Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
418edae5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
418edae5
编写于
12月 29, 2022
作者:
X
xu98bin
提交者:
GitHub
12月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
auto parallel bf16 (#49079)
* auto parallel bf16
上级
1078e064
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
943 addition
and
19 deletion
+943
-19
paddle/fluid/operators/collective/c_concat_op.cu.cc
paddle/fluid/operators/collective/c_concat_op.cu.cc
+3
-0
paddle/fluid/operators/collective/c_identity_op.cu.cc
paddle/fluid/operators/collective/c_identity_op.cu.cc
+3
-0
python/paddle/distributed/auto_parallel/constants.py
python/paddle/distributed/auto_parallel/constants.py
+7
-0
python/paddle/distributed/auto_parallel/operators/common.py
python/paddle/distributed/auto_parallel/operators/common.py
+4
-0
python/paddle/distributed/auto_parallel/operators/dist_matmul.py
...paddle/distributed/auto_parallel/operators/dist_matmul.py
+36
-18
python/paddle/distributed/auto_parallel/parallelizer_v2.py
python/paddle/distributed/auto_parallel/parallelizer_v2.py
+9
-1
python/paddle/distributed/passes/__init__.py
python/paddle/distributed/passes/__init__.py
+1
-0
python/paddle/distributed/passes/auto_parallel_bf16.py
python/paddle/distributed/passes/auto_parallel_bf16.py
+661
-0
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
...paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/auto_parallel/test_pass_bf16.py
...dle/fluid/tests/unittests/auto_parallel/test_pass_bf16.py
+211
-0
python/paddle/fluid/tests/unittests/auto_parallel/test_strategy.py
...ddle/fluid/tests/unittests/auto_parallel/test_strategy.py
+7
-0
未找到文件。
paddle/fluid/operators/collective/c_concat_op.cu.cc
浏览文件 @
418edae5
...
...
@@ -134,4 +134,7 @@ REGISTER_OP_CUDA_KERNEL(c_concat,
ops
::
CConcatOpCUDAKernel
<
double
>
,
ops
::
CConcatOpCUDAKernel
<
int
>
,
ops
::
CConcatOpCUDAKernel
<
int64_t
>
,
#if NCCL_VERSION_CODE >= 21000
ops
::
CConcatOpCUDAKernel
<
plat
::
bfloat16
>
,
#endif
ops
::
CConcatOpCUDAKernel
<
plat
::
float16
>
);
paddle/fluid/operators/collective/c_identity_op.cu.cc
浏览文件 @
418edae5
...
...
@@ -22,4 +22,7 @@ REGISTER_OP_CUDA_KERNEL(c_identity,
ops
::
CIdentityOpKernel
<
double
>
,
ops
::
CIdentityOpKernel
<
int
>
,
ops
::
CIdentityOpKernel
<
int64_t
>
,
#if NCCL_VERSION_CODE >= 21000
ops
::
CIdentityOpKernel
<
plat
::
bfloat16
>
,
#endif
ops
::
CIdentityOpKernel
<
plat
::
float16
>
);
python/paddle/distributed/auto_parallel/constants.py
浏览文件 @
418edae5
...
...
@@ -76,6 +76,13 @@ set_field_default_config(AMP, "use_pure_fp16", False)
set_field_default_config
(
AMP
,
"use_fp16_guard"
,
True
)
set_field_default_config
(
AMP
,
"use_optimizer_fp16"
,
False
)
set_field_default_config
(
AMP
,
"enable_bf16"
,
False
)
set_field_default_config
(
AMP
,
"custom_bf16_list"
,
[])
set_field_default_config
(
AMP
,
"custom_fp32_list"
,
[])
set_field_default_config
(
AMP
,
"custom_fp32_varnames"
,
[])
set_field_default_config
(
AMP
,
"use_pure_bf16"
,
False
)
set_field_default_config
(
AMP
,
"use_bf16_guard"
,
False
)
#########################################
# sharding configuration
#########################################
...
...
python/paddle/distributed/auto_parallel/operators/common.py
浏览文件 @
418edae5
...
...
@@ -266,8 +266,12 @@ def is_parameter_related(varname, block):
varname
=
varname
[:
varname
.
index
(
".subprog_"
)]
if
".cast_fp"
in
varname
:
varname
=
varname
[:
varname
.
index
(
".cast_fp"
)]
if
".cast_bf"
in
varname
:
varname
=
varname
[:
varname
.
index
(
".cast_bf"
)]
if
".quantized"
in
varname
:
varname
=
varname
[:
varname
.
index
(
".quantized"
)]
# if "@RESHARD" in varname:
# varname = varname[: varname.index("@RESHARD")]
assert
block
.
_find_var_recursive
(
varname
)
var
=
block
.
_var_recursive
(
varname
)
return
var
.
is_parameter
...
...
python/paddle/distributed/auto_parallel/operators/dist_matmul.py
浏览文件 @
418edae5
...
...
@@ -376,7 +376,7 @@ def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):
check_variable_and_dtype
(
Out_grad
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
,
'uint16'
],
'_c_identity'
,
)
...
...
@@ -417,13 +417,13 @@ def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):
check_variable_and_dtype
(
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
check_dtype
(
intermediate_var_0
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
set_comm_op_dist_attr_for_program
(
...
...
@@ -835,7 +835,7 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
check_variable_and_dtype
(
X_var
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
,
'uint16'
],
'_c_identity'
,
)
...
...
@@ -854,12 +854,15 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
intermediate_var_0
.
desc
.
set_shape
(
ref_shape_x
)
check_variable_and_dtype
(
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
check_dtype
(
intermediate_var_0
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
attrs
=
{
...
