<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – The input layer. Supported input types: all input data types
on CPU, and only dense input types on GPU.</li>
<li><strong>factor_size</strong>– The hyperparameter that defines the dimensionality of
the latent vector size.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type. Default is linear activation.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) – The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttributeNone</em>) – Extra Layer config.</li>
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
The input <spanclass="math">\(X\)</span> is first projected into a new space <spanclass="math">\(X'\)</span>, and
it is also used to produce a gate weight <spanclass="math">\(\sigma\)</span>. Element-wise
product between <ahref="#id5"><spanclass="problematic"id="id6">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
product between <spanclass="math">\(X'\)</span> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
<dlclass="docutils">
<dt>Reference:</dt>
<dd><aclass="reference external"href="https://arxiv.org/abs/1612.08083">Language Modeling with Gated Convolutional Networks</a></dd>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) – The input layer. Supported input types: all input data types
on CPU, and only dense input types on GPU.</li>
<li><strong>factor_size</strong>– The hyperparameter that defines the dimensionality of
the latent vector size.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type. Default is linear activation.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) – The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttributeNone</em>) – Extra Layer config.</li>
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
The input <spanclass="math">\(X\)</span> is first projected into a new space <spanclass="math">\(X'\)</span>, and
it is also used to produce a gate weight <spanclass="math">\(\sigma\)</span>. Element-wise
product between <ahref="#id5"><spanclass="problematic"id="id6">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
product between <spanclass="math">\(X'\)</span> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
<dlclass="docutils">
<dt>Reference:</dt>
<dd><aclass="reference external"href="https://arxiv.org/abs/1612.08083">Language Modeling with Gated Convolutional Networks</a></dd>