Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4155e625
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4155e625
编写于
9月 22, 2019
作者:
L
lvmengsi
提交者:
GitHub
9月 22, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add instance norm (#19500)
* add instance norm op
上级
c7f36e7c
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
1773 addition
and
21 deletion
+1773
-21
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/batch_norm_op.h
paddle/fluid/operators/batch_norm_op.h
+1
-21
paddle/fluid/operators/instance_norm_op.cc
paddle/fluid/operators/instance_norm_op.cc
+646
-0
paddle/fluid/operators/instance_norm_op.cu
paddle/fluid/operators/instance_norm_op.cu
+593
-0
paddle/fluid/operators/instance_norm_op.h
paddle/fluid/operators/instance_norm_op.h
+121
-0
paddle/fluid/operators/norm_utils.h
paddle/fluid/operators/norm_utils.h
+46
-0
paddle/fluid/operators/sync_batch_norm_op.cu
paddle/fluid/operators/sync_batch_norm_op.cu
+1
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+123
-0
python/paddle/fluid/tests/unittests/test_instance_norm_op.py
python/paddle/fluid/tests/unittests/test_instance_norm_op.py
+188
-0
python/paddle/fluid/tests/unittests/test_norm_nn_grad.py
python/paddle/fluid/tests/unittests/test_norm_nn_grad.py
+53
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
4155e625
...
@@ -133,6 +133,7 @@ paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'po
...
@@ -133,6 +133,7 @@ paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'po
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '52343203de40afe29607397e13aaf0d2'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '52343203de40afe29607397e13aaf0d2'))
paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '55db6ae7275fb9678a6814aebab81a9c'))
paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '55db6ae7275fb9678a6814aebab81a9c'))
paddle.fluid.layers.batch_norm (ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False)), ('document', '404741b5690228c493a2d9f59c6b1122'))
paddle.fluid.layers.batch_norm (ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False)), ('document', '404741b5690228c493a2d9f59c6b1122'))
paddle.fluid.layers.instance_norm (ArgSpec(args=['input', 'epsilon', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None)), ('document', 'c124b947a6ac4d01f491275561b9c1ab'))
paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var'], varargs=None, keywords=None, defaults=(None, 1e-05, None, 'NCHW', False, None, None, None, False)), ('document', '2460b30fb87037555208fa8ac6fc1787'))
paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var'], varargs=None, keywords=None, defaults=(None, 1e-05, None, 'NCHW', False, None, None, None, False)), ('document', '2460b30fb87037555208fa8ac6fc1787'))
paddle.fluid.layers.beam_search_decode (ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '83e08f21af41ac8bac37aeab1f86fdd0'))
paddle.fluid.layers.beam_search_decode (ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '83e08f21af41ac8bac37aeab1f86fdd0'))
paddle.fluid.layers.conv2d_transpose (ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)), ('document', '6d3b135bb3834d58ef2cb581ead1487c'))
paddle.fluid.layers.conv2d_transpose (ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)), ('document', '6d3b135bb3834d58ef2cb581ead1487c'))
...
...
paddle/fluid/operators/batch_norm_op.h
浏览文件 @
4155e625
...
@@ -18,6 +18,7 @@ limitations under the License. */
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <unordered_map>
#include <unordered_map>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/norm_utils.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -96,26 +97,5 @@ class BatchNormGradKernel : public framework::OpKernel<T> {
...
@@ -96,26 +97,5 @@ class BatchNormGradKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
};
inline
void
ExtractNCWHD
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
data_layout
,
int
*
N
,
int
*
C
,
int
*
H
,
int
*
W
,
int
*
D
)
{
*
N
=
dims
[
0
];
if
(
dims
.
size
()
==
2
)
{
*
C
=
dims
[
1
];
*
H
=
1
;
*
W
=
1
;
*
D
=
1
;
}
else
{
*
C
=
data_layout
==
DataLayout
::
kNCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
*
H
=
data_layout
==
DataLayout
::
kNCHW
?
dims
[
2
]
:
dims
[
1
];
*
W
=
dims
.
size
()
>
3
?
(
data_layout
==
DataLayout
::
kNCHW
?
dims
[
3
]
:
dims
[
2
])
:
1
;
*
D
=
dims
.
size
()
>
4
?
(
data_layout
==
DataLayout
::
kNCHW
?
dims
[
4
]
:
dims
[
3
])
:
1
;
}
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/instance_norm_op.cc
0 → 100644
浏览文件 @
4155e625
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/instance_norm_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
void
InstanceNormOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of Instance Norm Op should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Scale"
),
true
,
"Input(Scale) of Instance Norm Op should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Bias"
),
true
,
"Input(Bias) of Instance Norm Op should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Y"
),
true
,
"Output(Y) of Instance Norm Op should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"SavedMean"
),
true
,
"Output(SavedMean) of Instance Norm Op should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"SavedVariance"
),
true
,
"Output(SavedVariance) of Instance Norm Op should not be null."
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
"the dimension of input X must greater than or equal to 2"
);
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
5
,
"the dimension of input X must smaller than or equal to 5"
);
auto
N
=
x_dims
[
0
];
auto
C
=
x_dims
[
1
];
auto
NxC
=
N
*
C
;
auto
scale_dim
=
ctx
->
GetInputDim
(
"Scale"
);
auto
bias_dim
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
scale_dim
.
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
bias_dim
.
size
(),
1UL
);
bool
check
=
!
((
!
ctx
->
IsRuntime
())
&&
(
framework
::
product
(
scale_dim
)
<=
0
||
framework
::
product
(
bias_dim
)
<=
0
));
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
scale_dim
[
0
],
C
);
PADDLE_ENFORCE_EQ
(
bias_dim
[
0
],
C
);
}
ctx
->
SetOutputDim
(
"Y"
,
x_dims
);
ctx
->
SetOutputDim
(
"SavedMean"
,
{
NxC
});
ctx
->
SetOutputDim
(
"SavedVariance"
,
{
NxC
});
ctx
->
ShareLoD
(
"X"
,
"Y"
);
}
framework
::
OpKernelType
InstanceNormOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
input_data_type
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
();
// By default, the type of the scale, bias, mean,
// and var tensors should both be float. (For float or float16 input tensor)
// or double (For double input tensor).
auto
in_param_type
=
framework
::
proto
::
VarType
::
FP32
;
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP64
)
{
in_param_type
=
framework
::
proto
::
VarType
::
FP64
;
}
PADDLE_ENFORCE_EQ
(
in_param_type
,
ctx
.
Input
<
Tensor
>
(
"Scale"
)
->
type
(),
"Scale input should be of float type"
);
PADDLE_ENFORCE_EQ
(
in_param_type
,
ctx
.
Input
<
Tensor
>
(
"Bias"
)
->
type
(),
"Bias input should be of float type"
);
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
void
InstanceNormOpMaker
::
Make
()
{
AddAttr
<
float
>
(
"epsilon"
,
""
)
.
SetDefault
(
1e-5
)
.
AddCustomChecker
([](
const
float
&
epsilon
)
{
PADDLE_ENFORCE_EQ
(
epsilon
>=
0.0
f
&&
epsilon
<=
0.001
f
,
true
,
"'epsilon' should be between 0.0 and 0.001."
);
});
AddInput
(
"X"
,
"The input tensor"
);
AddInput
(
"Scale"
,
"Scale is a 1-dimensional tensor of size C "
"that is applied to the output"
);
AddInput
(
"Bias"
,
"Bias is a 1-dimensional tensor of size C "
"that is applied to the output"
);
AddOutput
(
"Y"
,
"result after normalization"
);
AddOutput
(
"SavedMean"
,
"Mean of the current mini batch, "
"will apply to output when training"
)
.
AsIntermediate
();
AddOutput
(
"SavedVariance"
,
"Variance of the current mini batch, "
"will apply to output when training"
)
.
AsIntermediate
();
AddComment
(
R"DOC(
Instance Normalization.
Instance Norm has been implemented as disscussed in the paper:
https://arxiv.org/pdf/1607.08022.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is as following:
NCHW `[batch, in_channels, in_height, in_width]`
)DOC"
);
}
template
<
typename
T
>
class
InstanceNormKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
NxC
=
N
*
C
;
const
int
sample_size
=
x
->
numel
()
/
N
/
C
;
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
saved_mean
=
ctx
.
