提交 45177aa2 编写于 作者: D dongdaxiang

Merge branch 'guru4elephnat_for_pslib' into develop

......@@ -150,8 +150,13 @@ class AsyncExecutor(object):
data_feed.desc(), filelist, thread_num,
fetch_var_names, debug)
def config_ps(self, dist_desc, host_sign_list, node_num, index):
self.executor.config_pslib(dist_desc, host_sign_list, node_num, index)
def config_distributed_nodes(self, dist_opt):
# get total rank
# get rank index
# get iplists
# get hadoop info
return
def start_server(self):
self.executor.start_server()
......
......@@ -15,6 +15,26 @@
LOOKUP_TABLE_TYPE = "lookup_table"
def find_distributed_lookup_table_inputs(program, table_name):
local_vars = program.current_block().vars
inputs = []
for op in program.global_block().ops:
if op.type == LOOKUP_TABLE_TYPE:
if table_name == op.input("W")[0]:
inputs.extend(
[local_vars[name] for name in op.input("Ids")])
return inputs
def find_distributed_lookup_table_outputs(program, table_name):
local_vars = program.current_block().vars
outputs = []
for op in program.global_block().ops:
if op.type == LOOKUP_TABLE_TYPE:
if table_name == op.input("W")[0]:
outputs.extend(
[local_vars[name] for name in op.output("Out")])
return outputs
def find_distributed_lookup_table(program):
"""
Find distribute lookup table in program.
......
......@@ -3,30 +3,62 @@ from .node import DownpourWorker
from ..backward import append_backward
import ps_pb2 as pslib
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table_inputs
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table_outputs
from google.protobuf import text_format
class DownpourSGD(object):
"""
Distributed optimizer of downpour stochastic gradient descent
Standard implementation of Google's Downpour SGD
in Large Scale Distributed Deep Networks
Args:
learning_rate (float): the learning rate used to update parameters. \
Can be a float value
Examples:
.. code-block:: python
downpour_sgd = fluid.distributed.DownpourSGD(learning_rate=0.2)
downpour_sgd.minimize(cost)
"""
def __init__(self, learning_rate=0.001, window=1):
# todo(guru4elephant): if optimizer is not None, will warning here
# todo(guru4elephant): add more optimizers here as argument
# todo(guru4elephant): make learning_rate as a variable
self.learning_rate_ = learning_rate
self.window_ = window
self.type = "downpour"
def minimize(self, loss, startup_program=None,
parameter_list=None, no_grad_set=None,
prefetch_slots=None, prefetch_slots_emb=None):
params_grads = sorted(append_backward(loss), key=lambda x:x[0].name)
parameter_list=None, no_grad_set=None):
params_grads = sorted(append_backward(
loss, parameter_list, no_grad_set), key=lambda x:x[0].name)
table_name = find_distributed_lookup_table(loss.block.program)
prefetch_slots = find_distributed_lookup_table_inputs(
loss.block.program, table_name)
prefetch_slots_emb = find_distributed_lookup_table_outputs(
loss.block.program, table_name)
server = DownpourServer()
# window is communication strategy
worker = DownpourWorker(self.window_)
server.add_sparse_table(0, learning_rate,
# Todo(guru4elephant): support multiple tables definitions
# currently support one big sparse table
sparse_table_index = 0
# currently merge all dense parameters into one dense table
dense_table_index = 1
server.add_sparse_table(sparse_table_index, self.learning_rate_,
prefetch_slots, prefetch_slots_emb)
server.add_dense_table(1, learning_rate, params, grads)
worker.add_sparse_table(0, learning_rate,
server.add_dense_table(dense_table_index, self.learning_rate_,
params_grads[0], params_grads[1])
worker.add_sparse_table(sparse_table_index, self.learning_rate_,
prefetch_slots, prefetch_slots_emb)
worker.add_dense_table(1, learning_rate, params, grads)
worker.add_dense_table(dense_table_index, self.learning_rate_,
params_grads[0], params_grads[1])
ps_param = pslib.PSParameter()
ps_param.server_param.CopyFrom(server.get_desc())
#ps_param.worker_param.CopyFrom(worker.get_desc())
ps_param.worker_param.CopyFrom(worker.get_desc())
# Todo(guru4elephant): figure out how to support more sparse parameters
# currently only support lookup_table
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
