Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4625f83f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4625f83f
编写于
10月 19, 2018
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
better handle var type inference
avoid the default one that usually overwrites manually set ones test=develop
上级
5d6783f8
变更
11
展开全部
显示空白变更内容
内联
并排
Showing
11 changed file
with
286 addition
and
249 deletion
+286
-249
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+5
-11
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+12
-3
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+17
-16
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+38
-27
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+1
-1
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+5
-3
python/paddle/fluid/layers/metric_op.py
python/paddle/fluid/layers/metric_op.py
+5
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+184
-166
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+17
-14
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+2
-2
python/paddle/fluid/tests/unittests/test_slice_var.py
python/paddle/fluid/tests/unittests/test_slice_var.py
+0
-1
未找到文件。
paddle/fluid/framework/op_desc.cc
浏览文件 @
4625f83f
...
@@ -515,20 +515,14 @@ void OpDesc::InferShape(const BlockDesc &block) const {
...
@@ -515,20 +515,14 @@ void OpDesc::InferShape(const BlockDesc &block) const {
}
}
void
OpDesc
::
InferVarType
(
BlockDesc
*
block
)
const
{
void
OpDesc
::
InferVarType
(
BlockDesc
*
block
)
const
{
// There are a few places that var type can be set.
// When VarDesc is created, default set to LOD_TENSOR.
// When output variable is created, default is defaut set to LOD_TENSOR.
// We limit here to be the only place that operator defines its customized
// var type inference. Hence, we don't do any "default" setting here.
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
this
->
Type
());
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
this
->
Type
());
if
(
info
.
infer_var_type_
)
{
if
(
info
.
infer_var_type_
)
{
info
.
infer_var_type_
(
*
this
,
block
);
info
.
infer_var_type_
(
*
this
,
block
);
}
else
{
// all output type is LoDTensor by default
VLOG
(
10
)
<<
this
->
Type
()
<<
" has not registered InferVarType. Set output variables to "
"LOD_TENSOR"
;
for
(
auto
&
out_pair
:
this
->
outputs_
)
{
for
(
auto
&
out_var_name
:
out_pair
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
.
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
}
}
}
}
}
}
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
4625f83f
...
@@ -324,10 +324,19 @@ class LayerHelper(object):
...
@@ -324,10 +324,19 @@ class LayerHelper(object):
raise
ValueError
(
"no Parameter name %s found"
%
name
)
raise
ValueError
(
"no Parameter name %s found"
%
name
)
return
param
return
param
def
create_tmp_variable
(
self
,
dtype
,
stop_gradient
=
False
):
def
create_variable_for_type_inference
(
self
,
dtype
,
stop_gradient
=
False
):
"""Create a temporary variable that should be type inferred layer.
Note:
The default type will be set to LOD_TENSOR. However, when
the var is used as operator output, its type will be updated
based on operator's `VarTypeInference` implementation in
infer_var_type.
"""
return
self
.
main_program
.
current_block
().
create_var
(
return
self
.
main_program
.
current_block
().
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
([
self
.
name
,
'tmp'
])),
name
=
unique_name
.
generate
(
"."
.
join
([
self
.
name
,
'tmp'
])),
dtype
=
dtype
,
dtype
=
dtype
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
persistable
=
False
,
stop_gradient
=
stop_gradient
)
stop_gradient
=
stop_gradient
)
...
@@ -388,7 +397,7 @@ class LayerHelper(object):
...
@@ -388,7 +397,7 @@ class LayerHelper(object):
b
=
self
.
create_parameter
(
b
=
self
.
create_parameter
(
attr
=
bias_attr
,
shape
=
size
,
dtype
=
input_var
.
dtype
,
is_bias
=
True
)
attr
=
bias_attr
,
shape
=
size
,
dtype
=
input_var
.
dtype
,
is_bias
=
True
)
tmp
=
self
.
create_
tmp_variabl
e
(
dtype
=
input_var
.
dtype
)
tmp
=
self
.
create_
variable_for_type_inferenc
e
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
self
.
append_op
(
type
=
'elementwise_add'
,
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
input_var
],
inputs
=
{
'X'
:
[
input_var
],
...
@@ -414,7 +423,7 @@ class LayerHelper(object):
...
@@ -414,7 +423,7 @@ class LayerHelper(object):
tmp
=
input_var
tmp
=
input_var
# NOTE(dzhwinter): some activation support inplace compution.
# NOTE(dzhwinter): some activation support inplace compution.
if
not
core
.
IsInplace
(
act_type
):
if
not
core
.
