diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index 0f312b6ca50bc1e6317251ba785f1c61a224b54e..1e80e2c0ee0f8029129db37ed40d3f656de8efad 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -2007,6 +2007,158 @@ TEST(Layer, RowL2NormLayer) { } } +void test3DConvLayer(const string& type, bool trans, bool useGpu) { + // filter size + const int NUM_FILTERS = 6; + // const int CHANNELS = 3; + const int FILTER_SIZE = 3; + const int FILTER_SIZE_Y = 3; + const int FILTER_SIZE_Z = 3; + + // input image + const int CHANNELS = 3; + const int IMAGE_SIZE = 9; + const int IMAGE_SIZE_Y = 9; + const int IMAGE_SIZE_Z = 9; // 2, 3, 5, 5, 5 + + TestConfig config; + config.biasSize = NUM_FILTERS; + config.layerConfig.set_type(type); + config.layerConfig.set_num_filters(NUM_FILTERS); + config.layerConfig.set_partial_sum(1); + config.layerConfig.set_shared_biases(true); + + // Setting up conv3D-trans layer + LayerInputConfig* input = config.layerConfig.add_inputs(); + ConvConfig* conv = input->mutable_conv_conf(); + + conv->set_channels(CHANNELS); + conv->set_filter_size(FILTER_SIZE); + conv->set_filter_size_y(FILTER_SIZE_Y); + conv->set_filter_size_z(FILTER_SIZE_Z); + conv->set_padding(0); + conv->set_padding_y(0); + conv->set_padding_z(0); + conv->set_stride(2); + conv->set_stride_y(2); + conv->set_stride_z(2); + conv->set_img_size(IMAGE_SIZE); + conv->set_img_size_y(IMAGE_SIZE_Y); + conv->set_img_size_z(IMAGE_SIZE_Z); + conv->set_output_x(outputSize(conv->img_size(), + conv->filter_size(), + conv->padding(), + conv->stride(), + /* caffeMode */ true)); + conv->set_output_y(outputSize(conv->img_size_y(), + conv->filter_size_y(), + conv->padding_y(), + conv->stride_y(), + /* caffeMode */ true)); + conv->set_output_z(outputSize(conv->img_size_z(), + conv->filter_size_z(), + conv->padding_z(), + conv->stride_z(), + /* caffeMode */ true)); + + config.layerConfig.set_size(conv->output_x() * conv->output_y() * + conv->output_z() * NUM_FILTERS); + conv->set_groups(1); + conv->set_filter_channels(conv->channels() / conv->groups()); + config.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z, + conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z * + NUM_FILTERS}); + + testLayerGrad(config, "conv3D", 10, trans, useGpu); + // Use small batch_size and useWeight=true to test biasGrad + testLayerGrad(config, "conv3D", 2, trans, useGpu, true, 0.02); +} + +TEST(Layer, test3DConvLayer) { + test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ false); +#ifndef PADDLE_ONLY_CPU + test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ true); +#endif +} + +int deConvOutputSize(int inSize, int kSize, int pad, int stride) { + return (inSize - 1) * stride - 2 * pad + kSize; +} + +void test3DDeConvLayer(const string& type, bool trans, bool useGpu) { + // filter size + const int NUM_FILTERS = 6; + // const int CHANNELS = 3; + const int FILTER_SIZE = 3; + const int FILTER_SIZE_Y = 3; + const int FILTER_SIZE_Z = 3; + + // input image + const int CHANNELS = 3; + const int IMAGE_SIZE = 4; + const int IMAGE_SIZE_Y = 6; + const int IMAGE_SIZE_Z = 6; + + // Setting up conv-trans layer + TestConfig config; + config.biasSize = NUM_FILTERS; + config.layerConfig.set_type("deconv3d"); + config.layerConfig.set_num_filters(NUM_FILTERS); + config.layerConfig.set_partial_sum(1); + config.layerConfig.set_shared_biases(true); + + LayerInputConfig* input = config.layerConfig.add_inputs(); + ConvConfig* conv = input->mutable_conv_conf(); + + conv->set_channels(CHANNELS); + conv->set_filter_size(FILTER_SIZE); + conv->set_filter_size_y(FILTER_SIZE_Y); + conv->set_filter_size_z(FILTER_SIZE_Z); + conv->set_padding(0); + conv->set_padding_y(0); + conv->set_padding_z(0); + conv->set_stride(2); + conv->set_stride_y(2); + conv->set_stride_z(2); + conv->set_img_size(IMAGE_SIZE); + conv->set_img_size_y(IMAGE_SIZE_Y); + conv->set_img_size_z(IMAGE_SIZE_Z); + conv->set_output_x(deConvOutputSize( + conv->img_size(), conv->filter_size(), conv->padding(), conv->stride())); + conv->set_output_y(deConvOutputSize(conv->img_size_y(), + conv->filter_size_y(), + conv->padding_y(), + conv->stride_y())); + conv->set_output_z(deConvOutputSize(conv->img_size_z(), + conv->filter_size_z(), + conv->padding_z(), + conv->stride_z())); + config.layerConfig.set_size(conv->output_x() * conv->output_y() * + conv->output_z() * NUM_FILTERS); + conv->set_groups(1); + conv->set_filter_channels(conv->channels() / conv->groups()); + config.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z, + conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z * + NUM_FILTERS}); + + testLayerGrad(config, "deconv3D", 10, trans, useGpu); + // Use small batch_size and useWeight=true to test biasGrad + testLayerGrad(config, "deconv3D", 2, trans, useGpu, true, 0.02); +} + +TEST(Layer, test3DDeConvLayer) { + test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ false); +#ifndef PADDLE_ONLY_CPU + test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ true); +#endif +} + int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp index d77478f345df97b37b214b5978f51ce47c1d791c..1d41ec087028a545b39afa340dc8f5370f16ea39 100644 --- a/paddle/math/tests/test_matrixCompare.cpp +++ b/paddle/math/tests/test_matrixCompare.cpp @@ -1203,4 +1203,120 @@ TEST(Matrix, warpCTC) { } } +int outputSizeCol2Vol( + int imageSize, int filterSize, int padding, int stride, bool caffeMode) { + int outputSize; + if (!caffeMode) { + outputSize = + (imageSize - filterSize + 2 * padding + stride - 1) / stride + 1; + } else { + outputSize = (imageSize - filterSize + 2 * padding) / stride + 1; + } + CHECK_GE(outputSize, 1); + return outputSize; +} + +void testMatrixCol2Vol(int depth, int height, int width) { + int channel = 3; + int filterX = 3, filterY = 4, filterZ = 5; + int strideX = 2, strideY = 2, strideZ = 2; + int padX = 1, padY = 1, padZ = 1; + + MatrixPtr cpuImage = + std::make_shared(channel, depth * height * width); + MatrixPtr gpuImage = + std::make_shared(channel, depth * height * width); + cpuImage->randomizeUniform(); + gpuImage->copyFrom(*cpuImage); + + int outD = outputSizeCol2Vol(depth, filterZ, padZ, strideZ, true); + int outH = outputSizeCol2Vol(height, filterY, padZ, strideY, true); + int outW = outputSizeCol2Vol(width, filterX, padZ, strideX, true); + + int colBufHeight = channel * filterZ * filterY * filterX; + int colBufWidth = outD * outH * outW; + MatrixPtr cpuColBuf = std::make_shared(colBufHeight, colBufWidth); + MatrixPtr gpuColBuf = std::make_shared(colBufHeight, colBufWidth); + cpuColBuf->vol2Col(cpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX); + gpuColBuf->vol2Col(gpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX); + TensorCheckEqual(*cpuColBuf, *gpuColBuf); + + cpuColBuf->randomizeUniform(); + gpuColBuf->copyFrom(*cpuColBuf); + cpuColBuf->col2Vol(cpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX, + 1.0, + 1.0); + gpuColBuf->col2Vol(gpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX, + 1.0, + 1.0); + TensorCheckErr(*cpuImage, *gpuImage); +} + +TEST(Matrix, col2Vol) { + for (auto depth : {9, 16, 64, 128}) { + for (auto height : {9, 11, 73, 128, 256}) { + for (auto width : { + 9, 32, 100, 512, + }) { + VLOG(3) << "depth=" << depth << " height=" << height + << " width=" << width; + testMatrixCol2Vol(depth, height, width); + } + } + } +} +/////// + #endif