_shared_buffer_with
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"detach"
,
(
PyCFunction
)(
void
(
*
)(
void
))
eager_tensor_method_detach
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
NULL
,
NULL
,
0
,
NULL
}};
...
...
python/paddle/fluid/tests/unittests/test_egr_python_api.py
浏览文件 @
4640955c
...
...
@@ -645,6 +645,33 @@ class EagerTensorPropertiesTestCase(unittest.TestCase):
self
.
assertTrue
(
tensor3
.
stop_gradient
,
True
)
self
.
assertTrue
(
tensor3
.
place
.
is_cpu_place
())
def
test_share_buffer_to
():
arr
=
np
.
ones
([
4
,
16
,
16
,
32
]).
astype
(
'float32'
)
arr1
=
np
.
zeros
([
4
,
16
]).
astype
(
'float32'
)
arr2
=
np
.
ones
([
4
,
16
,
16
,
32
]).
astype
(
'float32'
)
+
np
.
ones
(
[
4
,
16
,
16
,
32
]).
astype
(
'float32'
)
tensor
=
None
tensor2
=
None
tensor
=
paddle
.
to_tensor
(
arr
,
core
.
VarDesc
.
VarType
.
FP32
,
core
.
CPUPlace
())
tensor3
=
core
.
eager
.
EagerTensor
()
if
core
.
is_compiled_with_cuda
():
tensor2
=
paddle
.
to_tensor
(
arr2
,
core
.
VarDesc
.
VarType
.
FP32
,
core
.
CUDAPlace
(
0
))
else
:
tensor2
=
paddle
.
to_tensor
(
arr2
,
core
.
VarDesc
.
VarType
.
FP32
,
core
.
CPUPlace
())
self
.
assertTrue
(
np
.
array_equal
(
tensor
.
numpy
(),
arr1
))
self
.
assertTrue
(
np
.
array_equal
(
tensor2
.
numpy
(),
arr2
))
tensor2
.
_share_buffer_to
(
tensor
)
self
.
assertTrue
(
np
.
array_equal
(
tensor
.
numpy
(),
arr2
))
self
.
assertTrue
(
np
.
array_equal
(
tensor2
.
numpy
(),
arr2
))
self
.
assertTrue
(
tensor
.
_is_shared_buffer_with
(
tensor2
))
self
.
assertTrue
(
tensor2
.
_is_shared_buffer_with
(
tensor
))
tensor
.
_share_buffer_to
(
tensor3
)
self
.
assertTrue
(
np
.
array_equal
(
tensor3
.
numpy
(),
arr2
))
self
.
assertTrue
(
tensor3
.
_is_shared_buffer_with
(
tensor
))
def
test_properties
(
self
):
print
(
"Test_properties"
)
with
_test_eager_guard
():
...
...
python/paddle/fluid/tests/unittests/test_imperative_auto_prune.py
浏览文件 @
4640955c
...
...
@@ -15,6 +15,7 @@
import
unittest
import
paddle.fluid
as
fluid
import
numpy
as
np
from
paddle.fluid.framework
import
_test_eager_guard
class
AutoPruneLayer0
(
fluid
.
Layer
):
...
...
@@ -145,7 +146,7 @@ class MyLayer2(fluid.Layer):
class
TestImperativeAutoPrune
(
unittest
.
TestCase
):
def
test
_auto_prune
(
self
):
def
func
_auto_prune
(
self
):
with
fluid
.
dygraph
.
guard
():
case1
=
AutoPruneLayer0
(
input_size
=
5
)
value1
=
np
.
arange
(
25
).
reshape
(
5
,
5
).
astype
(
"float32"
)
...
...
@@ -157,7 +158,12 @@ class TestImperativeAutoPrune(unittest.TestCase):
self
.
assertTrue
(
case1
.
linear2
.
weight
.
_grad_ivar
()
is
not
None
)
self
.
assertTrue
(
case1
.
linear1
.
weight
.
_grad_ivar
()
is
not
None
)
def
test_auto_prune2
(
self
):
def
test_auto_prune
(
self
):
with
_test_eager_guard
():
self
.
func_auto_prune
()
self
.
func_auto_prune
()
def
func_auto_prune2
(
self
):
with
fluid
.
dygraph
.
guard
():
case2
=
AutoPruneLayer1
(
input_size
=
5
)
value1
=
np
.
arange
(
25
).
reshape
(
5
,
5
).
astype
(
"float32"
)
...
...
@@ -170,6 +176,11 @@ class TestImperativeAutoPrune(unittest.TestCase):
self
.
assertTrue
(
case2
.
linear2
.
weight
.
_grad_ivar
()
is
None
)
self
.
assertTrue
(
case2
.
linear1
.
weight
.
_grad_ivar
()
is
not
None
)
def
test_auto_prune2
(
self
):
with
_test_eager_guard
():
self
.
func_auto_prune2
()
self
.
func_auto_prune2
()
def
test_auto_prune3
(
self
):
with
fluid
.
dygraph
.
guard
():
case3
=
AutoPruneLayer3
(
input_size
=
784
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录