Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4490e8af
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4490e8af
编写于
4月 02, 2021
作者:
N
niuliling123
提交者:
GitHub
4月 02, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add leaky_relu forward and backward in activation_op.cu (#31841)
* add leaky_relu forward and backward in activation_op.cu
上级
0b42f489
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
181 addition
and
69 deletion
+181
-69
paddle/fluid/operators/activation_op.cu
paddle/fluid/operators/activation_op.cu
+181
-69
未找到文件。
paddle/fluid/operators/activation_op.cu
浏览文件 @
4490e8af
...
...
@@ -42,6 +42,10 @@ template <typename T>
class
BaseGPUFunctor
{
public:
using
ELEMENT_TYPE
=
T
;
using
AttrPair
=
std
::
vector
<
std
::
pair
<
const
char
*
,
float
*>>
;
AttrPair
GetAttrs
()
{
return
AttrPair
();
}
};
/* ========================================================================== */
...
...
@@ -57,42 +61,35 @@ class ReluGPUFunctor : public BaseGPUFunctor<T> {
// for relu forward when T is double
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
const
typename
CudaVecType
<
T
>::
type
*
x
);
const
typename
CudaVecType
<
T
>::
type
in
)
{
// relu forward : out = max(x, 0)
return
in
>
zero_
?
in
:
zero_
;
}
// when num % vecsize != 0 this func will be used
__device__
__forceinline__
T
ComputeRemainder
(
const
T
x
)
{
return
x
>
zero_
?
x
:
zero_
;
__device__
__forceinline__
T
ComputeRemainder
(
const
T
in
)
{
// relu forward : out = max(x, 0)
return
in
>
zero_
?
in
:
zero_
;
}
};
template
<
>
__device__
__forceinline__
CudaVecType
<
double
>::
type
ReluGPUFunctor
<
double
>::
Compute
(
const
CudaVecType
<
double
>::
type
*
x
)
{
// relu forward : out = max(x, 0)
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350
return
__ldg
(
x
)
>
zero_
?
__ldg
(
x
)
:
zero_
;
#else
return
(
*
x
)
>
zero_
?
(
*
x
)
:
zero_
;
#endif
}
template
<
>
__device__
__forceinline__
CudaVecType
<
float
>::
type
ReluGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
*
xx
)
{
// relu forward : out = max(
xx
, 0)
return
make_float4
((
xx
->
x
>
zero_
)
*
(
xx
->
x
),
(
xx
->
y
>
zero_
)
*
(
xx
->
y
),
(
xx
->
z
>
zero_
)
*
(
xx
->
z
),
(
xx
->
w
>
zero_
)
*
(
xx
->
w
));
ReluGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
in
)
{
// relu forward : out = max(
in
, 0)
return
make_float4
((
in
.
x
>
zero_
)
*
(
in
.
x
),
(
in
.
y
>
zero_
)
*
(
in
.
y
),
(
in
.
z
>
zero_
)
*
(
in
.
z
),
(
in
.
w
>
zero_
)
*
(
in
.
w
));
}
template
<
>
__device__
__forceinline__
CudaVecType
<
float16
>::
type
ReluGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
*
in
)
{
ReluGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
in
)
{
// relu forward : out = max(in, 0)
#ifdef __HIPCC__ || CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
const
half2
kzero
=
__float2half2_rn
(
0.0
f
);
return
__hmul2
(
__hgt2
(
__ldg
(
in
),
kzero
),
__ldg
(
in
)
);
return
__hmul2
(
__hgt2
(
in
,
kzero
),
in
);
#else
const
float2
xx
=
__half22float2
(
*
in
);
const
float2
xx
=
__half22float2
(
in
);
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
*
static_cast
<
float
>
(
xx
.
x
),
(
xx
.
y
>
0.0
f
)
*
static_cast
<
float
>
(
xx
.
y
));
#endif
...
...
@@ -112,8 +109,10 @@ class ReluGradGPUFunctor : public BaseGPUFunctor<T> {
// for relu backward when T is double
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
const
typename
CudaVecType
<
T
>::
type
*
out
,
const
typename
CudaVecType
<
T
>::
type
*
dout
);
const
typename
CudaVecType
<
T
>::
type
out
,
const
typename
CudaVecType
<
T
>::
type
dout
)
{
return
out
>
zero_
?
dout
:
zero_
;
}
// when num % vecsize != 0 this func will be used
__device__
__forceinline__
T
ComputeRemainder
(
const
T
out
,
const
T
dout
)
{
...
...
