Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
426f7eee
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
426f7eee
编写于
10月 17, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
simplify test_pool_py, add comments for different pooling strategy
上级
2c1b35ca
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
27 addition
and
40 deletion
+27
-40
paddle/operators/sequence_pool_op.cc
paddle/operators/sequence_pool_op.cc
+9
-0
python/paddle/v2/framework/tests/test_seq_pool.py
python/paddle/v2/framework/tests/test_seq_pool.py
+18
-40
未找到文件。
paddle/operators/sequence_pool_op.cc
浏览文件 @
426f7eee
...
...
@@ -47,6 +47,15 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling strategy:
- AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
- SUM: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
- SQRT: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
/ sqrt(i-th sequence length)
- LAST: Out[i] = last instance in i-th sequence X[i]
- FIRST: Out[i] = first instance in i-th sequence X[i]
- MAX: Out[i] = max_{for each instance in i-th sequence}{X[i]}
For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
...
...
python/paddle/v2/framework/tests/test_seq_pool.py
浏览文件 @
426f7eee
...
...
@@ -16,24 +16,23 @@ class TestSeqAvgPool(OpTest):
def
set_data
(
self
):
self
.
op_type
=
'sequence_pool'
# one level, batch size is 4
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
2
]).
astype
(
'float32'
)
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
2
3
]).
astype
(
'float32'
)
lod
=
[[
0
,
4
,
5
,
8
,
11
]]
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
out
=
np
.
zeros
((
4
,
2
)).
astype
(
'float32'
)
out
=
np
.
zeros
((
4
,
2
3
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
return
x
,
lod
,
out
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
AVERAGE
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
mean
(
axis
=
0
)
def
setUp
(
self
):
self
.
set_data
()
self
.
compute
()
x
,
lod
,
out
=
self
.
set_data
()
self
.
compute
(
x
,
lod
,
out
)
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -52,41 +51,34 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
out
=
np
.
zeros
((
4
,
3
,
17
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
return
x
,
lod
,
out
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
AVERAGE
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
mean
(
axis
=
0
),
(
3
,
17
))
class
TestSeqSumPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SUM
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
class
TestSeqSumPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SUM
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
sum
(
axis
=
0
),
(
3
,
17
))
class
TestSeqSqrtPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SQRT
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
...
...
@@ -94,10 +86,8 @@ class TestSeqSqrtPool(TestSeqAvgPool):
class
TestSeqSqrtPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SQRT
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
...
...
@@ -108,20 +98,16 @@ class TestSeqSqrtPool2D(TestSeqAvgPool2D):
class
TestSeqMaxPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
MAX
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
np
.
amax
(
sub_x
,
axis
=
0
)
class
TestSeqMaxPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
MAX
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
np
.
amax
(
sub_x
,
axis
=
0
),
(
3
,
17
))
...
...
@@ -132,40 +118,32 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D):
class
TestSeqLastPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
LAST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
-
1
,
:]
class
TestSeqLastPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
LAST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
-
1
,
:],
(
3
,
17
))
class
TestSeqFirstPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
FIRST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
0
,
:]
class
TestSeqFirstPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
FIRST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
0
,
:],
(
3
,
17
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录