IsInplace
(
act_type
):
tmp
=
self
.
create_
tmp_variabl
e
(
dtype
=
input_var
.
dtype
)
tmp
=
self
.
create_
variable_for_type_inferenc
e
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
self
.
append_op
(
type
=
act_type
,
type
=
act_type
,
inputs
=
{
"X"
:
[
input_var
]},
inputs
=
{
"X"
:
[
input_var
]},
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
4625f83f
...
@@ -80,8 +80,8 @@ def split_lod_tensor(input, mask, level=0):
...
@@ -80,8 +80,8 @@ def split_lod_tensor(input, mask, level=0):
"""
"""
helper
=
LayerHelper
(
'split_lod_tensor'
,
**
locals
())
helper
=
LayerHelper
(
'split_lod_tensor'
,
**
locals
())
out_true
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out_true
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
out_false
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out_false
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'split_lod_tensor'
,
type
=
'split_lod_tensor'
,
inputs
=
{
inputs
=
{
...
@@ -131,7 +131,7 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0):
...
@@ -131,7 +131,7 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0):
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
"""
"""
helper
=
LayerHelper
(
'merge_lod_tensor'
,
**
locals
())
helper
=
LayerHelper
(
'merge_lod_tensor'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
in_true
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
in_true
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'merge_lod_tensor'
,
type
=
'merge_lod_tensor'
,
inputs
=
{
'X'
:
x
,
inputs
=
{
'X'
:
x
,
...
@@ -524,7 +524,7 @@ class StaticRNN(object):
...
@@ -524,7 +524,7 @@ class StaticRNN(object):
if
not
isinstance
(
o
,
Variable
):
if
not
isinstance
(
o
,
Variable
):
raise
TypeError
(
"step output takes a Variable"
)
raise
TypeError
(
"step output takes a Variable"
)
tmp_o
=
self
.
helper
.
create_
tmp_variabl
e
(
dtype
=
o
.
dtype
)
tmp_o
=
self
.
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
o
.
dtype
)
self
.
helper
.
append_op
(
self
.
helper
.
append_op
(
type
=
'rnn_memory_helper'
,
type
=
'rnn_memory_helper'
,
inputs
=
{
'X'
:
[
o
]},
inputs
=
{
'X'
:
[
o
]},
...
@@ -606,7 +606,8 @@ class StaticRNN(object):
...
@@ -606,7 +606,8 @@ class StaticRNN(object):
pre_memories
.
append
(
mem
.
pre_mem
.
name
)
pre_memories
.
append
(
mem
.
pre_mem
.
name
)
mem_var
=
rnn_block
.
var
(
mem
.
mem
.
name
)
mem_var
=
rnn_block
.
var
(
mem
.
mem
.
name
)
assert
isinstance
(
mem_var
,
Variable
)
assert
isinstance
(
mem_var
,
Variable
)
new_mem
=
self
.
helper
.
create_tmp_variable
(
dtype
=
mem_var
.
dtype
)
new_mem
=
self
.
helper
.
create_variable_for_type_inference
(
dtype
=
mem_var
.
dtype
)
rnn_block
.
append_op
(
rnn_block
.
append_op
(
type
=
'rnn_memory_helper'
,
type
=
'rnn_memory_helper'
,
...
@@ -813,7 +814,7 @@ def max_sequence_len(rank_table):
...
@@ -813,7 +814,7 @@ def max_sequence_len(rank_table):
${out_comment}.
${out_comment}.
"""
"""
helper
=
LayerHelper
(
"max_seqence_len"
,
**
locals
())
helper
=
LayerHelper
(
"max_seqence_len"
,
**
locals
())
res
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
res
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"max_sequence_len"
,
type
=
"max_sequence_len"
,
inputs
=
{
"RankTable"
:
rank_table
},
inputs
=
{
"RankTable"
:
rank_table
},
...
@@ -884,7 +885,7 @@ def array_to_lod_tensor(x, table):
...
@@ -884,7 +885,7 @@ def array_to_lod_tensor(x, table):
lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
"""
"""
helper
=
LayerHelper
(
"array_to_lod_tensor"
,
**
locals
())
helper
=
LayerHelper
(
"array_to_lod_tensor"
,
**
locals
())
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"array_to_lod_tensor"
,
type
=
"array_to_lod_tensor"
,
inputs
=
{
'X'
:
x
,
inputs
=
{
'X'
:
x
,
...
@@ -915,7 +916,7 @@ def increment(x, value=1.0, in_place=True):
...
