提交 45900ae0 编写于 作者: T Travis CI

Deploy to GitHub Pages: 15b35f9a

上级 f9440e66
# Design Doc: Session
## Abstract
The *session* object encapsulates the environment in which the
computation graph is executed.
We will have the *local* session and *remote* session, they offer the
same [interface](#interface). The local session encapsulates the local
runtime environment and the remote session encapsulates the cluster
runtime environment.
The local runtime environment contains:
1. computation devices (i.e., CPU, GPU) handles, and
1. the [scope](../scope.md) which holds all variables.
The remote runtime environment contains:
1. computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
and
1. the distributed [scope](../scope.md) in a cluster which holds all
variables.
The user can create a remote session on Paddle Cloud and evaluate the
computation graph with it. In this way, the user can control the
remote computation resource in a cluster from his local computer.
## Background
The current design has an implicit global session in which
`paddle.eval()` is executed. The pain point is:
Since the user is not able to explicitly switch between runtime
environments, the user cannot run a topology in two independent
environments.
For example, in reinforcement learning, the user may want to have a
stale model for inference and a fresh model for training, and only
replace the stale model with the fresh model periodically.
Furthermore, we have no concept that encapsulates a remote environment
that executes a computation graph.
We need the session object to address above issues.
## Session
A session is an object that owns the runtime environment. All
computations are executed through `session.eval()`.
### Interface
```python
eval(
targets,
feed_dict=None,
)
```
Evaluates the target Operations or Variables in `targets`.
- *targets*: the evaluation targets. Can be a single Operation or
Variable, or a list with the Operations or Variables as
elements. The value returned by `eval()` has the same shape as the
`target` argument.
The PaddlePaddle program is represented by
the [ProgramDesc](../design/program.md), `eval()` will infer the
ProgramDesc from the given targets and run the PaddlePaddle
program. Please
see
[this graph](./distributed_architecture.md#local-training-architecture) for
the detailed illustration for the local session
and
[this graph](./distributed_architecture.md#distributed-training-architecture) for
the detailed illustration for the remote session.
- *feed_dict*: a dictionary that contains the tensors which override
the edges of the computation graph.
feed_dict not only can provide the input data, it can override any
OP's input as well:
```python
a = pd.constant(2.0, name="a")
b = pd.variable(name="b")
c = pd.mul(a,b)
sess.eval(targets=c, feed_dict={"b":3.0}) # returns 6.0
```
```python
close()
```
Closes the session and releases the scope that the session owns.
### Create a Local Session
```python
session(
devices=None
)
```
Creates a new session. One session owns one global scope, so creating
multiple sessions will create different scopes.
- *devices*: a single `string` or a list of `string` of device names,
the corresponding devices will be the computation devices for
`eval()`. If not specified, all available devices (e.g., all GPUs)
will be used. The user doesn't need to specify the CPU device since
it will be always used. Multiple sessions can use the same device.
#### Example
```Python
a = paddle.constant(1.0)
b = paddle.constant(2.0)
c = a + b
sess = paddle.session(devices=["gpu:0", "gpu:1", "fpga:0"])
sess.eval(c)
sess.close()
```
### Create a Remote Session
```python
create_cloud_job(
name,
num_trainer,
mem_per_trainer,
gpu_per_trainer,
cpu_per_trainer,
num_ps,
mem_per_ps,
cpu_per_ps,
)
```
Creates a Paddle Cloud job. Fails if the job name exists.
```python
get_cloud_job(
name
)
```
Gets a Paddle Cloud job.
```python
remote_session(
job
)
```
- *job*: the Paddle Cloud job.
#### Example
```Python
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
image = reader.column(0)
label = reader.column(1)
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
cost = paddle.op.cross_entropy(fc2, label)
opt = paddle.optimizer.sgd(cost)
job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1)
sess = paddle.remote_ession(job)
for i in range(1000):
sess.eval(opt)
sess.close()
```
......@@ -295,7 +295,7 @@ once. When the target is the <code class="docutils literal"><span class="pre">co
the cost value.</p>
<p>The Python <code class="docutils literal"><span class="pre">session</span></code> is a wrapper of the C++ <code class="docutils literal"><span class="pre">Session</span></code> class. For more
information about <code class="docutils literal"><span class="pre">Session</span></code>, please
see <a class="reference external" href="design/refactor/session.md">Design Doc: Session</a>.</p>
see <a class="reference internal" href="session.html"><span class="doc">Design Doc: Session</span></a>.</p>
</div>
</div>
<div class="section" id="paddlepaddle-converter">
......