...
@@ -1183,10 +1186,13 @@ class DistributedMatmulImpl1(DistributedOperatorImpl):
group
=
new_process_group
(
group_ranks
)
check_variable_and_dtype
(
X_var
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
X_var
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
)
check_dtype
(
X_var
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
X_var
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
attrs
=
{
'transpose_X'
:
trans_x
,
...
...
@@ -1731,7 +1737,7 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
check_variable_and_dtype
(
X_var
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
,
'uint16'
],
'_c_identity'
,
)
c_identity_op
=
main_block
.
append_op
(
...
...
@@ -1749,12 +1755,15 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
intermediate_var_0
.
desc
.
set_shape
(
ref_shape_x
)
check_variable_and_dtype
(
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
check_dtype
(
intermediate_var_0
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
attrs
=
{
...
...
@@ -2077,10 +2086,13 @@ class DistributedMatmulV2Impl1(DistributedOperatorImpl):
group
=
new_process_group
(
group_ranks
)
check_variable_and_dtype
(
X_var
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
X_var
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
)
check_dtype
(
X_var
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
X_var
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
attrs
=
{
'trans_x'
:
trans_x
,
...
...
@@ -2610,7 +2622,7 @@ class DistributedMulImpl0(DistributedOperatorImpl):
check_variable_and_dtype
(
X_var
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
,
'uint16'
],
'_c_identity'
,
)
c_identity_op
=
main_block
.
append_op
(
...
...
@@ -2628,12 +2640,15 @@ class DistributedMulImpl0(DistributedOperatorImpl):
intermediate_var_0
.
desc
.
set_shape
(
ref_shape_x
)
check_variable_and_dtype
(
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
check_dtype
(
intermediate_var_0
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
# attrs = {'trans_x': False, 'trans_y': False}
...
...
@@ -2965,10 +2980,13 @@ class DistributedMulImpl1(DistributedOperatorImpl):
group
=
new_process_group
(
group_ranks
)
check_variable_and_dtype
(
X_var
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
X_var
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
)
check_dtype
(
X_var
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
X_var
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
,
'uint16'
],
'linear'
,
)
# attrs = {'trans_x': False, 'trans_y': False}
attrs
=
{
...
...
python/paddle/distributed/auto_parallel/parallelizer_v2.py
浏览文件 @
418edae5
...
...
@@ -221,13 +221,21 @@ class Parallelizer:
self
.
_dist_context
.
serial_feed_vars
[
"inputs"
]
+
self
.
_dist_context
.
serial_feed_vars
[
"labels"
]
)
if
config
[
"use_pure_fp16"
]:
if
config
[
"enable_bf16"
]:
auto_parallel_bf16_pass
=
new_pass
(
"auto_parallel_bf16"
,
config
)
auto_parallel_bf16_pass
.
apply
(
[
main_program
],
[
startup_program
],
self
.
_pass_context
)
loss
=
auto_parallel_bf16_pass
.
get_loss
()
elif
config
[
"use_pure_fp16"
]:
config
[
"base_opt"
]
=
optimizer
auto_parallel_fp16_pass
=
new_pass
(
"auto_parallel_fp16"
,
config
)
auto_parallel_fp16_pass
.
apply
(
[
main_program
],
[
startup_program
],
self
.
_pass_context
)
loss
=
auto_parallel_fp16_pass
.
get_loss
()
else
:
auto_parallel_amp_pass
=
new_pass
(
"auto_parallel_amp"
,
config
)
auto_parallel_amp_pass
.
apply
(
...
...
python/paddle/distributed/passes/__init__.py
浏览文件 @
418edae5
...
...
@@ -18,6 +18,7 @@ from .auto_parallel_gradient_merge import * # noqa: F403
from
.auto_parallel_sharding
import
*
# noqa: F403
from
.auto_parallel_amp
import
*
# noqa: F403
from
.auto_parallel_fp16
import
*
# noqa: F403
from
.auto_parallel_bf16
import
*
# noqa: F403
from
.auto_parallel_recompute
import
*
# noqa: F403
from
.auto_parallel_quantization
import
*
# noqa: F403
from
.auto_parallel_data_parallel_optimization
import
*
# noqa: F403
...
...
python/paddle/distributed/passes/auto_parallel_bf16.py
0 → 100644
浏览文件 @
418edae5
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle
import
static
from
paddle.distributed.auto_parallel.dist_context
import
DistributedContext
from
paddle.distributed.auto_parallel.process_group
import
(
get_world_process_group
,
)
from
paddle.distributed.auto_parallel.utils
import
(
get_loss_op
,
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
,
set_var_dist_attr
,
)
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
from
paddle.distributed.passes.pass_base
import
PassBase
,
register_pass
from
paddle.fluid
import
unique_name
from
paddle.fluid.contrib.mixed_precision.bf16
import
(
AutoMixedPrecisionListsBF16
,
)
from
paddle.fluid.contrib.mixed_precision.bf16.amp_utils
import
(
_dtype_to_str
,
_is_in_fp32_varnames
,
_valid_types
,
find_op_index
,
find_true_post_op
,
)
from
paddle.fluid.contrib.mixed_precision.fp16_utils
import
(
_rename_arg
,
find_true_prev_op
,
)
from
paddle.fluid.framework
import
Block
from
paddle.framework
import
core
from
..auto_parallel.utils
import
is_backward_op
,
is_forward_op
,
is_loss_op
world_process_group
=
get_world_process_group
()
class
BF16State
(
object
):
def
__init__
(
self
,
block
):
self
.
_block
:
Block
=
block
self
.
_op_bf16_dict
=
{}
self
.
