提交 43d01603 编写于 作者: chrisxu2014's avatar chrisxu2014 提交者: GitHub

Merge pull request #2167 from chrisxu2016/gh-pages

modify version
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>Home</a></li> <li><a href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a></li> <li><a href=http://www.paddlepaddle.org/doc/howto/index_en.html target=_blank>Documents</a></li> </ul> <div class=language-switcher> <a>Version<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release_doc/0.10.0/doc/ target=_blank>r0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc/ target=_blank>r0.9.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0a0/doc/ target=_blank>r0.9.0a0</a></li> </ul> </div> <div class=language-switcher> <a>English<i class=fa aria-hidden=true></i></a> <ul> <li><a href=./index.html>English</a></li> <li><a href=./index_cn.html>中文</a></li> </ul> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Fork me on Github</span> </a> </div> </nav> </nav> <div class="row banner"> <h1>Easy to learn and Use Distributed Deep Learning Platform</h1> <p>Providing deep learning algorithms for 100+ products</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a> </div> <div> <div class=github-counter> <span><i class="fa fa-star" aria-hidden=true></i>Star</span> <span id=star-counter></span> </div> <div class=github-counter> <span><i class="fa fa-code-fork" aria-hidden=true></i>Fork</span> <span id=fork-counter></span> </div> </div> </div> </header> <section class=services> <div class=row> <h2><span>Extensive Algorithmic Service</span></h2> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>Machine Vision</h3> <p>The convoluted neural network can identify the main object in the image and output the classification result</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.en.html target=_blank>Read more</a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>Natural Language Understanding</h3> <p>Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.en.html target=_blank>Read more</a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>Search Engine Ranking</h3> <p>Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.en.html target=_blank>Read more</a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>Technology and Service Advantages</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Ease of use</h3> <p>Provids an intuitive and flexible interface for loading data and specifying model structure.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Flexibility</h3> <p>Supports CNN, RNN and other neural network. Easy to configure complex models.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Efficiency</h3> <p>Efficient optimization of computing, memory, communications and architecture.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Scalability</h3> <p>Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>Start Using PaddlePaddle</h2> <p>Easy to learn and Use Distributed Deep Learning Platform</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=contact-us> <img src=> <span>Contact:</span> <img src=./images/email-pic.png> </div> </div> <div class=row> <ul class=friendly-links> <li><a href=http://ai.baidu.com/ target=_blank>Baidu Brain</a></li> <li><a href=http://idl.baidu.com/ target=_blank>Baidu IDL</a></li> <li><a href=http://bdl.baidu.com/ target=_blank>Baidu BDL</a></li> <li><a href=http://yuyin.baidu.com/ target=_blank>Baidu Speech</a></li> <li><a href=http://api.fanyi.baidu.com/ target=_blank>Baidu translation open platform</a></li> <li><a href=http://nlp.baidu.com/ target=_blank>NLPC</a></li> <li><a href=http://erised.baidu.com/ target=_blank>User Profile</a></li> <li><a href=http://kg.baidu.com/ target=_blank>Baidu KG</a></li> <li><a href=http://idmapping.baidu.com/ target=_blank>ID-Mapping</a></li> </ul> <ul class=friendly-links> <li><a href=http://session.baidu.com/ target=_blank>Global Session(Odin)</a></li> <li><a href=http://recsys.baidu.com/ target=_blank>Recsys</a></li> <li><a href=http://offlinedata.baidu.com/ target=_blank>GOD</a></li> <li><a href=http://gravity.baidu.com target=_blank>Big Data KG</a></li> <li><a href=http://pie.baidu.com/ target=_blank>PIE</a></li> <li><a href=http://kg.baidu.com/ target=_blank>KG open</a></li> </ul> </div> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>Home</a></li> <li><a href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a></li> <li><a href=http://www.paddlepaddle.org/doc/howto/index_en.html target=_blank>Documents</a></li> </ul> <div class=language-switcher> <a>Version<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release_doc/0.10.0/doc/ target=_blank>r0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc/ target=_blank>r0.9.0</a></li> </ul> </div> <div class=language-switcher> <a>English<i class=fa aria-hidden=true></i></a> <ul> <li><a href=./index.html>English</a></li> <li><a href=./index_cn.html>中文</a></li> </ul> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Fork me on Github</span> </a> </div> </nav> </nav> <div class="row banner"> <h1>Easy to learn and Use Distributed Deep Learning Platform</h1> <p>Providing deep learning algorithms for 100+ products</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a> </div> <div> <div class=github-counter> <span><i class="fa fa-star" aria-hidden=true></i>Star</span> <span id=star-counter></span> </div> <div class=github-counter> <span><i class="fa fa-code-fork" aria-hidden=true></i>Fork</span> <span id=fork-counter></span> </div> </div> </div> </header> <section class=services> <div class=row> <h2><span>Extensive Algorithmic Service</span></h2> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>Machine Vision</h3> <p>The convoluted neural network can identify the main object in the image and output the classification result</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.en.html target=_blank>Read more</a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>Natural Language Understanding</h3> <p>Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.en.html target=_blank>Read more</a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>Search Engine Ranking</h3> <p>Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.en.html target=_blank>Read more</a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>Technology and Service Advantages</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Ease of use</h3> <p>Provids an intuitive and flexible interface for loading data and specifying model structure.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Flexibility</h3> <p>Supports CNN, RNN and other neural network. Easy to configure complex models.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Efficiency</h3> <p>Efficient optimization of computing, memory, communications and architecture.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Scalability</h3> <p>Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>Start Using PaddlePaddle</h2> <p>Easy to learn and Use Distributed Deep Learning Platform</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=contact-us> <img src=> <span>Contact:</span> <img src=./images/email-pic.png> </div> </div> <div class=row> <ul class=friendly-links> <li><a href=http://ai.baidu.com/ target=_blank>Baidu Brain</a></li> <li><a href=http://idl.baidu.com/ target=_blank>Baidu IDL</a></li> <li><a href=http://bdl.baidu.com/ target=_blank>Baidu BDL</a></li> <li><a href=http://yuyin.baidu.com/ target=_blank>Baidu Speech</a></li> <li><a href=http://api.fanyi.baidu.com/ target=_blank>Baidu translation open platform</a></li> <li><a href=http://nlp.baidu.com/ target=_blank>NLPC</a></li> <li><a href=http://erised.baidu.com/ target=_blank>User Profile</a></li> <li><a href=http://kg.baidu.com/ target=_blank>Baidu KG</a></li> <li><a href=http://idmapping.baidu.com/ target=_blank>ID-Mapping</a></li> </ul> <ul class=friendly-links> <li><a href=http://session.baidu.com/ target=_blank>Global Session(Odin)</a></li> <li><a href=http://recsys.baidu.com/ target=_blank>Recsys</a></li> <li><a href=http://offlinedata.baidu.com/ target=_blank>GOD</a></li> <li><a href=http://gravity.baidu.com target=_blank>Big Data KG</a></li> <li><a href=http://pie.baidu.com/ target=_blank>PIE</a></li> <li><a href=http://kg.baidu.com/ target=_blank>KG open</a></li> </ul> </div> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>主页</a></li> <li><a href=http://book.paddlepaddle.org/ target=_blank>快速开始</a></li> <li><a href=http://www.paddlepaddle.org/doc_cn/howto/index_cn.html target=_blank>文档中心</a></li> </ul> <div class=language-switcher> <a>版本<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release_doc/0.10.0/doc_cn/ target=_blank>r0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc_cn/ target=_blank>r0.9.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0a0/doc_cn/ target=_blank>r0.9.0a0</a></li> </ul> </div> <div class=language-switcher> <a>中文<i class=fa aria-hidden=true></i></a> <ul> <li><a href=./index.html>English</a></li> <li><a href=./index_cn.html>中文</a></li> </ul> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Fork me on Github</span> </a> </div> </nav> </nav> <div class="row banner"> <h1><span class=ch-title>易学易用的分布式深度学习平台<span></span></span></h1> <p>正在为100+项产品提供深度学习算法支持</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/ target=_blank>快速入门</a> </div> <div> <div class=github-counter> <span><i class="fa fa-star" aria-hidden=true></i>Star</span> <span id=star-counter></span> </div> <div class=github-counter> <span><i class="fa fa-code-fork" aria-hidden=true></i>Fork</span> <span id=fork-counter></span> </div> </div> </div> </header> <section class=services> <div class=row> <h2><span>丰富的算法服务</span></h2> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>机器视觉</h3> <p>卷积神经网络可以识别图像中的主要对象,并输出分类结果</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.html target=_blank>查看更多</a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>自然语言理解</h3> <p>利用LSTM网络从IMDB电影评论的中分析出评论者情绪的正面和负面</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.html target=_blank>查看更多</a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>搜索引擎排序</h3> <p>分析用户特征、电影特征、点评分数,预测新用户对不同电影的点评分数</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.html target=_blank>查看更多</a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>技术和服务优势</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>易用性</h3> <p>为用户提供了直观、灵活的数据接口和模型配置接口</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>灵活性</h3> <p>支持CNN、RNN等多种神经网络结构和优化算法。简单书写配置文件即可实现复杂模型</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>高效性</h3> <p>在计算、存储、通信、架构等方面都做了高效优化,充分发挥各种资源的性能</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>扩展性</h3> <p>全面支持多核、多GPU、多机环境。轻松应对大规模数据训练需求</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>现在开始使用PaddlePaddle</h2> <p>易学易用的分布式深度学习平台</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/ target=_blank>快速入门</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=tr-code> <img src=./images/pr-code.png> <p>PaddlePaddle 微信公众号</p> </div> <div class=contact-us> <img src=> <span>联系我们:</span> <img src=./images/email-pic.png> </div> </div> <div class=row> <ul class=friendly-links> <li><a href=http://ai.baidu.com/ target=_blank>百度大脑</a></li> <li><a href=http://idl.baidu.com/ target=_blank>百度深度学习实验室</a></li> <li><a href=http://bdl.baidu.com/ target=_blank>百度大数据实验室</a></li> <li><a href=http://yuyin.baidu.com/ target=_blank>百度语音</a></li> <li><a href=http://api.fanyi.baidu.com/ target=_blank>百度翻译开放平台</a></li> <li><a href=http://nlp.baidu.com/ target=_blank>自然语言处理云(NLPC)</a></li> <li><a href=http://erised.baidu.com/ target=_blank>大数据用户画像</a></li> <li><a href=http://kg.baidu.com/ target=_blank>百度知识图谱</a></li> <li><a href=http://idmapping.baidu.com/ target=_blank>百度大数据ID-Mapping</a></li> </ul> <ul class=friendly-links> <li><a href=http://session.baidu.com/ target=_blank>Global Session(Odin)</a></li> <li><a href=http://recsys.baidu.com/ target=_blank>Recsys推荐云平台</a></li> <li><a href=http://offlinedata.baidu.com/ target=_blank>到店大数据(谛听)</a></li> <li><a href=http://gravity.baidu.com target=_blank>大数据知识图谱</a></li> <li><a