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Design Doc: Session &mdash; PaddlePaddle documentation</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index"
href="../../genindex.html"/>
<link rel="search" title="Search" href="../../search.html"/>
<link rel="top" title="PaddlePaddle documentation" href="../../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Design Doc: Session</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="design-doc-session">
<span id="design-doc-session"></span><h1>Design Doc: Session<a class="headerlink" href="#design-doc-session" title="Permalink to this headline"></a></h1>
<div class="section" id="abstract">
<span id="abstract"></span><h2>Abstract<a class="headerlink" href="#abstract" title="Permalink to this headline"></a></h2>
<p>The <em>session</em> object encapsulates the environment in which the
computation graph is executed.</p>
<p>We will have the <em>local</em> session and <em>remote</em> session, they offer the
same <a class="reference external" href="#interface">interface</a>. The local session encapsulates the local
runtime environment and the remote session encapsulates the cluster
runtime environment.</p>
<p>The local runtime environment contains:</p>
<ol class="simple">
<li>computation devices (i.e., CPU, GPU) handles, and</li>
<li>the <a class="reference internal" href="../scope.html"><span class="doc">scope</span></a> which holds all variables.</li>
</ol>
<p>The remote runtime environment contains:</p>
<ol class="simple">
<li>computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
and</li>
<li>the distributed <a class="reference internal" href="../scope.html"><span class="doc">scope</span></a> in a cluster which holds all
variables.</li>
</ol>
<p>The user can create a remote session on Paddle Cloud and evaluate the
computation graph with it. In this way, the user can control the
remote computation resource in a cluster from his local computer.</p>
</div>
<div class="section" id="background">
<span id="background"></span><h2>Background<a class="headerlink" href="#background" title="Permalink to this headline"></a></h2>
<p>The current design has an implicit global session in which
<code class="docutils literal"><span class="pre">paddle.eval()</span></code> is executed. The pain point is:</p>
<p>Since the user is not able to explicitly switch between runtime
environments, the user cannot run a topology in two independent
environments.</p>
<p>For example, in reinforcement learning, the user may want to have a
stale model for inference and a fresh model for training, and only
replace the stale model with the fresh model periodically.</p>
<p>Furthermore, we have no concept that encapsulates a remote environment
that executes a computation graph.</p>
<p>We need the session object to address above issues.</p>
</div>
<div class="section" id="session">
<span id="session"></span><h2>Session<a class="headerlink" href="#session" title="Permalink to this headline"></a></h2>
<p>A session is an object that owns the runtime environment. All
computations are executed through <code class="docutils literal"><span class="pre">session.eval()</span></code>.</p>
<div class="section" id="interface">
<span id="interface"></span><h3>Interface<a class="headerlink" href="#interface" title="Permalink to this headline"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span><span class="p">(</span>
<span class="n">targets</span><span class="p">,</span>
<span class="n">feed_dict</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Evaluates the target Operations or Variables in <code class="docutils literal"><span class="pre">targets</span></code>.</p>
<ul>
<li><p class="first"><em>targets</em>: the evaluation targets. Can be a single Operation or
Variable, or a list with the Operations or Variables as
elements. The value returned by <code class="docutils literal"><span class="pre">eval()</span></code> has the same shape as the
<code class="docutils literal"><span class="pre">target</span></code> argument.</p>
<p>The PaddlePaddle program is represented by
the <a class="reference external" href="design/design/program.md">ProgramDesc</a>, <code class="docutils literal"><span class="pre">eval()</span></code> will infer the
ProgramDesc from the given targets and run the PaddlePaddle
program. Please
see
<a class="reference external" href="/design/refactor/distributed_architecture.html#local-training-architecture">this graph</a> for
the detailed illustration for the local session
and
<a class="reference external" href="/design/refactor/distributed_architecture.html#distributed-training-architecture">this graph</a> for
the detailed illustration for the remote session.</p>
</li>
<li><p class="first"><em>feed_dict</em>: a dictionary that contains the tensors which override
the edges of the computation graph.</p>
<p>feed_dict not only can provide the input data, it can override any
OP&#8217;s input as well:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">2.0</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;a&quot;</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">variable</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;b&quot;</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">targets</span><span class="o">=</span><span class="n">c</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="s2">&quot;b&quot;</span><span class="p">:</span><span class="mf">3.0</span><span class="p">})</span> <span class="c1"># returns 6.0</span>
