提交 426f7eee 编写于 作者: L Luo Tao

simplify test_pool_py, add comments for different pooling strategy

上级 2c1b35ca
...@@ -47,6 +47,15 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -47,6 +47,15 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC( AddComment(R"DOC(
SequencePoolOp pools features of all time-steps of each instance. SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling strategy:
- AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
- SUM: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
- SQRT: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
/ sqrt(i-th sequence length)
- LAST: Out[i] = last instance in i-th sequence X[i]
- FIRST: Out[i] = first instance in i-th sequence X[i]
- MAX: Out[i] = max_{for each instance in i-th sequence}{X[i]}
For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps: For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2. Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
......
...@@ -16,24 +16,23 @@ class TestSeqAvgPool(OpTest): ...@@ -16,24 +16,23 @@ class TestSeqAvgPool(OpTest):
def set_data(self): def set_data(self):
self.op_type = 'sequence_pool' self.op_type = 'sequence_pool'
# one level, batch size is 4 # one level, batch size is 4
x = np.random.uniform(0.1, 1, [11, 2]).astype('float32') x = np.random.uniform(0.1, 1, [11, 23]).astype('float32')
lod = [[0, 4, 5, 8, 11]] lod = [[0, 4, 5, 8, 11]]
self.inputs = {'X': (x, lod)} self.inputs = {'X': (x, lod)}
out = np.zeros((4, 2)).astype('float32') out = np.zeros((4, 23)).astype('float32')
self.outputs = {'Out': out} self.outputs = {'Out': out}
return x, lod, out
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.AVERAGE} self.attrs = {'strategy': SeqPoolType.AVERAGE}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :] sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.mean(axis=0) out[i] = sub_x.mean(axis=0)
def setUp(self): def setUp(self):
self.set_data() x, lod, out = self.set_data()
self.compute() self.compute(x, lod, out)
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
...@@ -52,41 +51,34 @@ class TestSeqAvgPool2D(TestSeqAvgPool): ...@@ -52,41 +51,34 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
out = np.zeros((4, 3, 17)).astype('float32') out = np.zeros((4, 3, 17)).astype('float32')
self.outputs = {'Out': out} self.outputs = {'Out': out}
return x, lod, out
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.AVERAGE} self.attrs = {'strategy': SeqPoolType.AVERAGE}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.mean(axis=0), (3, 17)) out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))
class TestSeqSumPool(TestSeqAvgPool): class TestSeqSumPool(TestSeqAvgPool):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SUM} self.attrs = {'strategy': SeqPoolType.SUM}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :] sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.sum(axis=0) out[i] = sub_x.sum(axis=0)
class TestSeqSumPool2D(TestSeqAvgPool2D): class TestSeqSumPool2D(TestSeqAvgPool2D):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SUM} self.attrs = {'strategy': SeqPoolType.SUM}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.sum(axis=0), (3, 17)) out[i] = np.reshape(sub_x.sum(axis=0), (3, 17))
class TestSeqSqrtPool(TestSeqAvgPool): class TestSeqSqrtPool(TestSeqAvgPool):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SQRT} self.attrs = {'strategy': SeqPoolType.SQRT}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :] sub_x = x[lod[0][i]:lod[0][i + 1], :]
len = lod[0][i + 1] - lod[0][i] len = lod[0][i + 1] - lod[0][i]
...@@ -94,10 +86,8 @@ class TestSeqSqrtPool(TestSeqAvgPool): ...@@ -94,10 +86,8 @@ class TestSeqSqrtPool(TestSeqAvgPool):
class TestSeqSqrtPool2D(TestSeqAvgPool2D): class TestSeqSqrtPool2D(TestSeqAvgPool2D):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SQRT} self.attrs = {'strategy': SeqPoolType.SQRT}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
len = lod[0][i + 1] - lod[0][i] len = lod[0][i + 1] - lod[0][i]
...@@ -108,20 +98,16 @@ class TestSeqSqrtPool2D(TestSeqAvgPool2D): ...@@ -108,20 +98,16 @@ class TestSeqSqrtPool2D(TestSeqAvgPool2D):
class TestSeqMaxPool(TestSeqAvgPool): class TestSeqMaxPool(TestSeqAvgPool):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.MAX} self.attrs = {'strategy': SeqPoolType.MAX}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :] sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = np.amax(sub_x, axis=0) out[i] = np.amax(sub_x, axis=0)
class TestSeqMaxPool2D(TestSeqAvgPool2D): class TestSeqMaxPool2D(TestSeqAvgPool2D):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.MAX} self.attrs = {'strategy': SeqPoolType.MAX}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 17)) out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 17))
...@@ -132,40 +118,32 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D): ...@@ -132,40 +118,32 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D):
class TestSeqLastPool(TestSeqAvgPool): class TestSeqLastPool(TestSeqAvgPool):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.LAST} self.attrs = {'strategy': SeqPoolType.LAST}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :] sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x[-1, :] out[i] = sub_x[-1, :]
class TestSeqLastPool2D(TestSeqAvgPool2D): class TestSeqLastPool2D(TestSeqAvgPool2D):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.LAST} self.attrs = {'strategy': SeqPoolType.LAST}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x[-1, :], (3, 17)) out[i] = np.reshape(sub_x[-1, :], (3, 17))
class TestSeqFirstPool(TestSeqAvgPool): class TestSeqFirstPool(TestSeqAvgPool):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.FIRST} self.attrs = {'strategy': SeqPoolType.FIRST}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :] sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x[0, :] out[i] = sub_x[0, :]
class TestSeqFirstPool2D(TestSeqAvgPool2D): class TestSeqFirstPool2D(TestSeqAvgPool2D):
def compute(self): def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.FIRST} self.attrs = {'strategy': SeqPoolType.FIRST}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4): for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x[0, :], (3, 17)) out[i] = np.reshape(sub_x[0, :], (3, 17))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册