_var_name_dict
=
{}
def
_is_bf16_op
(
self
,
op_id
):
return
self
.
_op_bf16_dict
.
get
(
op_id
,
None
)
def
_build_state
(
self
,
amp_lists
,
dist_context
):
ops
=
self
.
_block
.
ops
dist_op_context
=
dist_context
.
dist_op_context
training
=
False
for
op
in
ops
:
if
int
(
op
.
attr
(
"op_role"
))
==
257
:
training
=
True
if
int
(
op
.
attr
(
"op_role"
))
==
int
(
OpRole
.
Forward
):
self
.
_mark_black_white_op
(
amp_lists
,
op
,
ops
)
elif
int
(
op
.
attr
(
"op_role"
))
==
int
(
OpRole
.
Backward
):
if
op
.
desc
.
original_id
()
in
dist_op_context
.
grad_op_id_to_op_id
:
fwd_op_id
=
dist_op_context
.
grad_op_id_to_op_id
[
op
.
desc
.
original_id
()
]
if
self
.
_is_bf16_op
(
fwd_op_id
)
is
True
:
self
.
_op_bf16_dict
[
op
.
desc
.
original_id
()]
=
True
elif
self
.
_is_bf16_op
(
fwd_op_id
)
is
False
:
self
.
_op_bf16_dict
[
op
.
desc
.
original_id
()]
=
False
elif
int
(
op
.
attr
(
"op_role"
))
==
int
(
OpRole
.
Optimize
):
break
return
training
def
_mark_black_white_op
(
self
,
amp_lists
,
op
,
ops
):
if
op
.
type
==
"create_py_reader"
or
op
.
type
==
"read"
:
return
if
amp_lists
.
fp32_varnames
is
not
None
and
_is_in_fp32_varnames
(
op
,
amp_lists
):
self
.
_op_bf16_dict
[
op
.
desc
.
original_id
()]
=
False
return
if
op
.
type
in
amp_lists
.
bf16_list
:
self
.
_op_bf16_dict
[
op
.
desc
.
original_id
()]
=
True
elif
op
.
type
in
amp_lists
.
gray_list
:
is_fp32_op
=
False
is_bf16_op
=
False
for
in_name
in
op
.
input_names
:
if
in_name
:
for
in_var_name
in
op
.
input
(
in_name
):
in_var
=
self
.
_block
.
var
(
in_var_name
)
if
in_var
.
op
is
None
:
continue
elif
in_var
.
op
is
op
:
prev_op
=
find_true_prev_op
(
ops
,
op
,
in_var_name
)
if
prev_op
is
None
:
continue
else
:
prev_op
=
in_var
.
op
if
(
self
.
_op_bf16_dict
.
get
(
prev_op
.
desc
.
original_id
(),
False
)
is
False
or
prev_op
.
type
in
amp_lists
.
fp32_list
):
is_fp32_op
=
True
elif
(
self
.
_op_bf16_dict
.
get
(
prev_op
.
desc
.
original_id
(),
False
)
is
True
or
prev_op
.
type
in
amp_lists
.
bf16_list
):
is_bf16_op
=
True
if
is_fp32_op
:
self
.
_op_bf16_dict
[
op
.
desc
.
original_id
()]
=
False
elif
is_bf16_op
:
self
.
_op_bf16_dict
[
op
.
desc
.
original_id
()]
=
True
else
:
pass
else
:
self
.
_op_bf16_dict
[
op
.
desc
.
original_id
()]
=
False
def
cast_forward_program
(
self
,
dist_context
):
ops
=
self
.
_block
.
ops
idx
=
0
while
idx
<
len
(
ops
):
num_cast_ops
=
0
op
=
ops
[
idx
]
if
int
(
op
.
attr
(
'op_role'
))
==
int
(
OpRole
.
Backward
):
break
if
self
.
_is_bf16_op
(
op
.
desc
.
original_id
())
is
False
:
num_cast_ops
=
self
.
_insert_cast_op_forward
(
op
,
idx
,
core
.
VarDesc
.
VarType
.
BF16
,
core
.
VarDesc
.
VarType
.
FP32
,
dist_context
,
)
elif
self
.
_is_bf16_op
(
op
.
desc
.
original_id
())
is
True
:
if
op
.
has_attr
(
'use_mkldnn'
):
op
.
_set_attr
(
'use_mkldnn'
,
True
)
op
.
_set_attr
(
'mkldnn_data_type'
,
'bfloat16'
)
elif
(
op
.
has_attr
(
'dtype'
)
and
op
.
attr
(
'dtype'
)
==
core
.
VarDesc
.
VarType
.
FP32
):
op
.
_set_attr
(
'dtype'
,
core
.
VarDesc
.
VarType
.
BF16
)
num_cast_ops
=
self
.
_insert_cast_op_forward
(
op
,
idx
,
core
.
VarDesc
.
VarType
.
FP32
,
core
.
VarDesc
.
VarType
.
BF16
,
dist_context
,
)
else
:
pass
idx
+=
num_cast_ops
+
1
self
.
_block
.
_sync_with_cpp
()
def
_insert_cast_op_forward
(
self
,
op
,
idx
,
src_dtype
,
dst_dtype
,
dist_context
:
DistributedContext
):
num_cast_ops
=
0
var_name_dict
=
{}
for
in_name
in
op
.
input_names
:
if
src_dtype
==
core
.
VarDesc
.
VarType
.
FP32
and
op
.
type
in
[
'batch_norm'
,
'fused_bn_add_activation'
,
'layer_norm'
,
]:
if
in_name
not
in
{
'X'
,
'Z'
}:
continue
for
in_var_name
in
op
.
input
(
in_name
):
in_var
=
self
.