</pre></div>
</div>
</li>
</ul>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
<p>Closes the session and releases the scope that the session owns.</p>
</div>
<div class="section" id="create-a-local-session">
<span id="create-a-local-session"></span><h3>Create a Local Session<a class="headerlink" href="#create-a-local-session" title="Permalink to this headline"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">session</span><span class="p">(</span>
<span class="n">devices</span><span class="o">=</span><span class="bp">None</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Creates a new session. One session owns one global scope, so creating
multiple sessions will create different scopes.</p>
<ul class="simple">
<li><em>devices</em>: a single <code class="docutils literal"><span class="pre">string</span></code> or a list of <code class="docutils literal"><span class="pre">string</span></code> of device names,
the corresponding devices will be the computation devices for
<code class="docutils literal"><span class="pre">eval()</span></code>. If not specified, all available devices (e.g., all GPUs)
will be used. The user doesn&#8217;t need to specify the CPU device since
it will be always used. Multiple sessions can use the same device.</li>
</ul>
<div class="section" id="example">
<span id="example"></span><h4>Example<a class="headerlink" href="#example" title="Permalink to this headline"></a></h4>
<div class="highlight-Python"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span>
<span class="n">sess</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">session</span><span class="p">(</span><span class="n">devices</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;gpu:0&quot;</span><span class="p">,</span> <span class="s2">&quot;gpu:1&quot;</span><span class="p">,</span> <span class="s2">&quot;fpga:0&quot;</span><span class="p">])</span>
<span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="create-a-remote-session">
<span id="create-a-remote-session"></span><h3>Create a Remote Session<a class="headerlink" href="#create-a-remote-session" title="Permalink to this headline"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">create_cloud_job</span><span class="p">(</span>
<span class="n">name</span><span class="p">,</span>
<span class="n">num_trainer</span><span class="p">,</span>
<span class="n">mem_per_trainer</span><span class="p">,</span>
<span class="n">gpu_per_trainer</span><span class="p">,</span>
<span class="n">cpu_per_trainer</span><span class="p">,</span>
<span class="n">num_ps</span><span class="p">,</span>
<span class="n">mem_per_ps</span><span class="p">,</span>
<span class="n">cpu_per_ps</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Creates a Paddle Cloud job. Fails if the job name exists.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">get_cloud_job</span><span class="p">(</span>
<span class="n">name</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Gets a Paddle Cloud job.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">remote_session</span><span class="p">(</span>
<span class="n">job</span>
<span class="p">)</span>
</pre></div>
</div>
<ul class="simple">
<li><em>job</em>: the Paddle Cloud job.</li>
</ul>
<div class="section" id="example">
<span id="id1"></span><h4>Example<a class="headerlink" href="#example" title="Permalink to this headline"></a></h4>
<div class="highlight-Python"><div class="highlight"><pre><span></span><span class="n">reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">recordio</span><span class="p">(</span><span class="s2">&quot;/pfs/home/peter/mnist-train-*&quot;</span><span class="p">)</span> <span class="c1"># data stored on Paddle Cloud</span>
<span class="n">image</span> <span class="o">=</span> <span class="n">reader</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">label</span> <span class="o">=</span> <span class="n">reader</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">fc1</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;sigmoid&quot;</span><span class="p">)</span>
<span class="n">fc2</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">fc1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;softmax&quot;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">cross_entropy</span><span class="p">(</span><span class="n">fc2</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
<span class="n">opt</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">sgd</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span>
<span class="n">job</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">create_cloud_job</span><span class="p">(</span><span class="s2">&quot;test&quot;</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;1G&quot;</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">&quot;1G&quot;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">sess</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">remote_ession</span><span class="p">(</span><span class="n">job</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">opt</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
# Design Doc: Session
## Abstract
The *session* object encapsulates the environment in which the
computation graph is executed.
