@@ -295,7 +295,7 @@ once. When the target is the <code class="docutils literal"><span class="pre">co
the cost value.</p>
<p>The Python <codeclass="docutils literal"><spanclass="pre">session</span></code> is a wrapper of the C++ <codeclass="docutils literal"><spanclass="pre">Session</span></code> class. For more
information about <codeclass="docutils literal"><spanclass="pre">Session</span></code>, please
see <aclass="reference external"href="design/refactor/session.md">Design Doc: Session</a>.</p>
see <aclass="reference internal"href="session.html"><spanclass="doc">Design Doc: Session</span></a>.</p>
<liclass="toctree-l2"><aclass="reference internal"href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<liclass="toctree-l3"><aclass="reference internal"href="../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<liclass="toctree-l3"><aclass="reference internal"href="../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
<liclass="toctree-l2"><aclass="reference internal"href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<liclass="toctree-l2"><aclass="reference internal"href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<liclass="toctree-l2"><aclass="reference internal"href="../../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
<liclass="toctree-l2"><aclass="reference internal"href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
the <aclass="reference external"href="design/design/program.md">ProgramDesc</a>, <codeclass="docutils literal"><spanclass="pre">eval()</span></code> will infer the
ProgramDesc from the given targets and run the PaddlePaddle
program. Please
see
<aclass="reference external"href="/design/refactor/distributed_architecture.html#local-training-architecture">this graph</a> for
the detailed illustration for the local session
and
<aclass="reference external"href="/design/refactor/distributed_architecture.html#distributed-training-architecture">this graph</a> for
the detailed illustration for the remote session.</p>
</li>
<li><pclass="first"><em>feed_dict</em>: a dictionary that contains the tensors which override
the edges of the computation graph.</p>
<p>feed_dict not only can provide the input data, it can override any
<p>Closes the session and releases the scope that the session owns.</p>
</div>
<divclass="section"id="create-a-local-session">
<spanid="create-a-local-session"></span><h3>Create a Local Session<aclass="headerlink"href="#create-a-local-session"title="Permalink to this headline">¶</a></h3>
<p>Creates a new session. One session owns one global scope, so creating
multiple sessions will create different scopes.</p>
<ulclass="simple">
<li><em>devices</em>: a single <codeclass="docutils literal"><spanclass="pre">string</span></code> or a list of <codeclass="docutils literal"><spanclass="pre">string</span></code> of device names,
the corresponding devices will be the computation devices for
<codeclass="docutils literal"><spanclass="pre">eval()</span></code>. If not specified, all available devices (e.g., all GPUs)
will be used. The user doesn’t need to specify the CPU device since
it will be always used. Multiple sessions can use the same device.</li>
</ul>
<divclass="section"id="example">
<spanid="example"></span><h4>Example<aclass="headerlink"href="#example"title="Permalink to this headline">¶</a></h4>
<spanid="create-a-remote-session"></span><h3>Create a Remote Session<aclass="headerlink"href="#create-a-remote-session"title="Permalink to this headline">¶</a></h3>
<spanid="id1"></span><h4>Example<aclass="headerlink"href="#example"title="Permalink to this headline">¶</a></h4>
<divclass="highlight-Python"><divclass="highlight"><pre><span></span><spanclass="n">reader</span><spanclass="o">=</span><spanclass="n">paddle</span><spanclass="o">.</span><spanclass="n">reader</span><spanclass="o">.</span><spanclass="n">recordio</span><spanclass="p">(</span><spanclass="s2">"/pfs/home/peter/mnist-train-*"</span><spanclass="p">)</span><spanclass="c1"># data stored on Paddle Cloud</span>
Built with <ahref="http://sphinx-doc.org/">Sphinx</a> using a <ahref="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <ahref="https://readthedocs.org">Read the Docs</a>.
@@ -309,7 +309,7 @@ once. When the target is the <code class="docutils literal"><span class="pre">co
the cost value.</p>
<p>The Python <codeclass="docutils literal"><spanclass="pre">session</span></code> is a wrapper of the C++ <codeclass="docutils literal"><spanclass="pre">Session</span></code> class. For more
information about <codeclass="docutils literal"><spanclass="pre">Session</span></code>, please
see <aclass="reference external"href="design/refactor/session.md">Design Doc: Session</a>.</p>
see <aclass="reference internal"href="session.html"><spanclass="doc">Design Doc: Session</span></a>.</p>
the <aclass="reference external"href="design/design/program.md">ProgramDesc</a>, <codeclass="docutils literal"><spanclass="pre">eval()</span></code> will infer the
ProgramDesc from the given targets and run the PaddlePaddle
program. Please
see
<aclass="reference external"href="/design/refactor/distributed_architecture.html#local-training-architecture">this graph</a> for
the detailed illustration for the local session
and
<aclass="reference external"href="/design/refactor/distributed_architecture.html#distributed-training-architecture">this graph</a> for
the detailed illustration for the remote session.</p>
</li>
<li><pclass="first"><em>feed_dict</em>: a dictionary that contains the tensors which override
the edges of the computation graph.</p>
<p>feed_dict not only can provide the input data, it can override any
<p>Creates a new session. One session owns one global scope, so creating
multiple sessions will create different scopes.</p>
<ulclass="simple">
<li><em>devices</em>: a single <codeclass="docutils literal"><spanclass="pre">string</span></code> or a list of <codeclass="docutils literal"><spanclass="pre">string</span></code> of device names,
the corresponding devices will be the computation devices for
<codeclass="docutils literal"><spanclass="pre">eval()</span></code>. If not specified, all available devices (e.g., all GPUs)
will be used. The user doesn’t need to specify the CPU device since
it will be always used. Multiple sessions can use the same device.</li>
<divclass="highlight-Python"><divclass="highlight"><pre><span></span><spanclass="n">reader</span><spanclass="o">=</span><spanclass="n">paddle</span><spanclass="o">.</span><spanclass="n">reader</span><spanclass="o">.</span><spanclass="n">recordio</span><spanclass="p">(</span><spanclass="s2">"/pfs/home/peter/mnist-train-*"</span><spanclass="p">)</span><spanclass="c1"># data stored on Paddle Cloud</span>
Built with <ahref="http://sphinx-doc.org/">Sphinx</a> using a <ahref="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <ahref="https://readthedocs.org">Read the Docs</a>.