@@ -124,44 +123,132 @@ class ReluGradGPUFunctor : public BaseGPUFunctor<T> {
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
template
<
>
__device__
__forceinline__
CudaVecType
<
double
>::
type
ReluGradGPUFunctor
<
double
>::
Compute
(
const
CudaVecType
<
double
>::
type
*
out
,
const
CudaVecType
<
double
>::
type
*
dout
)
{
// relu backward : dx = out > 0 ? dout : 0;
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350
return
__ldg
(
out
)
>
zero_
?
__ldg
(
dout
)
:
zero_
;
#else
return
(
*
out
)
>
zero_
?
(
*
dout
)
:
zero_
;
#endif
}
template
<
>
__device__
__forceinline__
CudaVecType
<
float
>::
type
ReluGradGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
*
out
,
const
CudaVecType
<
float
>::
type
*
dout
)
{
ReluGradGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
out
,
const
CudaVecType
<
float
>::
type
dout
)
{
// relu backward : dx = out > 0 ? dout : 0;
return
make_float4
((
out
->
x
>
zero_
)
*
(
dout
->
x
),
(
out
->
y
>
zero_
)
*
(
dout
->
y
),
(
out
->
z
>
zero_
)
*
(
dout
->
z
),
(
out
->
w
>
zero_
)
*
(
dout
->
w
));
return
make_float4
((
out
.
x
>
zero_
)
*
(
dout
.
x
),
(
out
.
y
>
zero_
)
*
(
dout
.
y
),
(
out
.
z
>
zero_
)
*
(
dout
.
z
),
(
out
.
w
>
zero_
)
*
(
dout
.
w
));
}
template
<
>
__device__
__forceinline__
CudaVecType
<
float16
>::
type
ReluGradGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
*
out
,
const
CudaVecType
<
float16
>::
type
*
dout
)
{
ReluGradGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
out
,
const
CudaVecType
<
float16
>::
type
dout
)
{
// relu backward : dx = out > 0 ? dout : 0;
#ifdef __HIPCC__ || CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
const
half2
kzero
=
__float2half2_rn
(
0.0
f
);
return
__hmul2
(
__hgt2
(
__ldg
(
out
),
kzero
),
__ldg
(
dout
)
);
return
__hmul2
(
__hgt2
(
out
,
kzero
),
dout
);
#else
const
float2
xx
=
__half22float2
(
*
out
);
const
float2
yy
=
__half22float2
(
*
dout
);
const
float2
xx
=
__half22float2
(
out
);
const
float2
yy
=
__half22float2
(
dout
);
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
*
static_cast
<
float
>
(
yy
.
x
),
(
xx
.
y
>
0.0
f
)
*
static_cast
<
float
>
(
yy
.
y
));
#endif
}
/* ========================================================================== */
/* ======================== leaky relu forward ========================
*/
template
<
typename
T
>
class
LeakyReluGPUFunctor
:
public
BaseGPUFunctor
<
T
>
{
private:
T
zero_
;
float
alpha_
;
public:
LeakyReluGPUFunctor
()
{
zero_
=
static_cast
<
T
>
(
0.0
f
);
}
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha_
}};
}
// leakyrelu forward : out = x > 0 ? x : x * alpha
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
const
typename
CudaVecType
<
T
>::
type
in
)
{
return
in
>
zero_
?
in
:
static_cast
<
T
>
(
alpha_
)
*
in
;
}
__device__
__forceinline__
T
ComputeRemainder
(
const
T
in
)
{
// leakyrelu forward : out = x > 0 ? x : x * alpha
return
in
>
zero_
?
in
:
static_cast
<
T
>
(
alpha_
)
*
in
;
}
};
template
<
>
__device__
__forceinline__
CudaVecType
<
float
>::
type
LeakyReluGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
in
)
{
// leakyrelu forward : out = x > 0 ? x : x * alpha
return
make_float4
((
in
.
x
>
zero_
)
?
(
in
.
x
)
:
(
in
.
x
)
*
alpha_
,
(
in
.
y
>
zero_
)
?
(
in
.
y
)
:
(
in
.
y
)
*
alpha_
,
(
in
.
z
>
zero_
)
?
(
in
.
z
)
:
(
in
.
z
)
*
alpha_
,
(
in
.
w
>
zero_
)
?