_block
.
var
(
in_var_name
)
if
in_var
.
type
not
in
_valid_types
or
in_var
.
dtype
==
dst_dtype
:
continue
if
in_var
.
dtype
==
src_dtype
:
cast_name
=
(
in_var
.
name
+
'.cast_'
+
_dtype_to_str
(
dst_dtype
)
)
var_name_dict
[
in_var
.
name
]
=
cast_name
out_var
=
self
.
_block
.
vars
.
get
(
cast_name
)
consume_op_attr
=
dist_context
.
get_op_dist_attr_for_program
(
op
)
assert
consume_op_attr
is
not
None
in_var_dist_attr
=
consume_op_attr
.
get_input_dist_attr
(
in_var_name
)
if
out_var
is
None
or
out_var
.
dtype
!=
dst_dtype
:
assert
in_var_dist_attr
is
not
None
ref_mesh
=
in_var_dist_attr
.
process_mesh
ref_mapping
=
in_var_dist_attr
.
dims_mapping
consume_op_attr
.
set_input_dist_attr
(
cast_name
,
in_var_dist_attr
)
out_var
=
self
.
_block
.
create_var
(
name
=
cast_name
,
dtype
=
dst_dtype
,
persistable
=
False
,
stop_gradient
=
in_var
.
stop_gradient
,
)
set_var_dist_attr
(
dist_context
,
out_var
,
ref_mapping
,
ref_mesh
)
cast_op
=
self
.
_block
.
_insert_op_without_sync
(
idx
,
type
=
"cast"
,
inputs
=
{
"X"
:
in_var
},
outputs
=
{
"Out"
:
out_var
},
attrs
=
{
"in_dtype"
:
in_var
.
dtype
,
"out_dtype"
:
out_var
.
dtype
,
},
)
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
cast_op
,
ref_mesh
,
ref_mapping
,
dist_context
)
num_cast_ops
+=
1
else
:
consume_op_attr
.
set_input_dist_attr
(
cast_name
,
in_var_dist_attr
)
_rename_arg
(
op
,
in_var_name
,
out_var
.
name
)
else
:
if
op
.
has_attr
(
'in_dtype'
):
op
.
_set_attr
(
'in_dtype'
,
dst_dtype
)
self
.
_var_name_dict
[
op
.
desc
.
original_id
()]
=
var_name_dict
if
(
src_dtype
==
core
.
VarDesc
.
VarType
.
FP32
and
dst_dtype
==
core
.
VarDesc
.
VarType
.
BF16
):
for
out_name
in
op
.
output_names
:
if
(
op
.
type
in
[
'batch_norm'
,
'fused_bn_add_activation'
,
'layer_norm'
]
and
out_name
!=
'Y'
):
continue
for
out_var_name
in
op
.
output
(
out_name
):
out_var
=
self
.
_block
.
var
(
out_var_name
)
if
out_var
.
type
not
in
_valid_types
:
continue
if
out_var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
out_var
.
desc
.
set_dtype
(
core
.
VarDesc
.
VarType
.
BF16
)
if
op
.
has_attr
(
'out_dtype'
):
op
.
_set_attr
(
'out_dtype'
,
core
.
VarDesc
.
VarType
.
BF16
)
return
num_cast_ops
def
cast_backward_program
(
self
,
params_grads
,
dist_context
):
self
.
_block
.
_sync_with_cpp
()
ops
=
self
.
_block
.
ops
appended_grad_times
=
0
dist_op_context
=
dist_context
.
dist_op_context
loss_op
=
get_loss_op
(
self
.
_block
)
idx
=
find_op_index
(
self
.
_block
.
desc
,
loss_op
.
desc
)
+
1
while
idx
<
len
(
ops
):
num_cast_ops
=
0
grad_op
=
ops
[
idx
]
op_dist_attr
=
dist_context
.
get_op_dist_attr_for_program
(
grad_op
)
if
is_backward_op
(
grad_op
)
and
(
is_forward_op
(
ops
[
idx
-
1
])
or
is_loss_op
(
ops
[
idx
-
1
])
):
if
not
op_dist_attr
.
is_recompute
:
appended_grad_times
+=
1
if
(
grad_op
.
desc
.
original_id
()
in
dist_op_context
.
grad_op_id_to_op_id
):
if
self
.
_is_bf16_op
(
grad_op
.
desc
.
original_id
())
is
False
:
num_cast_ops
=
self
.
_insert_cast_op_backward
(
grad_op
,
idx
,
core
.
VarDesc
.
VarType
.
BF16
,
core
.
VarDesc
.
VarType
.
FP32
,
dist_context
,
appended_grad_times
,
)
elif
self
.
_is_bf16_op
(
grad_op
.
desc
.
original_id
())
is
True
:
if
grad_op
.
has_attr
(
'use_mkldnn'
):
grad_op
.
_set_attr
(
'use_mkldnn'
,
True
)
grad_op
.
_set_attr
(
'mkldnn_data_type'
,
'bfloat16'
)
elif
(
grad_op
.
has_attr
(
'dtype'
)
and
grad_op
.
attr
(
'dtype'
)
==
core
.
VarDesc
.
VarType
.
FP32
):
grad_op
.
_set_attr
(
'dtype'
,
core
.
VarDesc
.
VarType
.
BF16
)
num_cast_ops
=
self
.
_insert_cast_op_backward
(
grad_op
,
idx
,
core
.
VarDesc
.
VarType
.
FP32
,
core
.
VarDesc
.
VarType
.
BF16
,
dist_context
,
appended_grad_times
,
)
elif
grad_op
.
type
==
"sum"
:
in_var_name
=
grad_op
.
desc
.
input_arg_names
()[
0
]
src_dtype
=
self
.