Output
<
Tensor
>
(
"SavedMean"
);
auto
*
saved_variance
=
ctx
.
Output
<
Tensor
>
(
"SavedVariance"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
auto
*
place
=
dev_ctx
.
eigen_device
();
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
sample_size
);
Eigen
::
DSizes
<
int
,
2
>
C_shape
(
C
,
1
);
Eigen
::
DSizes
<
int
,
2
>
NxC_shape
(
NxC
,
1
);
Eigen
::
DSizes
<
int
,
2
>
shape
(
NxC
,
sample_size
);
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
set_constant
;
saved_mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
saved_variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_constant
(
dev_ctx
,
saved_mean
,
static_cast
<
T
>
(
0
));
set_constant
(
dev_ctx
,
saved_variance
,
static_cast
<
T
>
(
0
));
auto
saved_mean_a
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
saved_mean
);
auto
saved_mean_e
=
saved_mean_a
.
reshape
(
NxC_shape
);
auto
saved_variance_a
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
saved_variance
);
auto
saved_variance_e
=
saved_variance_a
.
reshape
(
NxC_shape
);
auto
x_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
x
);
auto
x_arr
=
x_e
.
reshape
(
shape
);
Eigen
::
DSizes
<
int
,
1
>
rdims
(
1
);
saved_mean_e
.
device
(
*
place
)
=
x_arr
.
mean
(
rdims
);
auto
saved_variance_arr
=
(
x_arr
-
saved_mean_e
.
broadcast
(
bcast
)).
square
().
mean
(
rdims
)
+
epsilon
;
saved_variance_e
.
device
(
*
place
)
=
saved_variance_arr
.
sqrt
().
inverse
();
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
scale_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
scale
);
auto
scale_arr
=
scale_e
.
reshape
(
C_shape
);
auto
bias_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
bias
);
auto
bias_arr
=
bias_e
.
reshape
(
C_shape
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
y_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
y
);
auto
y_arr
=
y_e
.
reshape
(
shape
);
// (x - mean) * inv_std * scale + bias
Eigen
::
DSizes
<
int
,
2
>
bcast_param
(
N
,
sample_size
);
y_arr
.
device
(
*
place
)
=
(
x_arr
-
saved_mean_e
.
broadcast
(
bcast
))
*
saved_variance_e
.
broadcast
(
bcast
)
*
scale_arr
.
broadcast
(
bcast_param
)
+
bias_arr
.
broadcast
(
bcast_param
);
}
};
void
InstanceNormGradOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) should not be null"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Scale"
),
true
,
"Input(scale) should not be null"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
true
,
"Input(Y@GRAD) should not be null"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"SavedMean"
),
true
,
"Input(SavedMean) should not be null"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"SavedVariance"
),
true
,
"Input(SavedVariance) should not be null"
);
// check output
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
true
,
"Output(x@GRAD) should not be null"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Scale"
)))
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)),
true
,
"Output(Scale@GRAD) and Output(Bias@GRAD) should not be "
"null at the same time"
);
}
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
C
=
x_dims
[
1
];
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Scale"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Scale"
),
{
C
});
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
{
C
});
}
}
framework
::
OpKernelType
InstanceNormGradOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
*
var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
));
if
(
var
==
nullptr
)
{
PADDLE_THROW
(
"cannot find Y@GRAD"
);
}
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
t
=
&
var
->
Get
<
Tensor
>
();
}
else
if
(
var
->
IsType
<
LoDTensor
>
())
{
t
=
&
var
->
Get
<
LoDTensor
>
();
}
if
(
t
==
nullptr
)
{
PADDLE_THROW
(
"cannot find Y@GRAD"
);
}
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
template
<
typename
T
>
class
InstanceNormGradKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
saved_inv_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
auto
&
x_dims
=
x
->
dims
();
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
NxC
=
N
*
C
;
const
int
sample_size
=
x
->
numel
()
/
N
/
C
;
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
auto
*
place
=
dev_ctx
.
eigen_device
();
Eigen
::
DSizes
<
int
,
1
>
rdims
(
0
);
Eigen
::
DSizes
<
int
,
1
>
mean_rdims
(
1
);
Eigen
::
DSizes
<
int
,
2
>
rshape
(
NxC
,
sample_size
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
sample_size
);
Eigen
::
DSizes
<
int
,
2
>
C_shape
(
C
,
1
);
Eigen
::
DSizes
<
int
,
2
>
NxC_shape
(
NxC
,
1
);
Eigen
::
DSizes
<
int
,
2
>
param_shape
(
N
,
C
);
Eigen
::
DSizes
<
int
,
2
>
shape
(
NxC
,
sample_size
);
auto
scale_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
scale
);
auto
mean_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
saved_mean
);
auto
inv_var_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
saved_inv_variance
);
auto
dy_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_y
);
auto
x_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
x
);
auto
scale_arr
=
scale_e
.
reshape
(
C_shape
);
auto
mean_arr
=
mean_e
.
reshape
(
NxC_shape
);
auto
inv_var_arr
=
inv_var_e
.
reshape
(
NxC_shape
);
auto
dy_arr
=
dy_e
.
reshape
(
shape
);
auto
x_arr
=
x_e
.
reshape
(
shape
);
auto
tmp
=
(
x_arr
-
mean_arr
.
broadcast
(
bcast
))
*
inv_var_arr
.
broadcast
(
bcast
);
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
set_constant
;
// math: d_bias = np.sum(d_y, axis=(n,h,w))
// math: d_scale = np.sum((X-mean) / inv_std * dy, axis=(n, h,w))
if
(
d_scale
&&
d_bias
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_constant
(
dev_ctx
,
d_scale
,
static_cast
<
T
>
(
0
));
set_constant
(
dev_ctx
,
d_bias
,
static_cast
<
T
>
(
0
));
auto
d_scale_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_scale
);
auto
d_bias_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_bias
);
auto
d_scale_data
=
d_scale_e
.
reshape
(
C_shape
);
auto
d_bias_data
=
d_bias_e
.
reshape
(
C_shape
);
d_bias_data
.
device
(
*
place
)
=
dy_arr
.
sum
(
mean_rdims
).
reshape
(
param_shape
).
sum
(
rdims
);
d_scale_data
.
device
(
*
place
)
=
(
tmp
*
dy_arr
).
sum
(
mean_rdims
).
reshape
(
param_shape
).
sum
(
rdims
);
}
auto
dy_mean
=
dy_arr
.
mean
(
mean_rdims
).
reshape
(
NxC_shape
).
broadcast
(
bcast
);
Eigen
::
DSizes
<
int
,
2
>
bcast_param
(
N
,
sample_size
);
set_constant
(
dev_ctx
,
d_x
,
static_cast
<
T
>
(
0
));
// math: d_x = scale * inv_var * d_y - scale * inv_var * np.sum(d_y,
// axis=(h,w))
// - scale * (X - mean) * inv_var.pow(3) * np.sum(d_y * (X -
// mean),
// axis=(h,w))
auto
dx_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_x
);
auto
dx_arr
=
dx_e
.
reshape
(
shape
);
dx_arr
.
device
(
*
place
)
=
scale_arr
.
broadcast
(
bcast_param
)
*
inv_var_arr
.
broadcast
(
bcast
)
*
(
dy_arr
-
dy_mean
-
tmp
*
(
dy_arr
*
tmp
)
.
mean
(
mean_rdims
)
.
reshape
(
NxC_shape
)
.
broadcast
(
bcast
));
}
};
std
::
unique_ptr
<
framework
::
OpDesc
>
InstanceNormGradMaker
::
Apply
()
const
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"instance_norm_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
OutputGrad
(
"Y"
));
op
->
SetInput
(
"Scale"
,
Input
(
"Scale"
));
op
->
SetInput
(
"Bias"
,
Input
(
"Bias"
));
op
->
SetInput
(
"SavedMean"
,
Output
(
"SavedMean"
));
op
->
SetInput
(
"SavedVariance"
,
Output
(
"SavedVariance"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Scale"
),
InputGrad
(
"Scale"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Bias"
),
InputGrad
(
"Bias"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
void
InstanceNormDoubleGradOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) should not be null"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Scale"
),
true
,
"Input(Scale) should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"SavedMean"
),
true
,
"Input(SavedMean) should not be null"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"SavedVariance"
),
true
,
"Input(SavedVariance) should not be null"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"DDX"
),
true
,
"Input(DDX) should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"DY"
),
true
,
"Input(Y@GRAD) should not be null"
);
// check output
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"DX"
),
true
,
"Output(DX) should not be null"
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
C
=
x_dims
[
1
];
if
(
ctx
->
HasOutput
(
"DX"
))
{
ctx
->
SetOutputDim
(
"DX"
,
x_dims
);
}
if
(
ctx
->
HasOutput
(
"DScale"
))
{
ctx
->
SetOutputDim
(
"DScale"
,
{
C
});
}
if
(
ctx
->
HasOutput
(
"DDY"
))
{
ctx
->
ShareDim
(
"X"
,
"DDY"
);
}
}
framework
::
OpKernelType
InstanceNormDoubleGradOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
*
var
=
ctx
.