We will have the *local* session and *remote* session, they offer the
same [interface](#interface). The local session encapsulates the local
runtime environment and the remote session encapsulates the cluster
runtime environment.
The local runtime environment contains:
1. computation devices (i.e., CPU, GPU) handles, and
1. the [scope](../scope.md) which holds all variables.
The remote runtime environment contains:
1. computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
and
1. the distributed [scope](../scope.md) in a cluster which holds all
variables.
The user can create a remote session on Paddle Cloud and evaluate the
computation graph with it. In this way, the user can control the
remote computation resource in a cluster from his local computer.
## Background
The current design has an implicit global session in which
`paddle.eval()` is executed. The pain point is:
Since the user is not able to explicitly switch between runtime
environments, the user cannot run a topology in two independent
environments.
For example, in reinforcement learning, the user may want to have a
stale model for inference and a fresh model for training, and only
replace the stale model with the fresh model periodically.
Furthermore, we have no concept that encapsulates a remote environment
that executes a computation graph.
We need the session object to address above issues.
## Session
A session is an object that owns the runtime environment. All
computations are executed through `session.eval()`.
### Interface
```python
eval(
targets,
feed_dict=None,
)
```
Evaluates the target Operations or Variables in `targets`.
- *targets*: the evaluation targets. Can be a single Operation or
Variable, or a list with the Operations or Variables as
elements. The value returned by `eval()` has the same shape as the
`target` argument.
The PaddlePaddle program is represented by
the [ProgramDesc](../design/program.md), `eval()` will infer the
ProgramDesc from the given targets and run the PaddlePaddle
program. Please
see
[this graph](./distributed_architecture.md#local-training-architecture) for
the detailed illustration for the local session
and
[this graph](./distributed_architecture.md#distributed-training-architecture) for
the detailed illustration for the remote session.
- *feed_dict*: a dictionary that contains the tensors which override
the edges of the computation graph.
feed_dict not only can provide the input data, it can override any
OP's input as well:
```python
a = pd.constant(2.0, name="a")
b = pd.variable(name="b")
c = pd.mul(a,b)
sess.eval(targets=c, feed_dict={"b":3.0}) # returns 6.0
```
```python
close()
```
Closes the session and releases the scope that the session owns.
### Create a Local Session
```python
session(
devices=None
)
```
Creates a new session. One session owns one global scope, so creating
multiple sessions will create different scopes.
- *devices*: a single `string` or a list of `string` of device names,
the corresponding devices will be the computation devices for
`eval()`. If not specified, all available devices (e.g., all GPUs)
will be used. The user doesn't need to specify the CPU device since
it will be always used. Multiple sessions can use the same device.
#### Example
```Python
a = paddle.constant(1.0)
b = paddle.constant(2.0)
c = a + b
sess = paddle.session(devices=["gpu:0", "gpu:1", "fpga:0"])
sess.eval(c)
sess.close()
```
### Create a Remote Session
```python
create_cloud_job(
name,
num_trainer,
mem_per_trainer,
gpu_per_trainer,
cpu_per_trainer,
num_ps,
mem_per_ps,
cpu_per_ps,
)
```
Creates a Paddle Cloud job. Fails if the job name exists.
```python
get_cloud_job(
name
)
```
Gets a Paddle Cloud job.
```python
remote_session(
job
)
```
- *job*: the Paddle Cloud job.
#### Example
```Python
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
image = reader.column(0)
label = reader.column(1)
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
cost = paddle.op.cross_entropy(fc2, label)
opt = paddle.optimizer.sgd(cost)
job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1)
sess = paddle.remote_ession(job)
for i in range(1000):
sess.eval(opt)
sess.close()
```
......@@ -309,7 +309,7 @@ once. When the target is the <code class="docutils literal"><span class="pre">co
the cost value.</p>
<p>The Python <code class="docutils literal"><span class="pre">session</span></code> is a wrapper of the C++ <code class="docutils literal"><span class="pre">Session</span></code> class. For more
information about <code class="docutils literal"><span class="pre">Session</span></code>, please
see <a class="reference external" href="design/refactor/session.md">Design Doc: Session</a>.</p>
see <a class="reference internal" href="session.html"><span class="doc">Design Doc: Session</span></a>.</p>
</div>
</div>
<div class="section" id="paddlepaddle-converter">
......