ps_param_str = text_format.MessageToString(ps_param)
return [ps_param_str, worker_skipped_ops]
from mpi4py import MPI
class FileSystem(object):
def __init__(self, fs_type="afs",
uri="afs://tianqi.afs.baidu.com:9902",
user=None,
passwd=None,
hadoop_bin="",
afs_conf=None):
assert user not None
assert passwd not None
assert hadoop_bin not None
fs_client = pslib.FsClientParameter()
if fs_type == "afs":
fs_client.fs_type = pslib.FsApiType.AFS
else:
fs_client.fs_type = pslib.FsApiType.HDFS
fs_client.uri = uri
fs_client.user = user
fs_client.passwd = passwd
fs_client.buffer_size = 0
fs_client.afs_conf = afs_conf if not afs_conf else ""
class MPIHelper(object):
def __init__(self):
self.comm = MPI.COMM_WORLD
......@@ -18,3 +40,5 @@ class MPIHelper(object):
def get_hostname(self):
import socket
return socket.gethostname()
......@@ -12,29 +12,29 @@ class Worker(object):
class DownpourServer(Server):
def __init__(self):
#self.server_ = pslib.ServerParameter().downpour_server_param
self.server_ = pslib.ServerParameter()
def add_sparse_table(self, table_id, learning_rate,
slot_key, slot_value_var, slot_grad_var):
#table = self.server_.downpour_table_param.add()
slot_key_vars, slot_value_var):
table = self.server_.downpour_server_param.downpour_table_param.add()
table.table_id = table_id
table.type = PS_SPARSE_TABLE
table.type = pslib.PS_SPARSE_TABLE
table.accessor.accessor_class = "DownpourFeatureValueAccessor"
table.accessor.dense_sgd_param.adam.learning_rate = learning_rate
table.accessor.fea_dim = slot_value_var[0].shape[1]
table.accessor.fea_dim = abs(reduce(lambda x, y: x * y,
slot_value_var[0].shape, 1))
def add_dense_table(self, table_id, learning_rate,
param_var, grad_var):
#table = self.server_.downpour_table_param.add()
table = self.server_.downpour_server_param.downpour_table_param.add()
table.table_id = table_id
table.type = PS_DENSE_TABLE
table.type = pslib.PS_DENSE_TABLE
table.accessor.accessor_class = "DownpourDenseValueAccessor"
table.accessor.sparse_sgd_param.learning_rate = learning_rate
table.accessor.fea_dim = 1
#table.accessor.fea_dim = reduce(lambda x, y: x.shape, 1 for x in param_var)
fea_dim = 0
for param in param_var:
fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
table.accessor.fea_dim = fea_dim
def get_desc(self):
return self.server_
......@@ -43,28 +43,24 @@ class DownpourServer(Server):
class DownpourWorker(Worker):
def __init__(self, window):
self.window = window
#self.worker_ = pslib.WorkerParameter().downpour_worker_param
#self.worker_ = pslib.WorkerParameter()
self.worker_ = pslib.DownpourTrainerParameter()
#self.worker_.pull_dense_per_batch = window
#self.worker_.push_dense_per_batch = window
#self.worker_.downpour_worker_param.pull_dense_per_batch = window
#self.worker_.downpour_worker_param.push_dense_per_batch = window
self.worker_.pull_dense_per_batch = window
self.worker_.push_dense_per_batch = window
print(self.worker_)
def add_sparse_table(self, table_id,
slot_keys, slot_value_vars, slot_grad_vars):
#table = self.worker_.sparse_table.add()
table = self.worker_.downpour_worker_param.sparse_table.add()
def add_sparse_table(self, table_id, learning_rate,
slot_key_vars, slot_value_vars):
table = self.worker_.sparse_table.add()
table.table_id = table_id
table.slot.extend(slot_keys)
self.worker_.extend([grad.name for grad in slot_grad_vars])
table.slot_key.extend(
[var.name for var in slot_key_vars])
table.slot_value.extend(
[var.name for var in slot_value_vars])
table.slot_gradient.extend(
[var.name + "@GRAD" for var in slot_value_vars])
def add_dense_table(self, table_id, param_vars, grad_vars):
#table = self.worker_.dense_table.add()
table = self.worker_.downpour_worker_param.dense_table.add()
def add_dense_table(self, table_id, learning_rate,
param_vars, grad_vars):
table = self.worker_.dense_table.add()
table.table_id = table_id
table.dense_variable_name.extend([p.name for p in param_vars])
table.dense_gradient_variable_name.extend([g.name for g in grad_vars])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册