InputVar
(
"DY"
);
if
(
var
==
nullptr
)
{
PADDLE_THROW
(
"cannot find Y@GRAD"
);
}
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
t
=
&
var
->
Get
<
Tensor
>
();
}
else
if
(
var
->
IsType
<
LoDTensor
>
())
{
t
=
&
var
->
Get
<
LoDTensor
>
();
}
if
(
t
==
nullptr
)
{
PADDLE_THROW
(
"cannot find Y@GRAD"
);
}
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
std
::
unique_ptr
<
framework
::
OpDesc
>
InstanceNormDoubleGradMaker
::
Apply
()
const
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"instance_norm_grad_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"Scale"
,
Input
(
"Scale"
));
op
->
SetInput
(
"SavedMean"
,
Input
(
"SavedMean"
));
op
->
SetInput
(
"SavedVariance"
,
Input
(
"SavedVariance"
));
op
->
SetInput
(
"DDX"
,
OutputGrad
(
framework
::
GradVarName
(
"X"
)));
op
->
SetInput
(
"DDScale"
,
OutputGrad
(
framework
::
GradVarName
(
"Scale"
)));
op
->
SetInput
(
"DDBias"
,
OutputGrad
(
framework
::
GradVarName
(
"Bias"
)));
op
->
SetInput
(
"DY"
,
Input
(
framework
::
GradVarName
(
"Y"
)));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
"DX"
,
InputGrad
(
"X"
));
op
->
SetOutput
(
"DScale"
,
InputGrad
(
"Scale"
));
op
->
SetOutput
(
"DDY"
,
InputGrad
(
framework
::
GradVarName
(
"Y"
)));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
template
<
typename
T
>
class
InstanceNormDoubleGradKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
Scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
dY
=
ctx
.
Input
<
Tensor
>
(
"DY"
);
const
auto
*
Saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
Saved_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
auto
*
ddX
=
ctx
.
Input
<
Tensor
>
(
"DDX"
);
const
auto
*
ddScale
=
ctx
.
Input
<
Tensor
>
(
"DDScale"
);
const
auto
*
ddBias
=
ctx
.
Input
<
Tensor
>
(
"DDBias"
);
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
"DX"
);
auto
*
dScale
=
ctx
.
Output
<
Tensor
>
(
"DScale"
);
auto
*
ddY
=
ctx
.
Output
<
Tensor
>
(
"DDY"
);
const
auto
&
x_dims
=
X
->
dims
();
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
DataLayout
::
kNCHW
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
const
int
sample_size
=
X
->
numel
()
/
N
/
C
;
const
int
NxC
=
N
*
C
;
const
T
*
mean_data
=
Saved_mean
->
data
<
T
>
();
const
T
*
inv_var_data
=
Saved_variance
->
data
<
T
>
();
Tensor
mean_tensor
;
Tensor
inv_var_tensor
;
ConstEigenArrayMap
<
T
>
x_arr
(
X
->
data
<
T
>
(),
sample_size
,
NxC
);
ConstEigenVectorArrayMap
<
T
>
mean_arr
(
mean_data
,
NxC
);
ConstEigenVectorArrayMap
<
T
>
inv_var_arr
(
inv_var_data
,
NxC
);
Tensor
mean_tile
;
mean_tile
.
Resize
({
sample_size
,
NxC
});
mean_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenArrayMap
<
T
>
mean_tile_data
(
mean_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
Tensor
inv_var_tile
;
inv_var_tile
.
Resize
({
sample_size
,
NxC
});
inv_var_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenArrayMap
<
T
>
inv_var_tile_data
(
inv_var_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
mean_tile_data
=
mean_arr
.
transpose
().
replicate
(
sample_size
,
1
);
inv_var_tile_data
=
inv_var_arr
.
transpose
().
replicate
(
sample_size
,
1
);
ConstEigenVectorArrayMap
<
T
>
scale_arr
(
Scale
->
data
<
T
>
(),
C
);
Tensor
scale_tile
;
scale_tile
.
Resize
({
sample_size
,
NxC
});
scale_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenArrayMap
<
T
>
scale_tile_data
(
scale_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
scale_tile_data
=
scale_arr
.
transpose
().
replicate
(
sample_size
,
N
);
ConstEigenArrayMap
<
T
>
dy_arr
(
dY
->
data
<
T
>
(),
sample_size
,
NxC
);
ConstEigenArrayMap
<
T
>
ddx_arr
(
ddX
->
data
<
T
>
(),
sample_size
,
NxC
);
// math: dx = scale * ((x - mean) * inv_var / HxW * (np.mean(ddx,
// axis=(h,w)) *
// np.sum(dy, axis=(h,w)) -
// np.sum(dy * ddx, axis=(h,w)) + 3 * np.mean(dy * (x - mean),
// axis=(h,w)) * inv_var.pow(2) *
// np.sum(ddx * (x - mean), axis=(h,w))) + inv_var.pow(3) / HxW *
// np.sum(ddx * (x - mean)) *
// (np.mean(dy, axis=(h,w)) - dy) + inv_var.pow(3) / HxW *
// np.sum(dy,
// axis=(h,w)) * (x - mean) *
// (np.mean(ddx, axis=(h,w)) - ddx) + ddr * (dy * inv_var - inv_var
// *
// np.mean(dy, axis=(h,w)) -
// inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
// axis=(h,w))))
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
set_constant
;
Tensor
x_sub_mean_mul_invstd
;
x_sub_mean_mul_invstd
.
Resize
({
sample_size
,
NxC
});
x_sub_mean_mul_invstd
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenArrayMap
<
T
>
x_sub_mean_mul_invstd_arr
(
x_sub_mean_mul_invstd
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
x_sub_mean_mul_invstd_arr
=
(
x_arr
-
mean_tile_data
)
*
inv_var_tile_data
;
if
(
dX
)
{
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_constant
(
dev_ctx
,
dX
,
static_cast
<
T
>
(
0
));
EigenArrayMap
<
T
>
dx_arr
(
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
if
(
ddX
)
{
dx_arr
+=
x_sub_mean_mul_invstd_arr
*
inv_var_tile_data
*
inv_var_tile_data
/
sample_size
*
(
ddx_arr
.
colwise
().
sum
()
*
dy_arr
.
colwise
().
sum
()
/
sample_size
-
(
dy_arr
*
ddx_arr
).
colwise
().
sum
()
+
3.
*
(
dy_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
*
(
ddx_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
/
sample_size
);
dx_arr
+=
(
ddx_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
/
sample_size
*
inv_var_tile_data
*
inv_var_tile_data
*
(
dy_arr
.
colwise
().
sum
()
/
sample_size
-
dy_arr
);
dx_arr
+=
(
dy_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
/
sample_size
*
inv_var_tile_data
*
inv_var_tile_data
*
(
ddx_arr
.
colwise
().
sum
()
/
sample_size
-
ddx_arr
);
dx_arr
=
scale_tile_data
*
dx_arr
.
eval
();
}
if
(
ddScale
)
{
ConstEigenVectorArrayMap
<
T
>
ddscale_arr
(
ddScale
->
data
<
T
>
(),
C
);
Tensor
ddscale_tile
;
ddscale_tile
.