href=http://pie.baidu.com/ target=_blank>PIE网页信息抽取平台</a></li> <li><a href=http://kg.baidu.com/ target=_blank>知识图谱开放平台</a></li> </ul> </div> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>主页</a></li> <li><a href=http://book.paddlepaddle.org/ target=_blank>快速开始</a></li> <li><a href=http://www.paddlepaddle.org/doc_cn/howto/index_cn.html target=_blank>文档中心</a></li> </ul> <div class=language-switcher> <a>版本<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release_doc/0.10.0/doc_cn/ target=_blank>r0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc_cn/ target=_blank>r0.9.0</a></li> </ul> </div> <div class=language-switcher> <a>中文<i class=fa aria-hidden=true></i></a> <ul> <li><a href=./index.html>English</a></li> <li><a href=./index_cn.html>中文</a></li> </ul> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Fork me on Github</span> </a> </div> </nav> </nav> <div class="row banner"> <h1><span class=ch-title>易学易用的分布式深度学习平台<span></span></span></h1> <p>正在为100+项产品提供深度学习算法支持</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/ target=_blank>快速入门</a> </div> <div> <div class=github-counter> <span><i class="fa fa-star" aria-hidden=true></i>Star</span> <span id=star-counter></span> </div> <div class=github-counter> <span><i class="fa fa-code-fork" aria-hidden=true></i>Fork</span> <span id=fork-counter></span> </div> </div> </div> </header> <section class=services> <div class=row> <h2><span>丰富的算法服务</span></h2> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>机器视觉</h3> <p>卷积神经网络可以识别图像中的主要对象,并输出分类结果</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.html target=_blank>查看更多</a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>自然语言理解</h3> <p>利用LSTM网络从IMDB电影评论的中分析出评论者情绪的正面和负面</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.html target=_blank>查看更多</a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>搜索引擎排序</h3> <p>分析用户特征、电影特征、点评分数,预测新用户对不同电影的点评分数</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.html target=_blank>查看更多</a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>技术和服务优势</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>易用性</h3> <p>为用户提供了直观、灵活的数据接口和模型配置接口</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>灵活性</h3> <p>支持CNN、RNN等多种神经网络结构和优化算法。简单书写配置文件即可实现复杂模型</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>高效性</h3> <p>在计算、存储、通信、架构等方面都做了高效优化,充分发挥各种资源的性能</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>扩展性</h3> <p>全面支持多核、多GPU、多机环境。轻松应对大规模数据训练需求</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>现在开始使用PaddlePaddle</h2> <p>易学易用的分布式深度学习平台</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/ target=_blank>快速入门</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=tr-code> <img src=./images/pr-code.png> <p>PaddlePaddle 微信公众号</p> </div> <div class=contact-us> <img src=> <span>联系我们:</span> <img src=./images/email-pic.png> </div> </div> <div class=row> <ul class=friendly-links> <li><a href=http://ai.baidu.com/ target=_blank>百度大脑</a></li> <li><a href=http://idl.baidu.com/ target=_blank>百度深度学习实验室</a></li> <li><a href=http://bdl.baidu.com/ target=_blank>百度大数据实验室</a></li> <li><a href=http://yuyin.baidu.com/ target=_blank>百度语音</a></li> <li><a href=http://api.fanyi.baidu.com/ target=_blank>百度翻译开放平台</a></li> <li><a href=http://nlp.baidu.com/ target=_blank>自然语言处理云(NLPC)</a></li> <li><a href=http://erised.baidu.com/ target=_blank>大数据用户画像</a></li> <li><a href=http://kg.baidu.com/ target=_blank>百度知识图谱</a></li> <li><a href=http://idmapping.baidu.com/ target=_blank>百度大数据ID-Mapping</a></li> </ul> <ul class=friendly-links> <li><a href=http://session.baidu.com/ target=_blank>Global Session(Odin)</a></li> <li><a href=http://recsys.baidu.com/ target=_blank>Recsys推荐云平台</a></li> <li><a href=http://offlinedata.baidu.com/ target=_blank>到店大数据(谛听)</a></li> <li><a href=http://gravity.baidu.com target=_blank>大数据知识图谱</a></li> <li><a href=http://pie.baidu.com/ target=_blank>PIE网页信息抽取平台</a></li> <li><a href=http://kg.baidu.com/ target=_blank>知识图谱开放平台</a></li> </ul> </div> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册