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Design Doc: Session &mdash; PaddlePaddle 文档</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="index" title="索引"
href="../../genindex.html"/>
<link rel="search" title="搜索" href="../../search.html"/>
<link rel="top" title="PaddlePaddle 文档" href="../../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Design Doc: Session</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="design-doc-session">
<span id="design-doc-session"></span><h1>Design Doc: Session<a class="headerlink" href="#design-doc-session" title="永久链接至标题"></a></h1>
<div class="section" id="abstract">
<span id="abstract"></span><h2>Abstract<a class="headerlink" href="#abstract" title="永久链接至标题"></a></h2>
<p>The <em>session</em> object encapsulates the environment in which the
computation graph is executed.</p>
<p>We will have the <em>local</em> session and <em>remote</em> session, they offer the
same <a class="reference external" href="#interface">interface</a>. The local session encapsulates the local
runtime environment and the remote session encapsulates the cluster
runtime environment.</p>
<p>The local runtime environment contains:</p>
<ol class="simple">
<li>computation devices (i.e., CPU, GPU) handles, and</li>
<li>the <a class="reference internal" href="../scope.html"><span class="doc">scope</span></a> which holds all variables.</li>
</ol>
<p>The remote runtime environment contains:</p>
<ol class="simple">
<li>computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
and</li>
<li>the distributed <a class="reference internal" href="../scope.html"><span class="doc">scope</span></a> in a cluster which holds all
variables.</li>
</ol>
<p>The user can create a remote session on Paddle Cloud and evaluate the
computation graph with it. In this way, the user can control the
remote computation resource in a cluster from his local computer.</p>
</div>
<div class="section" id="background">
<span id="background"></span><h2>Background<a class="headerlink" href="#background" title="永久链接至标题"></a></h2>
<p>The current design has an implicit global session in which
<code class="docutils literal"><span class="pre">paddle.eval()</span></code> is executed. The pain point is:</p>
<p>Since the user is not able to explicitly switch between runtime
environments, the user cannot run a topology in two independent
environments.</p>
<p>For example, in reinforcement learning, the user may want to have a
stale model for inference and a fresh model for training, and only
replace the stale model with the fresh model periodically.</p>
<p>Furthermore, we have no concept that encapsulates a remote environment
that executes a computation graph.</p>
<p>We need the session object to address above issues.</p>
</div>
<div class="section" id="session">
<span id="session"></span><h2>Session<a class="headerlink" href="#session" title="永久链接至标题"></a></h2>
<p>A session is an object that owns the runtime environment. All
computations are executed through <code class="docutils literal"><span class="pre">session.eval()</span></code>.</p>
<div class="section" id="interface">
<span id="interface"></span><h3>Interface<a class="headerlink" href="#interface" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span><span class="p">(</span>
<span class="n">targets</span><span class="p">,</span>
<span class="n">feed_dict</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Evaluates the target Operations or Variables in <code class="docutils literal"><span class="pre">targets</span></code>.</p>
<ul>
<li><p class="first"><em>targets</em>: the evaluation targets. Can be a single Operation or
Variable, or a list with the Operations or Variables as
elements. The value returned by <code class="docutils literal"><span class="pre">eval()</span></code> has the same shape as the
<code class="docutils literal"><span class="pre">target</span></code> argument.</p>
<p>The PaddlePaddle program is represented by
the <a class="reference external" href="design/design/program.md">ProgramDesc</a>, <code class="docutils literal"><span class="pre">eval()</span></code> will infer the
ProgramDesc from the given targets and run the PaddlePaddle
program. Please
see
<a class="reference external" href="/design/refactor/distributed_architecture.html#local-training-architecture">this graph</a> for
the detailed illustration for the local session
and
<a class="reference external" href="/design/refactor/distributed_architecture.html#distributed-training-architecture">this graph</a> for
the detailed illustration for the remote session.</p>
</li>
<li><p class="first"><em>feed_dict</em>: a dictionary that contains the tensors which override
the edges of the computation graph.</p>
<p>feed_dict not only can provide the input data, it can override any
OP&#8217;s input as well:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">2.0</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;a&quot;</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">variable</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;b&quot;</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">targets</span><span class="o">=</span><span class="n">c</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="s2">&quot;b&quot;</span><span class="p">:</span><span class="mf">3.0</span><span class="p">})</span> <span class="c1"># returns 6.0</span>