_block
.
var
(
in_var_name
).
dtype
for
in_var_name
in
grad_op
.
desc
.
input_arg_names
():
assert
src_dtype
==
self
.
_block
.
var
(
in_var_name
).
dtype
out_var_name
=
grad_op
.
desc
.
output_arg_names
()[
0
]
out_var
=
self
.
_block
.
var
(
out_var_name
)
if
out_var
.
dtype
!=
src_dtype
:
out_var
.
desc
.
set_dtype
(
src_dtype
)
elif
int
(
grad_op
.
attr
(
"op_role"
))
==
257
:
pass
else
:
raise
ValueError
(
"'{}' op is not supported in the complete amp pass."
.
format
(
grad_op
.
type
)
)
idx
+=
num_cast_ops
+
1
self
.
_block
.
_sync_with_cpp
()
_update_backward_cast_ops
(
params_grads
,
dist_context
)
def
_insert_cast_op_backward
(
self
,
grad_op
,
idx
,
src_dtype
,
dst_dtype
,
dist_context
,
appended_grad_times
,
):
def
_keep_fp32_input
(
op
,
in_name
):
op_type
=
op
.
type
if
op_type
in
[
'layer_norm_grad'
]:
return
in_name
not
in
{
'X'
,
'Y@GRAD'
}
return
False
def
_keep_fp32_output
(
op
,
out_name
):
op_type
=
op
.
type
if
op_type
in
[
'layer_norm_grad'
]:
return
out_name
!=
'X@GRAD'
return
False
num_cast_ops
=
0
original_id
=
grad_op
.
desc
.
original_id
()
dist_op_context
=
dist_context
.
dist_op_context
fwd_op_id
=
dist_op_context
.
grad_op_id_to_op_id
[
original_id
]
for
in_name
in
grad_op
.
input_names
:
if
src_dtype
==
core
.
VarDesc
.
VarType
.
FP32
and
_keep_fp32_input
(
grad_op
,
in_name
):
for
in_var_name
in
grad_op
.
input
(
in_name
):
in_var
=
self
.
_block
.
_find_var_recursive
(
in_var_name
)
assert
in_var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
continue
for
in_var_name
in
grad_op
.
input
(
in_name
):
in_var
=
self
.
_block
.
_find_var_recursive
(
in_var_name
)
if
in_var
.
dtype
==
src_dtype
:
consume_op_attr
=
dist_context
.
get_op_dist_attr_for_program
(
grad_op
)
if
in_var_name
in
self
.
_var_name_dict
[
fwd_op_id
]:
cast_name
=
self
.
_var_name_dict
[
fwd_op_id
][
in_var_name
]
grad_op
.
desc
.
_rename_input
(
in_var_name
,
cast_name
)
in_var_dist_attr
=
consume_op_attr
.
get_input_dist_attr
(
in_var_name
)
consume_op_attr
.
set_input_dist_attr
(
cast_name
,
in_var_dist_attr
)
else
:
assert
(
in_var
.
dtype
==
dst_dtype
),
"op [{}] expect input [{}] to be dtype [{}] BUT got [{}]. {}"
.
format
(
grad_op
.
type
,
in_name
,
dst_dtype
,
in_var
.
dtype
,
str
(
grad_op
),
)
for
out_name
in
grad_op
.
output_names
:
if
src_dtype
==
core
.
VarDesc
.
VarType
.
FP32
and
_keep_fp32_output
(
grad_op
,
out_name
):
for
out_var_name
in
grad_op
.
output
(
out_name
):
out_var
=
self
.
_block
.
_find_var_recursive
(
out_var_name
)
assert
out_var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
continue
for
out_var_name
in
grad_op
.
output
(
out_name
):
out_var
=
self
.
_block
.
_find_var_recursive
(
out_var_name
)
out_var_name_prefix
=
out_var_name
[:
out_var_name
.
find
(
'@'
)]
fwd_var
=
self
.
_block
.
_find_var_recursive
(
out_var_name_prefix
)
if
out_var
.
dtype
!=
fwd_var
.
dtype
:
out_var
.
desc
.
set_dtype
(
fwd_var
.
dtype
)
if
out_var
.
dtype
==
src_dtype
:
if
out_var_name_prefix
in
self
.
_var_name_dict
[
fwd_op_id
]:
consume_op_attr
=
(
dist_context
.
get_op_dist_attr_for_program
(
grad_op
)
)
fwd_cast_name
=
self
.
_var_name_dict
[
fwd_op_id
][
out_var_name_prefix
]
suffix
=
''
if
"@RENAME"
in
out_var_name
:
suffix
=
out_var_name
[
out_var_name
.
find
(
"@RENAME"
)
:
]
cast_name
=
fwd_cast_name
+
"@GRAD"
+
suffix
cast_var
=
self
.
_block
.
vars
.
get
(
cast_name
)
if
cast_var
is
None
or
cast_var
.
dtype
!=
dst_dtype
:
grad_op
.
desc
.
_rename_output
(
out_var_name
,
cast_name
)
out_var_dist_attr
=
(
consume_op_attr
.
get_output_dist_attr
(
out_var_name
)
)
ref_mesh
=
out_var_dist_attr
.
process_mesh
ref_mapping
=
out_var_dist_attr
.
dims_mapping
consume_op_attr
.
set_output_dist_attr
(
cast_name
,
out_var_dist_attr
)
assert
ref_mapping
is
not
None
cast_var
=
self
.