Resize
({
sample_size
,
NxC
});
ddscale_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenArrayMap
<
T
>
ddscale_tile_data
(
ddscale_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
ddscale_tile_data
=
ddscale_arr
.
transpose
().
replicate
(
sample_size
,
N
);
dx_arr
+=
(
dy_arr
*
inv_var_tile_data
-
dy_arr
.
colwise
().
sum
()
/
sample_size
*
inv_var_tile_data
-
x_sub_mean_mul_invstd_arr
*
inv_var_tile_data
*
(
dy_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
/
sample_size
)
*
ddscale_tile_data
;
}
}
if
(
dScale
)
{
// math: dscale = inv_var * (dy - np.mean(dy, axis=(h,w) - (x-mean) *
// inv_var.pow(2) * np.mean(dy * (x-mean), axis=(h,w)))) * ddx
dScale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_constant
(
dev_ctx
,
dScale
,
static_cast
<
T
>
(
0
));
EigenVectorArrayMap
<
T
>
dscale_arr
(
dScale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
if
(
ddX
)
{
Tensor
first_grad
;
first_grad
.
Resize
({
sample_size
,
NxC
});
first_grad
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_constant
(
dev_ctx
,
&
first_grad
,
static_cast
<
T
>
(
0
));
EigenArrayMap
<
T
>
first_grad_arr
(
first_grad
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
first_grad_arr
+=
inv_var_tile_data
*
(
dy_arr
-
dy_arr
.
colwise
().
sum
()
/
sample_size
-
x_sub_mean_mul_invstd_arr
*
(
dy_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
/
sample_size
);
first_grad_arr
=
first_grad_arr
.
eval
()
*
ddx_arr
;
for
(
int
nc
=
0
;
nc
<
NxC
;
++
nc
)
{
int
c
=
nc
%
C
;
dscale_arr
(
c
)
+=
first_grad_arr
.
colwise
().
sum
()(
nc
);
}
}
}
if
(
ddY
)
{
// math: ddy = (x - mean) * inv_var * ddscale + ddbias +
// scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) *
// np.mean(ddx * (x - mean), axis=(h,w)))
ddY
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_constant
(
dev_ctx
,
ddY
,
static_cast
<
T
>
(
0
));
EigenArrayMap
<
T
>
ddy_arr
(
ddY
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
if
(
ddX
)
{
ddy_arr
+=
scale_tile_data
*
inv_var_tile_data
*
(
ddx_arr
-
ddx_arr
.
colwise
().
sum
()
/
sample_size
-
x_sub_mean_mul_invstd_arr
*
(
ddx_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
/
sample_size
);
}
if
(
ddScale
&&
ddBias
)
{
ConstEigenVectorArrayMap
<
T
>
ddscale_arr
(
ddScale
->
data
<
T
>
(),
C
);
Tensor
ddscale_tile
;
ddscale_tile
.
Resize
({
sample_size
,
NxC
});
ddscale_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenArrayMap
<
T
>
ddscale_tile_data
(
ddscale_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
ddscale_tile_data
=
ddscale_arr
.
transpose
().
replicate
(
sample_size
,
N
);
ConstEigenVectorArrayMap
<
T
>
ddbias_arr
(
ddBias
->
data
<
T
>
(),
C
);
Tensor
ddbias_tile
;
ddbias_tile
.
Resize
({
sample_size
,
NxC
});
ddbias_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenArrayMap
<
T
>
ddbias_tile_data
(
ddbias_tile
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
NxC
);
ddbias_tile_data
=
ddbias_arr
.
transpose
().
replicate
(
sample_size
,
N
);
ddy_arr
+=
x_sub_mean_mul_invstd_arr
*
ddscale_tile_data
;
ddy_arr
+=
ddbias_tile_data
;
}
}
}
};
DECLARE_INPLACE_OP_INFERER
(
InstanceNormDoubleGradOpInplaceInference
,
{
"DY"
,
"DDY"
});
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
instance_norm
,
ops
::
InstanceNormOp
,
ops
::
InstanceNormOpMaker
,
ops
::
InstanceNormOpInferVarType
,
ops
::
InstanceNormGradMaker
);
REGISTER_OPERATOR
(
instance_norm_grad
,
ops
::
InstanceNormGradOp
,
ops
::
InstanceNormDoubleGradMaker
);
REGISTER_OPERATOR
(
instance_norm_grad_grad
,
ops
::
InstanceNormDoubleGradOp
,
ops
::
InstanceNormDoubleGradOpInplaceInference
);
REGISTER_OP_CPU_KERNEL
(
instance_norm
,
ops
::
InstanceNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
InstanceNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
instance_norm_grad
,
ops
::
InstanceNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
InstanceNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
instance_norm_grad_grad
,
ops
::
InstanceNormDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
InstanceNormDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/instance_norm_op.cu
0 → 100644
浏览文件 @
4155e625
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <cfloat>
#include <string>
#include <vector>
#include "cub/cub.cuh"
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/instance_norm_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
template
<
typename
T
>
using
BatchNormParamType
=
typename
CudnnDataType
<
T
>::
BatchNormParamType
;
template
<
typename
T
>
static
__global__
void
repeat_param
(
const
T
*
input
,
T
*
output
,
const
int
repeat_num
,
const
int
C
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
repeat_num
*
C
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
index
=
i
%
C
;
output
[
i
]
=
input
[
index
];
}
}
template
<
typename
T
,
int
BlockDim
,
bool
AVG
>
static
__global__
void
add_param
(
const
T
*
input
,
T
*
output
,
const
int
repeat_num
,
const
int
C
)
{
typedef
cub
::
BlockReduce
<
T
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
ou_storage
;
for
(
int
i
=
blockIdx
.
x
;
i
<
C
;
i
+=
gridDim
.
x
)
{
T
ou
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
threadIdx
.
x
;
j
<
repeat_num
;
j
+=
blockDim
.
x
)
{
const
int
index
=
j
*
C
+
i
;
ou
+=
static_cast
<
T
>
(
input
[
index
]);
}
ou
=
BlockReduce
(
ou_storage
).
Reduce
(
ou
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
output
[
i
]
=
ou
;
}
__syncthreads
();
if
(
AVG
)
{
output
[
i
]
/=
repeat_num
;
}
}
}
template
<
typename
T
>
class
InstanceNormKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
"It must be CUDAPlace."
);
double
epsilon
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
"the dimension of input X must greater than or equal to 2"
);
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
5
,
"the dimension of input X must smaller than or equal to 5"
);
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
DataLayout
::
kNCHW
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
int
NxC
=
N
*
C
;
Tensor
x_tmp
;
x_tmp
.
ShareDataWith
(
*
x
).
Resize
({
1
,
NxC
,
H
,
W
,
D
});
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
cudnnTensorDescriptor_t
data_desc_
;
cudnnTensorDescriptor_t
in_param_desc_
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
data_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
in_param_desc_
));
if
(
epsilon
<=
CUDNN_BN_MIN_EPSILON
-
FLT_EPSILON
)
{
LOG
(
ERROR
)
<<
"Provided epsilon is smaller than "
<<
"CUDNN_BN_MIN_EPSILON. Setting it to "
<<
"CUDNN_BN_MIN_EPSILON instead."
;
}
epsilon
=
std
::
max
(
epsilon
,
CUDNN_BN_MIN_EPSILON
);
VLOG
(
3
)
<<
"Setting descriptors."
;
std
::
vector
<
int
>
dims
;
std
::
vector
<
int
>
strides
;
dims
=
{
1
,
NxC
,
H
,
W
,
D
};
strides
=
{
NxC
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
data_desc_
,
CudnnDataType
<
T
>::
type
,
x_dims
.
size
()
>
3
?
x_dims
.
size
()
:
4
,
dims
.
data
(),
strides
.
data
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDeriveBNTensorDescriptor
(
in_param_desc_
,
data_desc_
,
CUDNN_BATCHNORM_SPATIAL
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
Tensor
scale_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
NxC
},
dev_ctx
);
scale_tmp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
bias_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
NxC
},
dev_ctx
);
bias_tmp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int
n
=
x
->
numel
();
const
int
block
=
512
;
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
const
int
max_blocks
=
std
::
max
(
max_threads
/
block
,
1
);
const
int
grid
=
std
::
min
((
NxC
+
block
-
1
)
/
block
,
max_blocks
);
repeat_param
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
scale
->
data
<
T
>
(),
scale_tmp
.
data
<
T
>
(),
N
,
C
);
repeat_param
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
bias
->
data
<
T
>
(),
bias_tmp
.
data
<
T
>
(),
N
,
C
);
auto
handle
=
dev_ctx
.
cudnn_handle
();
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
BatchNormParamType
<
T
>>
functor
;
auto
*
saved_mean
=
ctx
.