@@ -915,7 +916,7 @@ def increment(x, value=1.0, in_place=True):
"""
"""
helper
=
LayerHelper
(
"increment"
,
**
locals
())
helper
=
LayerHelper
(
"increment"
,
**
locals
())
if
not
in_place
:
if
not
in_place
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
else
:
out
=
x
out
=
x
helper
.
append_op
(
helper
.
append_op
(
...
@@ -1012,7 +1013,7 @@ def less_than(x, y, force_cpu=None, cond=None, **ignored):
...
@@ -1012,7 +1013,7 @@ def less_than(x, y, force_cpu=None, cond=None, **ignored):
"""
"""
helper
=
LayerHelper
(
"less_than"
,
**
locals
())
helper
=
LayerHelper
(
"less_than"
,
**
locals
())
if
cond
is
None
:
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
cond
.
stop_gradient
=
True
attrs
=
dict
()
attrs
=
dict
()
...
@@ -1051,7 +1052,7 @@ def equal(x, y, cond=None, **ignored):
...
@@ -1051,7 +1052,7 @@ def equal(x, y, cond=None, **ignored):
"""
"""
helper
=
LayerHelper
(
"equal"
,
**
locals
())
helper
=
LayerHelper
(
"equal"
,
**
locals
())
if
cond
is
None
:
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
cond
.
stop_gradient
=
True
helper
.
append_op
(
helper
.
append_op
(
...
@@ -1098,7 +1099,7 @@ def array_read(array, i):
...
@@ -1098,7 +1099,7 @@ def array_read(array, i):
array
,
array
,
Variable
)
or
array
.
type
!=
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
:
Variable
)
or
array
.
type
!=
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
:
raise
TypeError
(
"array should be tensor array vairable"
)
raise
TypeError
(
"array should be tensor array vairable"
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
array
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
array
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'read_from_array'
,
type
=
'read_from_array'
,
inputs
=
{
'X'
:
[
array
],
inputs
=
{
'X'
:
[
array
],
...
@@ -1133,7 +1134,7 @@ def shrink_memory(x, i, table):
...
@@ -1133,7 +1134,7 @@ def shrink_memory(x, i, table):
usage.
usage.
"""
"""
helper
=
LayerHelper
(
'shrink_memory'
,
**
locals
())
helper
=
LayerHelper
(
'shrink_memory'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'shrink_rnn_memory'
,
type
=
'shrink_rnn_memory'
,
inputs
=
{
'X'
:
[
x
],
inputs
=
{
'X'
:
[
x
],
...
@@ -1170,7 +1171,7 @@ def array_length(array):
...
@@ -1170,7 +1171,7 @@ def array_length(array):
"""
"""
helper
=
LayerHelper
(
'array_length'
,
**
locals
())
helper
=
LayerHelper
(
'array_length'
,
**
locals
())
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int64'
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int64'
)
tmp
.
stop_gradient
=
True
tmp
.
stop_gradient
=
True
helper
.
append_op
(
helper
.
append_op
(
type
=
'lod_array_length'
,
inputs
=
{
'X'
:
[
array
]},
outputs
=
{
'Out'
:
[
tmp
]})
type
=
'lod_array_length'
,
inputs
=
{
'X'
:
[
array
]},
outputs
=
{
'Out'
:
[
tmp
]})
...
@@ -1590,7 +1591,7 @@ class DynamicRNN(object):
...
@@ -1590,7 +1591,7 @@ class DynamicRNN(object):
self
.
mem_dict
=
dict
()
self
.
mem_dict
=
dict
()
self
.
output_array
=
[]
self
.
output_array
=
[]
self
.
outputs
=
[]
self
.
outputs
=
[]
self
.
cond
=
self
.
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
self
.
cond
=
self
.
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
self
.
cond
.
stop_gradient
=
False
self
.
cond
.
stop_gradient
=
False
self
.
while_op
=
While
(
self
.
cond
)
self
.
while_op
=
While
(
self
.
cond
)
self
.
input_array
=
[]
self
.
input_array
=
[]
...
@@ -1924,7 +1925,7 @@ def reorder_lod_tensor_by_rank(x, rank_table):
...
@@ -1924,7 +1925,7 @@ def reorder_lod_tensor_by_rank(x, rank_table):
helper
.
is_instance
(
'x'
,
Variable
)
helper
.
is_instance
(
'x'
,
Variable
)
helper
.
is_instance
(
'rank_table'
,
Variable
)
helper
.
is_instance
(
'rank_table'
,
Variable
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'reorder_lod_tensor_by_rank'
,
type
=
'reorder_lod_tensor_by_rank'
,
inputs
=
{
'X'
:
[
x
],
inputs
=
{
'X'
:
[
x
],
...