_block
.
create_var
(
name
=
cast_name
,
shape
=
out_var
.
shape
,
dtype
=
dst_dtype
,
persistable
=
False
,
stop_gradient
=
out_var
.
stop_gradient
,
)
set_var_dist_attr
(
dist_context
,
cast_var
,
ref_mapping
,
ref_mesh
)
dist_op_context
.
grad_var_to_var
[
appended_grad_times
][
cast_name
]
=
fwd_cast_name
cast_op
=
self
.
_block
.
_insert_op
(
idx
+
1
,
type
=
"cast"
,
inputs
=
{
"X"
:
cast_var
},
outputs
=
{
"Out"
:
out_var
},
attrs
=
{
"in_dtype"
:
cast_var
.
dtype
,
"out_dtype"
:
out_var
.
dtype
,
"op_role"
:
OpRole
.
Backward
,
},
)
cast_op
.
_remove_attr
(
"op_role_var"
)
cast_op
.
_remove_attr
(
"op_namescope"
)
cast_op
.
_remove_attr
(
"with_quant_attr"
)
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
cast_op
,
ref_mesh
,
ref_mapping
,
dist_context
)
num_cast_ops
+=
1
else
:
assert
out_var
.
dtype
==
dst_dtype
return
num_cast_ops
def
_update_backward_cast_ops
(
params_grads
,
dist_context
):
"""
move param grad cast to the end of backward segment
in order to enabel fp16 allreduce
"""
# TODO filter optimize ops in future
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
main_block
.
_sync_with_cpp
()
for
p
,
g
in
params_grads
:
op
=
g
.
op
if
g
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
and
op
.
type
==
'cast'
:
if
int
(
op
.
attr
(
'op_role'
))
==
int
(
OpRole
.
Backward
)
and
op
.
has_attr
(
'op_role_var'
):
op
.
_remove_attr
(
"op_role_var"
)
post_ops
=
find_true_post_op
(
main_block
.
ops
,
op
,
g
.
name
)
if
post_ops
:
raise
ValueError
(
"The cast op {0}'s output should not be"
"used by a non-optimize op, however, it"
"is used by {1}"
.
format
(
op
,
post_ops
[
0
])
)
if
op
==
main_block
.
ops
[
-
1
]:
continue
# add new op in the python and cpp at the same time
new_op_desc
=
main_block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
op
.
desc
)
new_op
=
paddle
.
fluid
.
framework
.
Operator
(
block
=
main_block
,
desc
=
new_op_desc
,
type
=
None
,
inputs
=
None
,
outputs
=
None
,
attrs
=
None
,
)
main_block
.
ops
.
append
(
new_op
)
# dist attr
param_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
p
)
output_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
main_block
.
var
(
op
.
output_arg_names
[
0
])
)
assert
param_dist_attr
is
not
None
assert
output_dist_attr
is
not
None
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
new_op
,
param_dist_attr
.
process_mesh
,
param_dist_attr
.
dims_mapping
,
dist_context
,
)
output_dist_attr
.
process_mesh
=
param_dist_attr
.
process_mesh
output_dist_attr
.
dims_mapping
=
param_dist_attr
.
dims_mapping
op_idx
=
find_op_index
(
main_block
.
desc
,
op
.
desc
)
if
op_idx
==
-
1
:
raise
ValueError
(
"The op {0} is not in program"
.
format
(
op
))
main_block
.
_remove_op
(
op_idx
,
sync
=
False
)
main_block
.
_sync_with_cpp
()
@
register_pass
(
"auto_parallel_bf16"
)
class
BF16Pass
(
PassBase
):
def
__init__
(
self
):
super
().
__init__
()
self
.
set_attr
(
"dist_context"
,
None
)
self
.
set_attr
(
"custom_bf16_list"
,
None
)
self
.
set_attr
(
"custom_fp32_list"
,
None
)
self
.
set_attr
(
"custom_fp32_varnames"
,
None
)
self
.
set_attr
(
"input_data"
,
[])
self
.
set_attr
(
"loss"
,
None
)
self
.
set_attr
(
"params_grads"
,
[])
self
.
set_attr
(
"use_bf16_guard"
,
False
)
self
.
_loss
=
None
def
_check_self
(
self
):
if
self
.
get_attr
(
"dist_context"
)
is
None
:
return
False
return
True
def
_check_conflict
(
self
,
other_pass
):
return
True
def
_apply_single_impl
(
self
,
main_program
,
startup_program
,
context
):
self
.
dist_context
=
self
.
get_attr
(
"dist_context"
)
params_grads
=
self
.
get_attr
(
"params_grads"
)
amp_lists
=
AutoMixedPrecisionListsBF16
(
self
.
get_attr
(
"custom_bf16_list"
),
self
.
get_attr
(
"custom_fp32_list"
),
self
.
get_attr
(
"custom_fp32_varnames"
),
)
with
static
.
program_guard
(
main_program
,
startup_program
):
amp_state
=
BF16State
(
main_program
.
global_block
())
training
=
amp_state
.
_build_state
(
amp_lists
,
self
.
dist_context
)
amp_state
.
cast_forward_program
(
self
.
dist_context
)
if
training
:
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
amp_state
.
cast_backward_program
(
params_grads
,
self
.
dist_context
)
self
.
_scale_loss
()
def
_scale_loss
(
self
):
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
main_block
.
_sync_with_cpp
()
OP_ROLE_KEY
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
loss
=
self
.
get_attr
(
"loss"
)
assert
loss
is
not
None
loss_op
=
loss
.
op
loss_op_dist_attr
=
self
.
dist_context
.
get_op_dist_attr_for_program
(
loss_op
)
if
loss
.
dtype
!=
core
.
VarDesc
.
VarType
.