Output
<
Tensor
>
(
"SavedMean"
);
auto
*
saved_variance
=
ctx
.
Output
<
Tensor
>
(
"SavedVariance"
);
saved_mean
->
mutable_data
<
BatchNormParamType
<
T
>>
(
ctx
.
GetPlace
());
saved_variance
->
mutable_data
<
BatchNormParamType
<
T
>>
(
ctx
.
GetPlace
());
functor
(
dev_ctx
,
saved_mean
,
static_cast
<
BatchNormParamType
<
T
>>
(
0
));
functor
(
dev_ctx
,
saved_variance
,
static_cast
<
BatchNormParamType
<
T
>>
(
0
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnBatchNormalizationForwardTraining
(
handle
,
CUDNN_BATCHNORM_SPATIAL
,
CudnnDataType
<
T
>::
kOne
(),
CudnnDataType
<
T
>::
kZero
(),
data_desc_
,
x_tmp
.
template
data
<
T
>(),
data_desc_
,
y
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
in_param_desc_
,
scale_tmp
.
template
data
<
BatchNormParamType
<
T
>
>
(),
bias_tmp
.
template
data
<
BatchNormParamType
<
T
>
>
(),
0
,
nullptr
,
nullptr
,
epsilon
,
saved_mean
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()),
saved_variance
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
())));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
data_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
in_param_desc_
));
}
};
template
<
typename
T
>
class
InstanceNormGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
"It must use CUDAPlace."
);
double
epsilon
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
&
x_dims
=
x
->
dims
();
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
DataLayout
::
kNCHW
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
int
NxC
=
N
*
C
;
Tensor
x_tmp
,
d_y_tmp
;
x_tmp
.
ShareDataWith
(
*
x
).
Resize
({
1
,
NxC
,
H
,
W
,
D
});
d_y_tmp
.
ShareDataWith
(
*
d_y
).
Resize
({
1
,
NxC
,
H
,
W
,
D
});
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
d_scale
&&
d_bias
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
PADDLE_ENFORCE_EQ
(
scale
->
dims
().
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
scale
->
dims
()[
0
],
C
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
const
int
n
=
x
->
numel
();
const
int
block
=
512
;
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
const
int
max_blocks
=
std
::
max
(
max_threads
/
block
,
1
);
const
int
grid
=
std
::
min
(
NxC
,
max_blocks
);
const
int
grid1
=
(
C
+
block
-
1
)
/
block
;
Tensor
scale_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
NxC
},
dev_ctx
);
scale_tmp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
d_scale_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
NxC
},
dev_ctx
);
Tensor
d_bias_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
NxC
},
dev_ctx
);
repeat_param
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
scale
->
data
<
T
>
(),
scale_tmp
.
data
<
T
>
(),
N
,
C
);
std
::
vector
<
int
>
dims
;
std
::
vector
<
int
>
strides
;
dims
=
{
1
,
NxC
,
H
,
W
,
D
};
strides
=
{
NxC
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
if
((
H
*
W
*
D
)
==
1
)
{
framework
::
TensorCopy
(
*
d_y
,
ctx
.
GetPlace
(),
d_x
);
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
BatchNormParamType
<
T
>>
functor
;
functor
(
dev_ctx
,
d_scale
,
static_cast
<
BatchNormParamType
<
T
>>
(
0
));
functor
(
dev_ctx
,
d_bias
,
static_cast
<
BatchNormParamType
<
T
>>
(
0
));
return
;
}
cudnnTensorDescriptor_t
data_desc_
;
cudnnTensorDescriptor_t
in_param_desc_
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
data_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
in_param_desc_
));
if
(
epsilon
<=
CUDNN_BN_MIN_EPSILON
-
FLT_EPSILON
)
{
LOG
(
ERROR
)
<<
"Provided epsilon is smaller than "
<<
"CUDNN_BN_MIN_EPSILON. Setting it to "
<<
"CUDNN_BN_MIN_EPSILON instead."
;
}
epsilon
=
std
::
max
(
epsilon
,
CUDNN_BN_MIN_EPSILON
);
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
data_desc_
,
CudnnDataType
<
T
>::
type
,
x_dims
.
size
()
>
3
?
x_dims
.
size
()
:
4
,
dims
.
data
(),
strides
.
data
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDeriveBNTensorDescriptor
(
in_param_desc_
,
data_desc_
,
CUDNN_BATCHNORM_SPATIAL
));
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
saved_var
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
void
*
saved_mean_data
=
saved_mean
->
template
data
<
BatchNormParamType
<
T
>
>
();
const
void
*
saved_var_data
=
saved_var
->
template
data
<
BatchNormParamType
<
T
>
>
();
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnBatchNormalizationBackward
(
dev_ctx
.
cudnn_handle
(),
CUDNN_BATCHNORM_SPATIAL
,
CudnnDataType
<
T
>::
kOne
(),
CudnnDataType
<
T
>::
kZero
(),
CudnnDataType
<
T
>::
kOne
(),
CudnnDataType
<
T
>::
kZero
(),
data_desc_
,
x_tmp
.
template
data
<
T
>(),
data_desc_
,
d_y_tmp
.
template
data
<
T
>(),
data_desc_
,
d_x
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
in_param_desc_
,
scale_tmp
.
template
data
<
BatchNormParamType
<
T
>
>
(),
d_scale_tmp
.
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()),
d_bias_tmp
.
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()),
epsilon
,
saved_mean_data
,
saved_var_data
));
if
(
d_scale
&&
d_bias
)
{
add_param
<
T
,
block
,
false
><<<
grid1
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
d_scale_tmp
.
data
<
T
>
(),
d_scale
->
data
<
T
>
(),
N
,
C
);
add_param
<
T
,
block
,
false
><<<
grid1
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
d_bias_tmp
.
data
<
T
>
(),
d_bias
->
data
<
T
>
(),
N
,
C
);
}
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
data_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
in_param_desc_
));
}
};
static
__device__
__forceinline__
float
real_sqrt
(
float
x
)
{
return
1.
/
sqrtf
(
x
);
}
static
__device__
__forceinline__
double
real_sqrt
(
double
x
)
{
return
1.
/
sqrt
(
x
);
}
template
<
typename
T
,
int
BlockDim
>
__global__
void
DoubleGradComputeDX
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddx
,
const
T
*
dy
,
const
T
*
scale
,
const
T
*
ddscale
,
int
C
,
int
sample_size
,
const
double
epsilon
,
T
*
dx
)
{
int
beg_idx
=
blockIdx
.
x
*
sample_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
sample_size
;
int
ncid
=
blockIdx
.
x
;
int
c
=
ncid
%
C
;
T
mean_val
=
mean
[
ncid
];
T
var_val
=
variance
[
ncid
];
typedef
cub
::
BlockReduce
<
T
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
dy_storage
;
__shared__
typename
BlockReduce
::
TempStorage
ddx_storage
;
__shared__
typename
BlockReduce
::
TempStorage
dy_mul_ddx_storage
;
__shared__
typename
BlockReduce
::
TempStorage
dy_mul_x_sub_mean_storage
;
__shared__
typename
BlockReduce
::
TempStorage
ddx_mul_x_sub_mean_storage
;
__shared__
T
dy_sum_val
;
__shared__
T
ddx_sum_val
;
__shared__
T
dy_mul_ddx_sum_val
;
__shared__
T
dy_mul_x_sub_mean_sum_val
;
__shared__
T
ddx_mul_x_sub_mean_sum_val
;
T
dy_sum
=
0
;
T
ddx_sum
=
0
;
T
dy_mul_ddx_sum
=
0
;
T
dy_mul_x_sub_mean_sum
=
0
;
T
ddx_mul_x_sub_mean_sum
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
T
ddx_i
=
ddx
[
i
];
T
dy_i
=
dy
[
i
];
T
tmp
=
x
[
i
]
-
mean_val
;
dy_sum
+=
dy_i
;
ddx_sum
+=
ddx_i
;
dy_mul_ddx_sum
+=
(
ddx_i
*
dy_i
);
dy_mul_x_sub_mean_sum
+=
(
dy_i
*
tmp
);
ddx_mul_x_sub_mean_sum
+=
(
ddx_i
*
tmp
);
}
dy_sum
=
BlockReduce
(
dy_storage
).