@@ -1958,7 +1959,7 @@ def is_empty(x, cond=None, **ignored):
...
@@ -1958,7 +1959,7 @@ def is_empty(x, cond=None, **ignored):
"""
"""
helper
=
LayerHelper
(
"is_empty"
,
**
locals
())
helper
=
LayerHelper
(
"is_empty"
,
**
locals
())
if
cond
is
None
:
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
cond
.
stop_gradient
=
True
elif
not
isinstance
(
cond
,
Variable
):
elif
not
isinstance
(
cond
,
Variable
):
raise
TypeError
(
"cond takes a variable"
)
raise
TypeError
(
"cond takes a variable"
)
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
4625f83f
...
@@ -147,10 +147,11 @@ def rpn_target_assign(bbox_pred,
...
@@ -147,10 +147,11 @@ def rpn_target_assign(bbox_pred,
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
# Assign target label to anchors
# Assign target label to anchors
loc_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
loc_index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
score_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
score_index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
target_label
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
target_label
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
target_bbox
=
helper
.
create_tmp_variable
(
dtype
=
anchor_box
.
dtype
)
target_bbox
=
helper
.
create_variable_for_type_inference
(
dtype
=
anchor_box
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"rpn_target_assign"
,
type
=
"rpn_target_assign"
,
inputs
=
{
inputs
=
{
...
@@ -282,7 +283,8 @@ def detection_output(loc,
...
@@ -282,7 +283,8 @@ def detection_output(loc,
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
scores
=
nn
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
])
scores
=
nn
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
])
scores
.
stop_gradient
=
True
scores
.
stop_gradient
=
True
nmsed_outs
=
helper
.
create_tmp_variable
(
dtype
=
decoded_box
.
dtype
)
nmsed_outs
=
helper
.
create_variable_for_type_inference
(
dtype
=
decoded_box
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"multiclass_nms"
,
type
=
"multiclass_nms"
,
inputs
=
{
'Scores'
:
scores
,
inputs
=
{
'Scores'
:
scores
,
...
@@ -314,7 +316,7 @@ def iou_similarity(x, y, name=None):
...
@@ -314,7 +316,7 @@ def iou_similarity(x, y, name=None):
"""
"""
helper
=
LayerHelper
(
"iou_similarity"
,
**
locals
())
helper
=
LayerHelper
(
"iou_similarity"
,
**
locals
())
if
name
is
None
:
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
else
:
out
=
helper
.
create_variable
(
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
@@ -351,7 +353,8 @@ def box_coder(prior_box,
...
@@ -351,7 +353,8 @@ def box_coder(prior_box,
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
if
name
is
None
:
if
name
is
None
:
output_box
=
helper
.
create_tmp_variable
(
dtype
=
prior_box
.
dtype
)
output_box
=
helper
.
create_variable_for_type_inference
(
dtype
=
prior_box
.
dtype
)
else
:
else
:
output_box
=
helper
.
create_variable
(
output_box
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
dtype
,
persistable
=
False
)
name
=
name
,
dtype
=
prior_box
.
dtype
,
persistable
=
False
)
...
@@ -382,7 +385,7 @@ def polygon_box_transform(input, name=None):
...
@@ -382,7 +385,7 @@ def polygon_box_transform(input, name=None):
"""
"""
helper
=
LayerHelper
(
"polygon_box_transform"
,
**
locals
())
helper
=
LayerHelper
(
"polygon_box_transform"
,
**
locals
())
if
name
is
None
:
if
name
is
None
:
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
else
:
else
:
output
=
helper
.
create_variable
(
output
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
input
,
persistable
=
False
)
name
=
name
,
dtype
=
prior_box
.
input
,
persistable
=
False
)
...
@@ -450,7 +453,7 @@ def detection_map(detect_res,
...
@@ -450,7 +453,7 @@ def detection_map(detect_res,
helper
=
LayerHelper
(
"detection_map"
,
**
locals
())
helper
=
LayerHelper
(
"detection_map"
,
**
locals
())
def
__create_var
(
type
):
def
__create_var
(
type
):
return
helper
.
create_
tmp_variabl
e
(
dtype
=
type
)
return
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
type
)
map_out
=
__create_var
(
'float32'
)
map_out
=
__create_var
(
'float32'
)
accum_pos_count_out
=
out_states
[
0
]
if
out_states
else
__create_var
(
'int32'
)
accum_pos_count_out
=
out_states
[
0
]
if
out_states
else
__create_var
(
'int32'
)
...