FP32
:
tmp_name
=
unique_name
.
generate
(
loss
.
name
+
".cast_fp32"
)
cast_loss
=
main_block
.
create_var
(
name
=
tmp_name
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
)
loss_dist_attr
=
self
.
dist_context
.
get_tensor_dist_attr_for_program
(
loss
)
ref_mesh
=
loss_op_dist_attr
.
process_mesh
self
.
dist_context
.
set_tensor_dist_attr_for_program
(
cast_loss
,
loss_dist_attr
)
loss_op_idx
=
find_op_index
(
main_block
.
desc
,
loss_op
.
desc
)
cast_op
=
main_block
.
_insert_op
(
loss_op_idx
+
1
,
type
=
'cast'
,
inputs
=
{
"X"
:
[
loss
]},
outputs
=
{
"Out"
:
[
cast_loss
]},
attrs
=
{
"in_dtype"
:
loss
.
dtype
,
"out_dtype"
:
core
.
VarDesc
.
VarType
.
FP32
,
"op_role"
:
loss_op
.
all_attrs
()[
OP_ROLE_KEY
],
},
)
loss_op
.
_set_attr
(
OP_ROLE_KEY
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
)
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
cast_op
,
ref_mesh
,
[
-
1
],
self
.
dist_context
)
first_backward_op
=
main_block
.
ops
[
loss_op_idx
+
2
]
assert
(
first_backward_op
.
type
==
"fill_constant"
and
int
(
first_backward_op
.
all_attrs
()[
OP_ROLE_KEY
])
==
257
)
cast_loss_grad
=
main_block
.
create_var
(
name
=
unique_name
.
generate
(
tmp_name
+
"@GRAD"
),
shape
=
loss
.
shape
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
persistable
=
loss
.
persistable
,
)
set_var_dist_attr
(
self
.
dist_context
,
cast_loss_grad
,
[
-
1
],
ref_mesh
)
pre_grad_name
=
first_backward_op
.
output_arg_names
[
0
]
first_backward_op
.
_rename_output
(
pre_grad_name
,
cast_loss_grad
.
name
)
cast_grad_op
=
main_block
.
_insert_op
(
loss_op_idx
+
3
,
type
=
'cast'
,
inputs
=
{
'X'
:
[
cast_loss_grad
]},
outputs
=
{
'Out'
:
[
pre_grad_name
]},
attrs
=
{
"in_dtype"
:
core
.
VarDesc
.
VarType
.
FP32
,
"out_dtype"
:
core
.
VarDesc
.
VarType
.
FP16
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
,
},
)
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
cast_grad_op
,
ref_mesh
,
[
-
1
],
self
.
dist_context
)
loss
=
cast_loss
self
.
_loss
=
loss
main_block
.
_sync_with_cpp
()
def
get_loss
(
self
):
if
self
.
_loss
:
return
self
.
_loss
else
:
return
self
.
get_attr
(
"loss"
)
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
浏览文件 @
418edae5
...
...
@@ -128,5 +128,6 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules
(
test_cluster_partition MODULES test_cluster_partition
)
py_test_modules
(
test_convert_to_process_meshes MODULES
test_convert_to_process_meshes
)
py_test_modules
(
test_pass_bf16 MODULES test_pass_bf16
)
py_test_modules
(
test_dist_saver MODULES test_dist_saver
)
endif
()
python/paddle/fluid/tests/unittests/auto_parallel/test_pass_bf16.py
0 → 100644
浏览文件 @
418edae5
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
random
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
paddle.nn
as
nn
from
paddle.distributed.fleet
import
auto
from
paddle.fluid.contrib.mixed_precision.bf16.amp_utils
import
_valid_types
from
paddle.fluid.contrib.mixed_precision.fp16_utils
import
find_true_prev_op
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.static
import
InputSpec
from
paddle.vision.datasets
import
MNIST
paddle
.
enable_static
()
def
apply_pass
(
use_bf16
=
False
):
strategy
=
auto
.
Strategy
()
strategy
.
auto_mode
=
"semi"
strategy
.
reinit
=
True
if
use_bf16
:
amp
=
strategy
.
amp
amp
.
enable
=
True
amp
.
enable_bf16
=
True
return
strategy
class
MnistDataset
(
MNIST
):
def
__init__
(
self
,
mode
,
return_label
=
True
):
super
().
__init__
(
mode
=
mode
)
self
.
return_label
=
return_label
def
__getitem__
(
self
,
idx
):
img
=
np
.
reshape
(
self
.
images
[
idx
],
[
1
,
28
,
28
])
if
self
.
return_label
:
return
img
,
np
.
array
(
self
.
labels
[
idx
]).
astype
(
'int64'
)
return
(
img
,)
def
__len__
(
self
):
return
len
(
self
.
images
)
def
reset_prog
():
paddle
.
fluid
.
framework
.
switch_main_program
(
paddle
.
static
.
Program
())
paddle
.
fluid
.
framework
.
switch_startup_program
(
paddle
.
static
.
Program
())
class
Model
(
nn
.
Layer
):
def
__init__
(
self
):
super
().
__init__
()
self
.
flatten
=
nn
.
Flatten
()
self
.
fc1
=
nn
.
Linear
(
784
,
120
)
self
.
relu1
=
nn
.
ReLU
()
self
.
fc2
=
nn
.
Linear
(
120
,
10
)
def
forward
(
self
,
input
):
input
.
stop_gradient
=
True
x
=
self
.
flatten
(
input
)
x
=
self
.
relu1
(
self
.
fc1
(
x
))
x
=
self
.
fc2
(
x
)
return
x
class
TestBF16Pass
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
rtol
=
1e-5
self
.
atol
=
1e-8
self
.
batch_size
=
256
self
.
batch_num
=
10
self
.
dataset
=
MnistDataset
(
"train"
)
self
.
eval_dataset
=
MnistDataset
(
"test"
)
def
init
(
self
,
engine
):
paddle
.
seed
(
2021
)
np
.
random
.
seed
(
2021
)
random
.
seed
(
2021
)
place
=
paddle
.