Reduce
(
dy_sum
,
cub
::
Sum
());
ddx_sum
=
BlockReduce
(
ddx_storage
).
Reduce
(
ddx_sum
,
cub
::
Sum
());
dy_mul_ddx_sum
=
BlockReduce
(
dy_mul_ddx_storage
).
Reduce
(
dy_mul_ddx_sum
,
cub
::
Sum
());
dy_mul_x_sub_mean_sum
=
BlockReduce
(
dy_mul_x_sub_mean_storage
)
.
Reduce
(
dy_mul_x_sub_mean_sum
,
cub
::
Sum
());
ddx_mul_x_sub_mean_sum
=
BlockReduce
(
ddx_mul_x_sub_mean_storage
)
.
Reduce
(
ddx_mul_x_sub_mean_sum
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
dy_sum_val
=
dy_sum
;
ddx_sum_val
=
ddx_sum
;
dy_mul_ddx_sum_val
=
dy_mul_ddx_sum
;
dy_mul_x_sub_mean_sum_val
=
dy_mul_x_sub_mean_sum
;
ddx_mul_x_sub_mean_sum_val
=
ddx_mul_x_sub_mean_sum
;
}
__syncthreads
();
if
(
ddx
!=
nullptr
)
{
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
dx
[
i
]
+=
((
x
[
i
]
-
mean_val
)
*
var_val
*
var_val
*
var_val
/
sample_size
*
(
ddx_sum_val
*
dy_sum_val
/
sample_size
-
dy_mul_ddx_sum_val
+
3.
*
dy_mul_x_sub_mean_sum_val
*
var_val
*
ddx_mul_x_sub_mean_sum_val
*
var_val
/
sample_size
)
+
ddx_mul_x_sub_mean_sum_val
*
var_val
/
sample_size
*
var_val
*
var_val
*
(
dy_sum_val
/
sample_size
-
dy
[
i
])
+
dy_mul_x_sub_mean_sum_val
*
var_val
/
sample_size
*
var_val
*
var_val
*
(
ddx_sum_val
/
sample_size
-
ddx
[
i
]))
*
scale
[
c
];
}
}
__syncthreads
();
if
(
ddscale
!=
nullptr
)
{
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
dx
[
i
]
+=
(
dy
[
i
]
*
var_val
-
dy_sum_val
/
sample_size
*
var_val
-
(
x
[
i
]
-
mean_val
)
*
var_val
*
dy_mul_x_sub_mean_sum_val
*
var_val
/
sample_size
)
*
ddscale
[
c
];
}
}
}
template
<
typename
T
,
int
BlockDim
>
__global__
void
DoubleGradComputeDDY
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddscale
,
const
T
*
ddbias
,
const
T
*
ddx
,
const
T
*
scale
,
int
C
,
int
sample_size
,
const
double
epsilon
,
T
*
ddy
)
{
int
beg_idx
=
blockIdx
.
x
*
sample_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
sample_size
;
int
ncid
=
blockIdx
.
x
;
int
c
=
ncid
%
C
;
T
mean_val
=
mean
[
ncid
];
T
var_val
=
variance
[
ncid
];
typedef
cub
::
BlockReduce
<
T
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
ddx_storage
;
__shared__
typename
BlockReduce
::
TempStorage
ddx_mul_x_sub_mean_storage
;
__shared__
T
ddx_sum_val
;
__shared__
T
ddx_mul_x_sub_mean_sum_val
;
T
ddx_sum
=
0
;
T
ddx_mul_x_sub_mean_sum
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
T
ddx_i
=
ddx
[
i
];
ddx_sum
+=
ddx_i
;
ddx_mul_x_sub_mean_sum
+=
(
ddx_i
*
(
x
[
i
]
-
mean_val
));
}
ddx_sum
=
BlockReduce
(
ddx_storage
).
Reduce
(
ddx_sum
,
cub
::
Sum
());
ddx_mul_x_sub_mean_sum
=
BlockReduce
(
ddx_mul_x_sub_mean_storage
)
.
Reduce
(
ddx_mul_x_sub_mean_sum
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
ddx_sum_val
=
ddx_sum
;
ddx_mul_x_sub_mean_sum_val
=
ddx_mul_x_sub_mean_sum
;
}
__syncthreads
();
if
(
ddx
!=
nullptr
)
{
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
ddy
[
i
]
+=
scale
[
c
]
*
var_val
*
(
ddx
[
i
]
-
ddx_sum_val
/
sample_size
-
(
x
[
i
]
-
mean_val
)
*
var_val
*
ddx_mul_x_sub_mean_sum_val
*
var_val
/
sample_size
);
}
}
__syncthreads
();
if
(
ddscale
!=
nullptr
)
{
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
ddy
[
i
]
+=
(
x
[
i
]
-
mean_val
)
*
var_val
*
ddscale
[
c
];
}
}
__syncthreads
();
if
(
ddbias
!=
nullptr
)
{
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
ddy
[
i
]
+=
ddbias
[
c
];
}
}
}
template
<
typename
T
,
int
BlockDim
>
__global__
void
DoubleGradComputeDScale
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddx
,
const
T
*
dy
,
int
C
,
int
sample_size
,
const
double
epsilon
,
T
*
dscale
)
{
int
beg_idx
=
blockIdx
.
x
*
sample_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
sample_size
;
int
ncid
=
blockIdx
.
x
;
int
c
=
ncid
%
C
;
T
mean_val
=
mean
[
ncid
];
T
var_val
=
variance
[
ncid
];
typedef
cub
::
BlockReduce
<
T
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
dy_storage
;
__shared__
typename
BlockReduce
::
TempStorage
dy_mul_x_sub_mean_storage
;
__shared__
typename
BlockReduce
::
TempStorage
dscale_tmp_storage
;
__shared__
T
dy_sum_val
;
__shared__
T
dy_mul_x_sub_mean_sum_val
;
T
dy_sum
=
0
;
T
dy_mul_x_sub_mean_sum
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
T
dy_i
=
dy
[
i
];
dy_sum
+=
dy_i
;
dy_mul_x_sub_mean_sum
+=
(
dy_i
*
(
x
[
i
]
-
mean_val
));
}
dy_sum
=
BlockReduce
(
dy_storage
).
Reduce
(
dy_sum
,
cub
::
Sum
());
dy_mul_x_sub_mean_sum
=
BlockReduce
(
dy_mul_x_sub_mean_storage
)
.
Reduce
(
dy_mul_x_sub_mean_sum
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
dy_sum_val
=
dy_sum
;
dy_mul_x_sub_mean_sum_val
=
dy_mul_x_sub_mean_sum
;
}
__syncthreads
();
if
(
ddx
!=
nullptr
)
{
T
dscale_tmp
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
dscale_tmp
+=
ddx
[
i
]
*
var_val
*
(
dy
[
i
]
-
dy_sum_val
/
sample_size
-
dy_mul_x_sub_mean_sum_val
*
(
x
[
i
]
-
mean_val
)
*
var_val
*
var_val
/
sample_size
);
}
dscale_tmp
=
BlockReduce
(
dscale_tmp_storage
).
Reduce
(
dscale_tmp
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
dscale
[
ncid
]
+=
dscale_tmp
;
}
__syncthreads
();
}
}
template
<
typename
T
>
class
InstanceNormDoubleGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
Scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
dY
=
ctx
.
Input
<
Tensor
>
(
"DY"
);
const
auto
*
Saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
Saved_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
auto
*
running_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
running_var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
ddX
=
ctx
.