@@ -557,8 +560,9 @@ def bipartite_match(dist_matrix,
...
@@ -557,8 +560,9 @@ def bipartite_match(dist_matrix,
>>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
>>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
"""
"""
helper
=
LayerHelper
(
'bipartite_match'
,
**
locals
())
helper
=
LayerHelper
(
'bipartite_match'
,
**
locals
())
match_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
match_indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
match_distance
=
helper
.
create_tmp_variable
(
dtype
=
dist_matrix
.
dtype
)
match_distance
=
helper
.
create_variable_for_type_inference
(
dtype
=
dist_matrix
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'bipartite_match'
,
type
=
'bipartite_match'
,
inputs
=
{
'DistMat'
:
dist_matrix
},
inputs
=
{
'DistMat'
:
dist_matrix
},
...
@@ -644,8 +648,8 @@ def target_assign(input,
...
@@ -644,8 +648,8 @@ def target_assign(input,
gt, matched_indices, mismatch_value=0)
gt, matched_indices, mismatch_value=0)
"""
"""
helper
=
LayerHelper
(
'target_assign'
,
**
locals
())
helper
=
LayerHelper
(
'target_assign'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
out_weight
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'float32'
)
out_weight
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'float32'
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'target_assign'
,
type
=
'target_assign'
,
inputs
=
{
inputs
=
{
...
@@ -816,9 +820,10 @@ def ssd_loss(location,
...
@@ -816,9 +820,10 @@ def ssd_loss(location,
conf_loss
=
nn
.
reshape
(
conf_loss
=
nn
.
reshape
(
x
=
conf_loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
actual_shape
)
x
=
conf_loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
actual_shape
)
conf_loss
.
stop_gradient
=
True
conf_loss
.
stop_gradient
=
True
neg_indices
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int32'
)
neg_indices
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int32'
)
dtype
=
matched_indices
.
dtype
dtype
=
matched_indices
.
dtype
updated_matched_indices
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
updated_matched_indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'mine_hard_examples'
,
type
=
'mine_hard_examples'
,
inputs
=
{
inputs
=
{
...
@@ -998,8 +1003,8 @@ def prior_box(input,
...
@@ -998,8 +1003,8 @@ def prior_box(input,
max_sizes
=
[
max_sizes
]
max_sizes
=
[
max_sizes
]
attrs
[
'max_sizes'
]
=
max_sizes
attrs
[
'max_sizes'
]
=
max_sizes
box
=
helper
.
create_
tmp_variabl
e
(
dtype
)
box
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
var
=
helper
.
create_
tmp_variabl
e
(
dtype
)
var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"prior_box"
,
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
inputs
=
{
"Input"
:
input
,
...
@@ -1337,8 +1342,8 @@ def anchor_generator(input,
...
@@ -1337,8 +1342,8 @@ def anchor_generator(input,
'offset'
:
offset
'offset'
:
offset
}
}
anchor
=
helper
.
create_
tmp_variabl
e
(
dtype
)
anchor
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
var
=
helper
.
create_
tmp_variabl
e
(
dtype
)
var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"anchor_generator"
,
type
=
"anchor_generator"
,
inputs
=
{
"Input"
:
input
},
inputs
=
{
"Input"
:
input
},
...
@@ -1384,7 +1389,7 @@ def roi_perspective_transform(input,
...
@@ -1384,7 +1389,7 @@ def roi_perspective_transform(input,
"""
"""
helper
=
LayerHelper
(
'roi_perspective_transform'
,
**
locals
())
helper
=
LayerHelper
(
'roi_perspective_transform'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"roi_perspective_transform"
,
type
=
"roi_perspective_transform"
,
inputs
=
{
"X"
:
input
,
inputs
=
{
"X"
:
input
,
...
@@ -1418,11 +1423,15 @@ def generate_proposal_labels(rpn_rois,
...
@@ -1418,11 +1423,15 @@ def generate_proposal_labels(rpn_rois,
helper
=
LayerHelper
(
'generate_proposal_labels'
,
**
locals
())
helper
=
LayerHelper
(
'generate_proposal_labels'
,
**
locals
())
rois
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
rois
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
labels_int32
=
helper
.
create_tmp_variable
(
dtype
=
gt_classes
.
dtype
)
labels_int32
=
helper
.
create_variable_for_type_inference
(
bbox_targets
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
dtype
=
gt_classes
.
dtype
)
bbox_inside_weights
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
bbox_targets
=
helper
.
create_variable_for_type_inference
(
bbox_outside_weights
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
dtype
=
rpn_rois
.
dtype
)
bbox_inside_weights
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
bbox_outside_weights
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"generate_proposal_labels"
,
type
=
"generate_proposal_labels"
,
...