(
in
.
w
)
:
(
in
.
w
)
*
alpha_
);
}
template
<
>
__device__
__forceinline__
CudaVecType
<
float16
>::
type
LeakyReluGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
in
)
{
// leakyrelu forward : out = x > 0 ? x : x * alpha
const
float2
xx
=
__half22float2
(
in
);
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
?
xx
.
x
:
xx
.
x
*
alpha_
,
(
xx
.
y
>
0.0
f
)
?
xx
.
y
:
xx
.
y
*
alpha_
);
}
/* ========================================================================== */
/* =========================== leaky relu backward =======================
*/
template
<
typename
T
>
class
LeakyReluGradGPUFunctor
:
public
BaseGPUFunctor
<
T
>
{
private:
T
zero_
;
float
alpha_
;
public:
LeakyReluGradGPUFunctor
()
{
zero_
=
static_cast
<
T
>
(
0.0
f
);
}
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha_
}};
}
// for leaky relu backward when T is double
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
const
typename
CudaVecType
<
T
>::
type
in
,
const
typename
CudaVecType
<
T
>::
type
dout
)
{
// leakyrelu backward : dx = x > 0 ? dout : alpha * dout
return
in
>
zero_
?
dout
:
static_cast
<
T
>
(
alpha_
)
*
dout
;
}
// when num % vecsize != 0 this func will be used
__device__
__forceinline__
T
ComputeRemainder
(
const
T
in
,
const
T
dout
)
{
// leakyrelu backward : dx = x > 0 ? dout : alpha * dout
return
in
>
zero_
?
dout
:
static_cast
<
T
>
(
alpha_
)
*
dout
;
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
template
<
>
__device__
__forceinline__
CudaVecType
<
float
>::
type
LeakyReluGradGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
in
,
const
CudaVecType
<
float
>::
type
dout
)
{
// leakyrelu backward : dx = x > 0 ? dout : alpha * dout
return
make_float4
((
in
.
x
>
zero_
)
?
(
dout
.
x
)
:
alpha_
*
(
dout
.
x
),
(
in
.
y
>
zero_
)
?
(
dout
.
y
)
:
alpha_
*
(
dout
.
y
),
(
in
.
z
>
zero_
)
?
(
dout
.
z
)
:
alpha_
*
(
dout
.
z
),
(
in
.
w
>
zero_
)
?
(
dout
.
w
)
:
alpha_
*
(
dout
.
w
));
}
template
<
>
__device__
__forceinline__
CudaVecType
<
float16
>::
type
LeakyReluGradGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
in
,
const
CudaVecType
<
float16
>::
type
dout
)
{
// leakyrelu backward : dx = x > 0 ? dout : alpha * dout
const
float2
xx
=
__half22float2
(
in
);
const
float2
yy
=
__half22float2
(
dout
);
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
?
yy
.
x
:
alpha_
*
yy
.
x
,
(
xx
.
y
>
0.0
f
)
?
yy
.
y
:
alpha_
*
yy
.
y
);
}
/* ========================================================================== */
template
<
typename
T
,
typename
Functor
>
...
...
@@ -176,14 +263,23 @@ __global__ void ActivationGradKernelVec(const T* forward_data, const T* dout,
const
VecType
*
in_forward
=
reinterpret_cast
<
const
VecType
*>
(
forward_data
);
const
VecType
*
in_dout
=
reinterpret_cast
<
const
VecType
*>
(
dout
);
VecType
*
out
=
reinterpret_cast
<
VecType
*>
(
dx
);
VecType
forward_vec
,
dout_vec
;
T
in_data
,
dout_data
;
for
(
int
i
=
idx
;
i
<
loop
;
i
+=
stride
)
{
out
[
i
]
=
functor
.
Compute
((
in_forward
+
i
),
(
in_dout
+
i
));
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350
forward_vec
=
__ldg
(
in_forward
+
i
);
dout_vec
=
__ldg
(
in_dout
+
i
);
#else
forward_vec
=
in_forward
[
i
];
dout_vec
=
in_dout
[
i
];
#endif
out
[
i
]
=
functor
.
Compute
(
forward_vec
,
dout_vec
);
}
while
(
idx
==
loop
&&
tail
)
{
dx
[
num
-
tail
]
=
functor
.
ComputeRemainder
(
forward_data
[
num
-
tail
],
dout
[
num
-
tail
]);
in_data
=
forward_data
[
num
-
tail
];
dout_data
=
dout
[
num
-
tail
];
dx
[
num
-
tail
]
=
functor
.
ComputeRemainder
(
in_data
,
dout_data
);
--
tail
;
}
}
...
...
@@ -199,9 +295,14 @@ __global__ void ActivationkernelVec(const T* src, T* dst, int num,
int
tail
=
num
%
vecsize
;
const
VecType
*
in
=
reinterpret_cast
<
const
VecType
*>
(
src
);
VecType
*
out
=
reinterpret_cast
<
VecType
*>
(
dst
);
VecType
x_vec
;
for
(
int
i
=
idx
;
i
<
loop
;
i
+=
stride
)
{
out
[
i
]
=
functor
.