</pre></div>
</div>
</li>
</ul>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
<p>Closes the session and releases the scope that the session owns.</p>
</div>
<div class="section" id="create-a-local-session">
<span id="create-a-local-session"></span><h3>Create a Local Session<a class="headerlink" href="#create-a-local-session" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">session</span><span class="p">(</span>
<span class="n">devices</span><span class="o">=</span><span class="bp">None</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Creates a new session. One session owns one global scope, so creating
multiple sessions will create different scopes.</p>
<ul class="simple">
<li><em>devices</em>: a single <code class="docutils literal"><span class="pre">string</span></code> or a list of <code class="docutils literal"><span class="pre">string</span></code> of device names,
the corresponding devices will be the computation devices for
<code class="docutils literal"><span class="pre">eval()</span></code>. If not specified, all available devices (e.g., all GPUs)
will be used. The user doesn&#8217;t need to specify the CPU device since
it will be always used. Multiple sessions can use the same device.</li>
</ul>
<div class="section" id="example">
<span id="example"></span><h4>Example<a class="headerlink" href="#example" title="永久链接至标题"></a></h4>
<div class="highlight-Python"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span>
<span class="n">sess</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">session</span><span class="p">(</span><span class="n">devices</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;gpu:0&quot;</span><span class="p">,</span> <span class="s2">&quot;gpu:1&quot;</span><span class="p">,</span> <span class="s2">&quot;fpga:0&quot;</span><span class="p">])</span>
<span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="create-a-remote-session">
<span id="create-a-remote-session"></span><h3>Create a Remote Session<a class="headerlink" href="#create-a-remote-session" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">create_cloud_job</span><span class="p">(</span>
<span class="n">name</span><span class="p">,</span>
<span class="n">num_trainer</span><span class="p">,</span>
<span class="n">mem_per_trainer</span><span class="p">,</span>
<span class="n">gpu_per_trainer</span><span class="p">,</span>
<span class="n">cpu_per_trainer</span><span class="p">,</span>
<span class="n">num_ps</span><span class="p">,</span>
<span class="n">mem_per_ps</span><span class="p">,</span>
<span class="n">cpu_per_ps</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Creates a Paddle Cloud job. Fails if the job name exists.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">get_cloud_job</span><span class="p">(</span>
<span class="n">name</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Gets a Paddle Cloud job.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">remote_session</span><span class="p">(</span>
<span class="n">job</span>
<span class="p">)</span>
</pre></div>
</div>
<ul class="simple">
<li><em>job</em>: the Paddle Cloud job.</li>
</ul>
<div class="section" id="example">
<span id="id1"></span><h4>Example<a class="headerlink" href="#example" title="永久链接至标题"></a></h4>
<div class="highlight-Python"><div class="highlight"><pre><span></span><span class="n">reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">recordio</span><span class="p">(</span><span class="s2">&quot;/pfs/home/peter/mnist-train-*&quot;</span><span class="p">)</span> <span class="c1"># data stored on Paddle Cloud</span>
<span class="n">image</span> <span class="o">=</span> <span class="n">reader</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">label</span> <span class="o">=</span> <span class="n">reader</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">fc1</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;sigmoid&quot;</span><span class="p">)</span>
<span class="n">fc2</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">fc1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;softmax&quot;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">op</span><span class="o">.</span><span class="n">cross_entropy</span><span class="p">(</span><span class="n">fc2</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
<span class="n">opt</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">sgd</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span>
<span class="n">job</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">create_cloud_job</span><span class="p">(</span><span class="s2">&quot;test&quot;</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;1G&quot;</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">&quot;1G&quot;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">sess</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">remote_ession</span><span class="p">(</span><span class="n">job</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">opt</span><span class="p">)</span>
<span class="n">sess</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/translations.js"></script>
<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册