@@ -1504,8 +1513,10 @@ def generate_proposals(scores,
...
@@ -1504,8 +1513,10 @@ def generate_proposals(scores,
"""
"""
helper
=
LayerHelper
(
'generate_proposals'
,
**
locals
())
helper
=
LayerHelper
(
'generate_proposals'
,
**
locals
())
rpn_rois
=
helper
.
create_tmp_variable
(
dtype
=
bbox_deltas
.
dtype
)
rpn_rois
=
helper
.
create_variable_for_type_inference
(
rpn_roi_probs
=
helper
.
create_tmp_variable
(
dtype
=
scores
.
dtype
)
dtype
=
bbox_deltas
.
dtype
)
rpn_roi_probs
=
helper
.
create_variable_for_type_inference
(
dtype
=
scores
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"generate_proposals"
,
type
=
"generate_proposals"
,
inputs
=
{
inputs
=
{
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
4625f83f
...
@@ -954,7 +954,7 @@ def read_file(reader):
...
@@ -954,7 +954,7 @@ def read_file(reader):
"""
"""
helper
=
LayerHelper
(
'read_file'
)
helper
=
LayerHelper
(
'read_file'
)
out
=
[
out
=
[
helper
.
create_
tmp_variabl
e
(
helper
.
create_
variable_for_type_inferenc
e
(
stop_gradient
=
True
,
dtype
=
'float32'
)
stop_gradient
=
True
,
dtype
=
'float32'
)
for
_
in
range
(
len
(
reader
.
desc
.
shapes
()))
for
_
in
range
(
len
(
reader
.
desc
.
shapes
()))
]
]
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
4625f83f
...
@@ -202,10 +202,12 @@ def generate_layer_fn(op_type):
...
@@ -202,10 +202,12 @@ def generate_layer_fn(op_type):
out_var
=
out
[
0
]
if
(
isinstance
(
out
,
list
)
or
out_var
=
out
[
0
]
if
(
isinstance
(
out
,
list
)
or
isinstance
(
out
,
tuple
))
else
out
isinstance
(
out
,
tuple
))
else
out
else
:
else
:
out_var
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out_var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
outputs
[
o_name
]
=
[
out_var
]
outputs
[
o_name
]
=
[
out_var
]
for
name
in
intermediate_output_names
:
for
name
in
intermediate_output_names
:
outputs
[
name
]
=
[
helper
.
create_tmp_variable
(
dtype
=
dtype
)]
outputs
[
name
]
=
[
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
]
helper
.
append_op
(
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
kwargs
)
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
kwargs
)
return
helper
.
append_activation
(
out_var
)
return
helper
.
append_activation
(
out_var
)
...
@@ -229,7 +231,7 @@ def generate_layer_fn_noattr(op_type):
...
@@ -229,7 +231,7 @@ def generate_layer_fn_noattr(op_type):
def
func
(
x
,
name
=
None
):
def
func
(
x
,
name
=
None
):
helper
=
LayerHelper
(
op_type
,
**
locals
())
helper
=
LayerHelper
(
op_type
,
**
locals
())
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
output
})
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
output
})
return
output
return
output
...
...
python/paddle/fluid/layers/metric_op.py
浏览文件 @
4625f83f
...
@@ -58,11 +58,11 @@ def accuracy(input, label, k=1, correct=None, total=None):
...
@@ -58,11 +58,11 @@ def accuracy(input, label, k=1, correct=None, total=None):
"""
"""
helper
=
LayerHelper
(
"accuracy"
,
**
locals
())
helper
=
LayerHelper
(
"accuracy"
,
**
locals
())
topk_out
,
topk_indices
=
nn
.
topk
(
input
,
k
=
k
)
topk_out
,
topk_indices
=
nn
.
topk
(
input
,
k
=
k
)
acc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float32"
)
acc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float32"
)
if
correct
is
None
:
if
correct
is
None
:
correct
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
correct
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
if
total
is
None
:
if
total
is
None
:
total
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
total
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"accuracy"
,
type
=
"accuracy"
,
inputs
=
{
inputs
=
{
...
@@ -124,8 +124,8 @@ def auc(input,
...