Input
<
Tensor
>
(
"DDX"
);
const
auto
*
ddScale
=
ctx
.
Input
<
Tensor
>
(
"DDScale"
);
const
auto
*
ddBias
=
ctx
.
Input
<
Tensor
>
(
"DDBias"
);
const
double
epsilon
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
"DX"
);
auto
*
dScale
=
ctx
.
Output
<
Tensor
>
(
"DScale"
);
auto
*
ddY
=
ctx
.
Output
<
Tensor
>
(
"DDY"
);
const
T
*
x_data
=
X
->
data
<
T
>
();
const
T
*
scale_data
=
Scale
->
data
<
T
>
();
const
T
*
dy_data
=
dY
->
data
<
T
>
();
const
T
*
ddx_data
=
(
ddX
==
nullptr
?
nullptr
:
ddX
->
data
<
T
>
());
const
T
*
ddscale_data
=
(
ddScale
==
nullptr
?
nullptr
:
ddScale
->
data
<
T
>
());
const
T
*
ddbias_data
=
(
ddScale
==
nullptr
?
nullptr
:
ddBias
->
data
<
T
>
());
const
T
*
mean_data
=
Saved_mean
->
data
<
T
>
();
const
T
*
variance_data
=
Saved_variance
->
data
<
T
>
();
auto
&
x_dims
=
X
->
dims
();
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
DataLayout
::
kNCHW
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
int
NxC
=
N
*
C
;
const
int
n
=
X
->
numel
();
int
sample_size
=
n
/
N
/
C
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
const
int
block
=
512
;
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
const
int
max_blocks
=
std
::
max
(
max_threads
/
block
,
1
);
const
int
grid
=
NxC
;
const
int
grid1
=
(
C
+
block
-
1
)
/
block
;
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
if
(
dX
)
{
T
*
dx_data
=
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
dX
,
static_cast
<
T
>
(
0
));
DoubleGradComputeDX
<
T
,
block
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
variance_data
,
ddx_data
,
dy_data
,
scale_data
,
ddscale_data
,
C
,
sample_size
,
epsilon
,
dx_data
);
}
if
(
dScale
)
{
Tensor
dscale_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
NxC
},
dev_ctx
);
set_zero
(
dev_ctx
,
&
dscale_tmp
,
static_cast
<
T
>
(
0
));
T
*
dscale_tmp_data
=
dscale_tmp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
dscale_data
=
dScale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
dScale
,
static_cast
<
T
>
(
0
));
DoubleGradComputeDScale
<
T
,
block
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
variance_data
,
ddx_data
,
dy_data
,
C
,
sample_size
,
epsilon
,
dscale_tmp_data
);
add_param
<
T
,
block
,
false
><<<
grid1
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
dscale_tmp
.
data
<
T
>
(),
dScale
->
data
<
T
>
(),
N
,
C
);
}
if
(
ddY
)
{
T
*
ddy_data
=
ddY
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
ddY
,
static_cast
<
T
>
(
0
));
DoubleGradComputeDDY
<
T
,
block
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
variance_data
,
ddscale_data
,
ddbias_data
,
ddx_data
,
scale_data
,
C
,
sample_size
,
epsilon
,
ddy_data
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
instance_norm
,
ops
::
InstanceNormKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
InstanceNormKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
instance_norm_grad
,
ops
::
InstanceNormGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
InstanceNormGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
instance_norm_grad_grad
,
ops
::
InstanceNormDoubleGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
InstanceNormDoubleGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/instance_norm_op.h
0 → 100644
浏览文件 @
4155e625
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/norm_utils.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
EigenArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
;
template
<
typename
T
>
using
ConstEigenArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
;
template
<
typename
T
>
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>>
;
template
<
typename
T
>
using
ConstEigenVectorArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>>
;
class
InstanceNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
InstanceNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
InstanceNormDoubleGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
InstanceNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
class
InstanceNormGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
;
};
class
InstanceNormDoubleGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
;
};
class
InstanceNormOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>
GetInputOutputWithSameType
()
const
override
{
return
std
::
unordered_map
<
std
::
string
,
std
::
string
>
{{
"X"
,
"Y"
}};
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
InstanceNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
InstanceNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
InstanceNormDoubleGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/norm_utils.h
0 → 100644
浏览文件 @
4155e625
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
DataLayout
=
framework
::
DataLayout
;
inline
void
ExtractNCWHD
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
data_layout
,
int
*
N
,
int
*
C
,
int
*
H
,
int
*
W
,
int
*
D
)
{
*
N
=
dims
[
0
];
if
(
dims
.
size
()
==
2
)
{
*
C
=
dims
[
1
];
*
H
=
1
;
*
W
=
1
;
*
D
=
1
;
}
else
{
*
C
=
data_layout
==
DataLayout
::
kNCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
*
H
=
data_layout
==
DataLayout
::
kNCHW
?
dims
[
2
]
:
dims
[
1
];
*
W
=
dims
.
size
()
>
3
?
(
data_layout
==
DataLayout
::
kNCHW
?
dims
[
3
]
:
dims
[
2
])
:
1
;
*
D
=
dims
.
size
()
>
4
?
(
data_layout
==
DataLayout
::
kNCHW
?
dims
[
4
]
:
dims
[
3
])
:
1
;
}
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/sync_batch_norm_op.cu
浏览文件 @
4155e625
...
@@ -20,6 +20,7 @@ limitations under the License. */
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/norm_utils.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
4155e625
...
@@ -61,6 +61,7 @@ __all__ = [
...
@@ -61,6 +61,7 @@ __all__ = [
'adaptive_pool2d',
'adaptive_pool2d',
'adaptive_pool3d',
'adaptive_pool3d',
'batch_norm',
'batch_norm',
'instance_norm',
'data_norm',
'data_norm',
'beam_search_decode',
'beam_search_decode',
'conv2d_transpose',
'conv2d_transpose',
...
@@ -3498,6 +3499,128 @@ def batch_norm(input,
...
@@ -3498,6 +3499,128 @@ def batch_norm(input,
return helper.append_activation(batch_norm_out)
return helper.append_activation(batch_norm_out)
def instance_norm(input,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
name=None):
"""
**Instance Normalization Layer**
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
DataLayout: NCHW `[batch, in_channels, in_height, in_width]`
Refer to `Instance Normalization: The Missing Ingredient for
Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
for more details.
:math:`input` is the input features over a mini-batch.
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
\\ mean of one feature map in mini-batch \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ variance of one feature map in mini-batch \\\\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
When use_global_stats = True, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
They are global (or running) statistics. (It usually got from the
pre-trained model.)
The training and testing (or inference) have the same behavior:
.. math::
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta
Args:
input(variable): The rank of input variable can be 2, 3, 4, 5.
epsilon(float, Default 1e-05): A value added to the denominator for
numerical stability. Default is 1e-5.
param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
If the Initializer of the param_attr is not set, the parameter is initialized
with Xavier. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
Default: None.
name(string, Default None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: A tensor variable which is the result after applying instance normalization on the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
hidden2 = fluid.layers.instance_norm(input=hidden1)
"""
assert bias_attr is not False, "bias_attr should not be False in instance_norm."
helper = LayerHelper('instance_norm', **locals())
dtype = helper.input_dtype()
# use fp32 for in parameter
if dtype == core.VarDesc.VarType.FP16:
dtype = core.VarDesc.VarType.FP32
input_shape = input.shape
channel_num = input_shape[1]
param_shape = [channel_num]
# create parameter
scale = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
default_initializer=Constant(1.0))
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=param_shape,
dtype=dtype,
is_bias=True,
default_initializer=Constant(0.0))
# create output
saved_mean = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
saved_variance = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
instance_norm_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="instance_norm",
inputs={
"X": input,
"Scale": scale,
"Bias": bias,
},
outputs={
"Y": instance_norm_out,
"SavedMean": saved_mean,
"SavedVariance": saved_variance
},
attrs={"epsilon": epsilon, })
return instance_norm_out
def data_norm(input,
def data_norm(input,
act=None,
act=None,
epsilon=1e-05,
epsilon=1e-05,
...