Compute
((
in
+
i
));
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350
x_vec
=
__ldg
(
in
+
i
);
#else
x_vec
=
in
[
i
];
#endif
out
[
i
]
=
functor
.
Compute
(
x_vec
);
}
while
(
idx
==
loop
&&
tail
)
{
...
...
@@ -231,6 +332,10 @@ class ActivationGPUKernel
block
=
256
;
#endif
Functor
functor
;
auto
attrs
=
functor
.
GetAttrs
();
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
constexpr
int
vecsize
=
CudaVecType
<
T
>::
vecsize
;
int
grid
=
max
((
num
/
vecsize
+
block
-
1
)
/
block
,
1
);
auto
stream
=
context
.
cuda_device_context
().
stream
();
...
...
@@ -270,7 +375,12 @@ class ActivationGradGPUKernel
#ifdef __HIPCC__
block
=
256
;
#endif
Functor
functor
;
auto
attrs
=
functor
.
GetAttrs
();
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
constexpr
int
vecsize
=
CudaVecType
<
T
>::
vecsize
;
int
grid
=
max
((
numel
/
vecsize
+
block
-
1
)
/
block
,
1
);
auto
stream
=
context
.
cuda_device_context
().
stream
();
...
...
@@ -300,12 +410,28 @@ namespace plat = paddle::platform;
ops::grad_functor<double>>, \
ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::grad_functor<plat::float16>>);
FOR_EACH_ACTIVATION_OP
(
REGISTER_ACTIVATION_CUDA_KERNEL
);
#define REGISTER_ACTIVATION_GPU_KERNEL(act_type, op_name, functor, \
grad_functor) \
REGISTER_OP_CUDA_KERNEL( \
act_type, ops::ActivationGPUKernel<paddle::platform::CUDADeviceContext, \
ops::functor<float>>, \
ops::ActivationGPUKernel<paddle::platform::CUDADeviceContext, \
ops::functor<double>>, \
ops::ActivationGPUKernel<plat::CUDADeviceContext, \
ops::functor<plat::float16>>); \
REGISTER_OP_CUDA_KERNEL( \
act_type##_grad, ops::ActivationGradGPUKernel<plat::CUDADeviceContext, \
ops::grad_functor<float>>, \
ops::ActivationGradGPUKernel<plat::CUDADeviceContext, \
ops::grad_functor<double>>, \
ops::ActivationGradGPUKernel<plat::CUDADeviceContext, \
ops::grad_functor<plat::float16>>);
/* ======================== leaky relu register ============================ */
REGISTER_ACTIVATION_
CUDA_KERNEL
(
leaky_relu
,
LeakyRelu
,
LeakyRelu
Functor
,
LeakyReluGrad
Functor
);
REGISTER_ACTIVATION_
GPU_KERNEL
(
leaky_relu
,
LeakyRelu
,
LeakyReluGPU
Functor
,
LeakyReluGradGPU
Functor
);
REGISTER_OP_CUDA_KERNEL
(
leaky_relu_grad_grad
,
...
...
@@ -330,21 +456,7 @@ REGISTER_OP_CUDA_KERNEL(
/* ========================================================================== */
/* =========================== relu register ============================ */
REGISTER_OP_CUDA_KERNEL
(
relu
,
ops
::
ActivationGPUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
ops
::
ReluGPUFunctor
<
float
>>
,
ops
::
ActivationGPUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
ops
::
ReluGPUFunctor
<
double
>>
,
ops
::
ActivationGPUKernel
<
plat
::
CUDADeviceContext
,
ops
::
ReluGPUFunctor
<
plat
::
float16
>>
);
REGISTER_OP_CUDA_KERNEL
(
relu_grad
,
ops
::
ActivationGradGPUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
ops
::
ReluGradGPUFunctor
<
float
>>
,
ops
::
ActivationGradGPUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
ops
::
ReluGradGPUFunctor
<
double
>>
,
ops
::
ActivationGradGPUKernel
<
plat
::
CUDADeviceContext
,
ops
::
ReluGradGPUFunctor
<
plat
::
float16
>>
);
REGISTER_ACTIVATION_GPU_KERNEL
(
relu
,
Relu
,
ReluGPUFunctor
,
ReluGradGPUFunctor
);
REGISTER_OP_CUDA_KERNEL
(
relu_grad_grad
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录