@@ -124,8 +124,8 @@ def auc(input,
auc_out=fluid.layers.auc(input=prediction, label=label)
auc_out=fluid.layers.auc(input=prediction, label=label)
"""
"""
helper
=
LayerHelper
(
"auc"
,
**
locals
())
helper
=
LayerHelper
(
"auc"
,
**
locals
())
auc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float64"
)
auc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float64"
)
batch_auc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float64"
)
batch_auc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float64"
)
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
# for batch auc
# for batch auc
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
4625f83f
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/tensor.py
浏览文件 @
4625f83f
...
@@ -152,7 +152,7 @@ def cast(x, dtype):
...
@@ -152,7 +152,7 @@ def cast(x, dtype):
result = fluid.layers.cast(x=data, dtype='float64')
result = fluid.layers.cast(x=data, dtype='float64')
"""
"""
helper
=
LayerHelper
(
'cast'
,
**
locals
())
helper
=
LayerHelper
(
'cast'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'cast'
,
type
=
'cast'
,
inputs
=
{
'X'
:
[
x
]},
inputs
=
{
'X'
:
[
x
]},
...
@@ -184,7 +184,7 @@ def concat(input, axis=0, name=None):
...
@@ -184,7 +184,7 @@ def concat(input, axis=0, name=None):
out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
"""
"""
helper
=
LayerHelper
(
'concat'
,
**
locals
())
helper
=
LayerHelper
(
'concat'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
helper
.
append_op
(
type
=
'concat'
,
type
=
'concat'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
input
},
...
@@ -221,7 +221,8 @@ def sums(input, out=None):
...
@@ -221,7 +221,8 @@ def sums(input, out=None):
"""
"""
helper
=
LayerHelper
(
'sum'
,
**
locals
())
helper
=
LayerHelper
(
'sum'
,
**
locals
())
if
out
is
None
:
if
out
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
helper
.
append_op
(
type
=
'sum'
,
type
=
'sum'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
input
},
...
@@ -252,7 +253,7 @@ def assign(input, output=None):
...
@@ -252,7 +253,7 @@ def assign(input, output=None):
"""
"""
helper
=
LayerHelper
(
'assign'
,
**
locals
())
helper
=
LayerHelper
(
'assign'
,
**
locals
())
if
output
is
None
:
if
output
is
None
:
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
if
isinstance
(
input
,
Variable
):
if
isinstance
(
input
,
Variable
):
helper
.
append_op
(
helper
.
append_op
(
type
=
'assign'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
output
]})
type
=
'assign'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
output
]})
...
@@ -311,7 +312,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
...
@@ -311,7 +312,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
if
out
is
None
:
if
out
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'fill_constant'
,
type
=
'fill_constant'
,
inputs
=
{},
inputs
=
{},
...
@@ -358,7 +359,7 @@ def fill_constant_batch_size_like(input,
...
@@ -358,7 +359,7 @@ def fill_constant_batch_size_like(input,
${out_comment}.
${out_comment}.
"""
"""
helper
=
LayerHelper
(
"fill_constant_batch_size_like"
,
**
locals
())
helper
=
LayerHelper
(
"fill_constant_batch_size_like"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'fill_constant_batch_size_like'
,
type
=
'fill_constant_batch_size_like'
,
inputs
=
{
'Input'
:
input
},
inputs
=
{
'Input'
:
input
},
...
@@ -396,7 +397,7 @@ def argmin(x, axis=0):
...
@@ -396,7 +397,7 @@ def argmin(x, axis=0):
out = fluid.layers.argmin(x=in, axis=-1)
out = fluid.layers.argmin(x=in, axis=-1)
"""
"""
helper
=
LayerHelper
(
"arg_min"
,
**
locals
())
helper
=
LayerHelper
(
"arg_min"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
VarDesc
.
VarType
.
INT64
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
VarDesc
.
VarType
.
INT64
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'arg_min'
,
type
=
'arg_min'
,
inputs
=
{
'X'
:
x
},
inputs
=
{
'X'
:
x
},
...
@@ -427,7 +428,7 @@ def argmax(x, axis=0):
...
@@ -427,7 +428,7 @@ def argmax(x, axis=0):
out = fluid.layers.argmax(x=in, axis=-1)
out = fluid.layers.argmax(x=in, axis=-1)
"""
"""
helper
=
LayerHelper
(
"arg_max"
,
**
locals
())
helper
=
LayerHelper
(
"arg_max"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
VarDesc
.
VarType
.
INT64
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
VarDesc
.
VarType
.
INT64
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'arg_max'
,
type
=
'arg_max'
,
inputs
=
{
'X'
:
x
},
inputs
=
{
'X'
:
x
},
...