...
python/paddle/fluid/tests/unittests/test_instance_norm_op.py
0 → 100644
浏览文件 @
4155e625
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.op
import
Operator
from
op_test
import
OpTest
def
_reference_instance_norm_naive
(
x
,
scale
,
bias
,
epsilon
,
mean
,
var
):
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
2
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
x
.
shape
[
1
],
1
,
1
))
n
,
c
,
h
,
w
=
x
.
shape
mean_tile
=
np
.
reshape
(
mean
,
(
n
,
c
,
1
,
1
))
mean_tile
=
np
.
tile
(
mean_tile
,
(
1
,
1
,
h
,
w
))
var_tile
=
np
.
reshape
(
var
,
(
n
,
c
,
1
,
1
))
var_tile
=
np
.
tile
(
var_tile
,
(
1
,
1
,
h
,
w
))
x_norm
=
(
x
-
mean_tile
)
/
np
.
sqrt
(
var_tile
+
epsilon
).
astype
(
'float32'
)
scale_tile
=
np
.
reshape
(
scale
,
(
1
,
c
,
1
,
1
))
scale_tile
=
np
.
tile
(
scale_tile
,
(
n
,
1
,
h
,
w
))
bias_tile
=
np
.
reshape
(
bias
,
(
1
,
c
,
1
,
1
))
bias_tile
=
np
.
tile
(
bias_tile
,
(
n
,
1
,
h
,
w
))
y
=
scale_tile
*
x_norm
+
bias_tile
if
len
(
x_shape
)
==
2
:
y
=
np
.
reshape
(
y
,
x_shape
)
return
y
,
mean
,
var
def
_reference_instance_norm_grad
(
x
,
d_y
,
scale
,
mean
,
var
,
epsilon
):
# d_scale = sum(d_y * (x-mean) / sqrt(var+epsilon))
# d_offset = sum(d_y)
# d_x = scale / sqrt(var+epsilon) * (d_y - np.mean(d_y, axis=(2,3)) - (x-mean)/sqrt(var+epsilon)* np.mean(y_grad * (x-mean)/sqrt(var+epsilon), axis=(2,3)))
n
,
c
,
h
,
w
=
x
.
shape
d_bias
=
np
.
sum
(
d_y
,
axis
=
(
0
,
2
,
3
))
mean_tile
=
np
.
reshape
(
mean
,
(
n
,
c
,
1
,
1
))
mean_tile
=
np
.
tile
(
mean_tile
,
(
1
,
1
,
h
,
w
))
var_tile
=
np
.
reshape
(
var
,
(
n
,
c
,
1
,
1
))
var_tile
=
np
.
tile
(
var_tile
,
(
1
,
1
,
h
,
w
))
d_scale
=
np
.
sum
(
d_y
*
(
x
-
mean_tile
)
*
var_tile
,
axis
=
(
0
,
2
,
3
))
var_inv
=
var_tile
scale_tile
=
np
.
reshape
(
scale
,
(
1
,
c
,
1
,
1
))
scale_tile
=
np
.
tile
(
scale_tile
,
(
n
,
1
,
h
,
w
))
d_x
=
scale_tile
*
var_inv
*
(
d_y
-
np
.
mean
(
d_y
,
axis
=
(
2
,
3
),
keepdims
=
True
)
-
(
x
-
mean_tile
)
*
var_inv
*
np
.
mean
(
d_y
*
(
x
-
mean_tile
)
*
var_inv
,
axis
=
(
2
,
3
),
keepdims
=
True
))
return
d_x
,
d_scale
,
d_bias
def
_cal_mean_variance
(
x
,
epsilon
,
mean_shape
):
mean
=
np
.
reshape
(
np
.
mean
(
x
,
axis
=
(
2
,
3
)),
mean_shape
)
var
=
np
.
reshape
(
np
.
var
(
x
,
axis
=
(
2
,
3
)),
mean_shape
)
return
mean
,
var
class
TestInstanceNormOpTraining
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
epsilon
=
1e-5
self
.
init_test_case
()
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
set_global_mean_var
(
self
,
mean_shape
,
x
):
mean
,
variance
=
_cal_mean_variance
(
x
,
self
.
epsilon
,
mean_shape
)
return
mean
,
variance
def
test_forward_backward
(
self
):
def
test_with_place
(
place
,
shape
):
epsilon
=
self
.
epsilon
n
,
c
,
h
,
w
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
scale_shape
=
[
c
]
mean_shape
=
[
n
*
c
]
np
.
random
.
seed
()
x
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
scale
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
,
variance
=
self
.
set_global_mean_var
(
mean_shape
,
x
)
d_y
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
y
,
saved_mean
,
variance_tmp
=
_reference_instance_norm_naive
(
x
,
scale
,
bias
,
epsilon
,
mean
,
variance
)
saved_variance
=
1
/
np
.
sqrt
(
variance_tmp
+
epsilon
)
d_x
,
d_scale
,
d_bias
=
_reference_instance_norm_grad
(
x
,
d_y
,
scale
,
saved_mean
,
saved_variance
,
epsilon
)
var_dict
=
locals
()
var_dict
[
'y@GRAD'
]
=
d_y
var_dict
[
'x@GRAD'
]
=
d_x
var_dict
[
'scale@GRAD'
]
=
d_scale
var_dict
[
'bias@GRAD'
]
=
d_bias
var_names
=
[
'x'
,
'scale'
,
'bias'
,
'y'
,
'saved_mean'
,
'saved_variance'
]
ground_truth
=
{
name
:
var_dict
[
name
]
for
name
in
var_names
}
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
block
=
program
.
global_block
()
for
name
in
ground_truth
:
block
.
create_var
(
name
=
name
,
dtype
=
'float32'
,
shape
=
ground_truth
[
name
].
shape
)
in_op
=
block
.
append_op
(
type
=
"instance_norm"
,
inputs
=
{
"X"
:
block
.
var
(
"x"
),
"Scale"
:
block
.
var
(
"scale"
),
"Bias"
:
block
.
var
(
"bias"
),
},
outputs
=
{
"Y"
:
block
.
var
(
"y"
),
"SavedMean"
:
block
.
var
(
"saved_mean"
),
"SavedVariance"
:
block
.
var
(
"saved_variance"
)
},
attrs
=
{
"epsilon"
:
epsilon
,
})
block
.
create_var
(
name
=
"y@GRAD"
,
dtype
=
'float32'
,
shape
=
y
.
shape
)
grad_op_desc_list
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
in_op
.
desc
,
self
.
no_grad_set
,
[])
grad_op_desc
=
grad_op_desc_list
[
0
]
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
grad_op_desc
)
for
var_name
in
grad_op_desc
.
output_arg_names
():
block
.
desc
.
var
(
var_name
.
encode
(
"ascii"
))
grad_op_desc
.
infer_var_type
(
block
.
desc
)
grad_op_desc
.
infer_shape
(
block
.
desc
)
for
arg
in
grad_op_desc
.
output_arg_names
():
grad_var
=
block
.
desc
.
find_var
(
arg
.
encode
(
"ascii"
))
grad_var
.
set_dtype
(
core
.
VarDesc
.
VarType
.
FP32
)
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
program
,
feed
=
{
name
:
var_dict
[
name
]
for
name
in
[
'x'
,
'scale'
,
'bias'
,
'y@GRAD'
]
},
fetch_list
=
self
.
fetch_list
)
for
id
,
name
in
enumerate
(
self
.
fetch_list
):
self
.
__assert_close
(
var_dict
[
name
],
out
[
id
],
name
)
print
(
"op test forward passes: "
,
str
(
place
))
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
()
and
core
.
op_support_gpu
(
"instance_norm"
):
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
test_with_place
(
place
,
[
2
,
3
,
4
,
5
])
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_norm_nn_grad.py
0 → 100644
浏览文件 @
4155e625
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
gradient_checker
from
decorator_helper
import
prog_scope
class
TestInstanceNormDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
):
np
.
random
.
seed
()
shape
=
[
2
,
3
,
4
,
5
]
dtype
=
"float32"
eps
=
0.005
atol
=
1e-4
x
=
layers
.
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
name
=
'x'
)
z
=
fluid
.
layers
.
instance_norm
(
input
=
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
z
,
x_init
=
x_arr
,
atol
=
atol
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录