diff --git a/python/paddle/fluid/tests/unittests/test_fc_op.py b/python/paddle/fluid/tests/unittests/test_fc_op.py new file mode 100644 index 0000000000000000000000000000000000000000..2bb920710a9b10f3a8159bad3b33dd15ffbada19 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_fc_op.py @@ -0,0 +1,90 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +from op_test import OpTest + + +def fc_refer(matrix, with_bias): + in_n, in_c, in_h, in_w = matrix.input.shape + w_i, w_o = matrix.weights.shape + + x_data = np.reshape(matrix.input, [in_n, in_c * in_h * in_w]) + w_data = np.reshape(matrix.weights, [w_i, w_o]) + b_data = np.reshape(matrix.bias, [1, w_o]) + result = None + + if with_bias: + result = np.dot(x_data, w_data) + b_data + else: + result = np.dot(x_data, w_data) + + return result + + +class MatrixGenerate: + def __init__(self, mb, ic, oc, h, w): + self.input = np.random.random((mb, ic, h, w)).astype("float32") + self.weights = np.random.random((ic * h * w, oc)).astype("float32") + self.bias = np.random.random((1, oc)).astype("float32") + + +class TestFCOp(OpTest): + def setUp(self): + self.op_type = "fc" + self.matrix = MatrixGenerate(1, 10, 15, 3, 3) + + self.with_bias = True + if self.with_bias: + self.inputs = { + 'Input': self.matrix.input, + 'W': self.matrix.weights, + 'Bias': self.matrix.bias + } + else: + self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights} + + self.attrs = {'use_mkldnn': False} + + self.outputs = {'Out': fc_refer(self.matrix, self.with_bias)} + + def test_check_output(self): + self.check_output() + + +class TestFCOpBiasBoth(TestFCOp): + def init_shapes(self, mb, ic, oc, h, w): + for with_bias in {True, False}: + self.with_bias = with_bias + self.matrix = MatrixGenerate(mb, ic, oc, h, w) + + +class TestFCOp1(TestFCOpBiasBoth): + def init_op_type(self): + self.init_shapes(2, 8, 10, 1, 1) + + +class TestFCOp2(TestFCOpBiasBoth): + def init_op_type(self): + self.init_shapes(4, 5, 6, 2, 2) + + +class TestFCOp4(TestFCOpBiasBoth): + def init_op_type(self): + self.init_shapes(1, 32, 64, 3, 3) + + +if __name__ == "__main__": + unittest.main()