@@ -477,8 +478,10 @@ def argsort(input, axis=-1, name=None):
...
@@ -477,8 +478,10 @@ def argsort(input, axis=-1, name=None):
out, indices = fluid.layers.argsort(input, axis=0)
out, indices = fluid.layers.argsort(input, axis=0)
"""
"""
helper
=
LayerHelper
(
"argsort"
,
**
locals
())
helper
=
LayerHelper
(
"argsort"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
,
stop_gradient
=
True
)
out
=
helper
.
create_variable_for_type_inference
(
ids
=
helper
.
create_tmp_variable
(
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
dtype
=
input
.
dtype
,
stop_gradient
=
True
)
ids
=
helper
.
create_variable_for_type_inference
(
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'argsort'
,
type
=
'argsort'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
input
},
...
@@ -562,7 +565,7 @@ def reverse(x, axis):
...
@@ -562,7 +565,7 @@ def reverse(x, axis):
if
isinstance
(
axis
,
int
):
if
isinstance
(
axis
,
int
):
axis
=
[
axis
]
axis
=
[
axis
]
helper
=
LayerHelper
(
"reverse"
,
**
locals
())
helper
=
LayerHelper
(
"reverse"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'reverse'
,
type
=
'reverse'
,
inputs
=
{
'Input'
:
x
},
inputs
=
{
'Input'
:
x
},
...
@@ -654,7 +657,7 @@ def has_inf(x):
...
@@ -654,7 +657,7 @@ def has_inf(x):
Variable: The tensor variable storing the output, only a bool value.
Variable: The tensor variable storing the output, only a bool value.
"""
"""
helper
=
LayerHelper
(
"isinf"
,
**
locals
())
helper
=
LayerHelper
(
"isinf"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isinf"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
helper
.
append_op
(
type
=
"isinf"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
return
out
...
@@ -670,7 +673,7 @@ def has_nan(x):
...
@@ -670,7 +673,7 @@ def has_nan(x):
Variable: The tensor variable storing the output, only a bool value.
Variable: The tensor variable storing the output, only a bool value.
"""
"""
helper
=
LayerHelper
(
"isnan"
,
**
locals
())
helper
=
LayerHelper
(
"isnan"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isnan"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
helper
.
append_op
(
type
=
"isnan"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
return
out
...
@@ -687,6 +690,6 @@ def isfinite(x):
...
@@ -687,6 +690,6 @@ def isfinite(x):
Variable: The tensor variable storing the output, contains a bool value.
Variable: The tensor variable storing the output, contains a bool value.
"""
"""
helper
=
LayerHelper
(
"isfinite"
,
**
locals
())
helper
=
LayerHelper
(
"isfinite"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isfinite"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
helper
.
append_op
(
type
=
"isfinite"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
return
out
python/paddle/fluid/regularizer.py
浏览文件 @
4625f83f
...
@@ -151,7 +151,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
...
@@ -151,7 +151,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
decay
=
block
.
create_var
(
decay
=
block
.
create_var
(
dtype
=
"float32"
,
dtype
=
"float32"
,
shape
=
param
.
shape
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
block
.
append_op
(
block
.
append_op
(
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
block
.
append_op
(
block
.
append_op
(
...
@@ -228,7 +228,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
...
@@ -228,7 +228,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
decay
=
block
.
create_var
(
decay
=
block
.
create_var
(
dtype
=
"float32"
,
dtype
=
"float32"
,
shape
=
param
.
shape
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
block
.
append_op
(
block
.
append_op
(
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
block
.
append_op
(
block
.
append_op
(
...
...
python/paddle/fluid/tests/unittests/test_slice_var.py
浏览文件 @
4625f83f
...
@@ -30,7 +30,6 @@ class TestSliceVar(unittest.TestCase):
...
@@ -30,7 +30,6 @@ class TestSliceVar(unittest.TestCase):
var
=
program
.
global_block
().
create_var
(
var
=
program
.
global_block
().
create_var
(
name
=
str
(
random
.
randint
(
10000
,
99999
)),
name
=
str
(
random
.
randint
(
10000
,
99999
)),
persistable
=
True
,
persistable
=
True
,
# dtype=core.VarDesc.VarType.LOD_TENSOR,
shape
=
shape
)
shape
=
shape
)
var_list
.
append
(
var
)
var_list
.
append
(
var
)
blocks
=
slice_variable
(
var_list
,
10
,
min_size
)
blocks
=
slice_variable
(
var_list
,
10
,
min_size
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录