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
engine
.
_executor
=
paddle
.
static
.
Executor
(
place
)
def
get_engine
(
self
,
use_bf16
=
False
):
reset_prog
()
strategy
=
apply_pass
(
use_bf16
)
model
=
Model
()
opt
=
paddle
.
optimizer
.
SGD
(
0.001
,
parameters
=
model
.
parameters
())
loss
=
nn
.
CrossEntropyLoss
()
engine
=
auto
.
Engine
(
model
,
loss
,
opt
,
strategy
=
strategy
)
self
.
init
(
engine
)
return
engine
def
check_program
(
self
,
program
):
bf16_op_list
=
{
"matmul_v2"
,
"elementwise_add"
,
"relu"
,
"elementwise_add_grad"
,
"matmul_v2_grad"
,
"relu_grad"
,
}
fp32_op_list
=
{
"flatten_contiguous_range"
,
"reduce_mean"
,
"softmax_with_cross_entropy"
,
"fill_constant"
,
"reduce_mean_grad"
,
"softmax_with_cross_entropy_grad"
,
}
for
block
in
program
.
blocks
:
for
op
in
block
.
ops
:
if
op
not
in
bf16_op_list
and
op
not
in
fp32_op_list
:
continue
for
in_name
in
op
.
input_names
:
for
in_var_name
in
op
.
input
(
in_name
):
var
=
None
try
:
var
=
block
.
var
(
in_var_name
)
except
ValueError
as
e
:
var
=
block
.
_var_recursive
(
in_var_name
)
if
var
is
None
or
var
.
type
not
in
_valid_types
:
break
if
op
.
type
in
bf16_op_list
:
assert
var
.
dtype
==
core
.
VarDesc
.
VarType
.
BF16
if
"cast_bf16"
in
in_var_name
:
if
"@GRAD"
in
in_var_name
:
tmp_in_var_name
=
in_var_name
[
:
in_var_name
.
find
(
"@GRAD"
)
]
else
:
tmp_in_var_name
=
in_var_name
prev_op
=
find_true_prev_op
(
block
.
ops
,
op
,
tmp_in_var_name
)
assert
prev_op
is
not
None
assert
prev_op
.
type
==
"cast"
for
in_name
in
prev_op
.
input_names
:
for
in_var_name
in
prev_op
.
input
(
in_name
):
var
=
block
.
var
(
in_var_name
)
assert
(
var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
)
elif
op
.
type
in
fp32_op_list
:
if
(
op
.
type
==
"softmax_with_cross_entropy"
or
op
.
type
==
"softmax_with_cross_entropy_grad"
)
and
in_var_name
==
"label0"
:
continue
assert
var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
if
"cast_fp32"
in
in_var_name
:
prev_op
=
find_true_prev_op
(
block
.
ops
,
op
,
tmp_in_var_name
)
assert
prev_op
is
not
None
assert
prev_op
.
type
==
"cast"
for
in_name
in
prev_op
.
input_names
:
for
in_var_name
in
prev_op
.
input
(
in_name
):
var
=
block
.
var
(
in_var_name
)
assert
(
var
.
dtype
==
core
.
VarDesc
.
VarType
.
BF16
)
for
out_name
in
op
.
output_names
:
for
out_var_name
in
op
.
output
(
out_name
):
var
=
None
try
:
var
=
block
.
var
(
out_var_name
)
except
ValueError
as
e
:
var
=
block
.
_var_recursive
(
out_var_name
)
if
var
is
None
or
var
.
type
not
in
_valid_types
:
break
if
op
.
type
in
bf16_op_list
:
assert
var
.
dtype
==
core
.
VarDesc
.
VarType
.
BF16
elif
op
.
type
in
fp32_op_list
:
assert
var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
def
test_bf16_pass
(
self
):
bf16_o1_engine
=
self
.
get_engine
(
True
)
inputs_spec
=
[
InputSpec
([
None
,
1
,
28
,
28
],
'float32'
,
'input0'
)]
labels_spec
=
[
InputSpec
([
None
,
1
],
'int64'
,
'label0'
)]
bf16_o1_engine
.
prepare
(
inputs_spec
=
inputs_spec
,
labels_spec
=
labels_spec
,
mode
=
"train"
)
self
.
check_program
(
bf16_o1_engine
.
_dist_main_progs
[
"train"
][
0
])
print
(
"BF16!check program successfully!"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/auto_parallel/test_strategy.py
浏览文件 @
418edae5
...
...
@@ -41,6 +41,13 @@ class TestStrategy(unittest.TestCase):
self
.
assertEqual
(
amp
.
use_fp16_guard
,
True
)
self
.
assertEqual
(
amp
.
use_optimizer_fp16
,
False
)
self
.
assertEqual
(
amp
.
enable_bf16
,
False
)
self
.
assertEqual
(
amp
.
custom_bf16_list
,
[])
self
.
assertEqual
(
amp
.
custom_fp32_list
,
[])
self
.
assertEqual
(
amp
.
custom_fp32_varnames
,
[])
self
.
assertEqual
(
amp
.
use_pure_bf16
,
False
)
self
.
assertEqual
(
amp
.
use_bf16_guard
,
False
)
sharding
=
strategy
.
sharding
self
.
assertEqual
(
sharding
.
enable
,
False
)
self
.
assertEqual
(
sharding
.
stage
,
1
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录