Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3fd6f09f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3fd6f09f
编写于
7月 06, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
7月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT] support inpus is weight (#44051)
* support inpus is weight
上级
d520029f
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
140 addition
and
35 deletion
+140
-35
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+131
-34
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+9
-0
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
+0
-1
未找到文件。
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
3fd6f09f
...
...
@@ -230,10 +230,54 @@ class OpConverter {
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
mut_
);
for
(
int
i
=
0
;
i
<
block
.
ops_size
();
i
++
)
{
SetEngine
(
engine
);
const
auto
&
op
=
block
.
ops
(
i
);
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
framework
::
Variable
*
X_v
=
nullptr
;
std
::
string
X_name
;
// inputs : string -> std::vector<string>
auto
inputs
=
op_desc
.
Inputs
();
if
(
inputs
.
count
(
"X"
))
{
X_name
=
op_desc
.
Input
(
"X"
)[
0
];
}
else
if
(
inputs
.
count
(
"Input"
))
{
X_name
=
op_desc
.
Input
(
"Input"
)[
0
];
}
else
if
(
inputs
.
count
(
"Y"
))
{
X_name
=
op_desc
.
Input
(
"Y"
)[
0
];
}
X_v
=
scope
.
FindVar
(
X_name
);
// If this weight is shared between ops, it needn't to be convtered to
// itensor once again
if
(
engine
->
GetITensorMap
()
->
count
(
X_name
))
{
continue
;
}
if
(
X_v
)
{
ConvertWeight2ITensor
(
scope
,
X_name
);
}
}
for
(
int
i
=
0
;
i
<
block
.
ops_size
();
i
++
)
{
const
auto
&
op
=
block
.
ops
(
i
);
ConvertOp
(
op
,
parameters
,
scope
,
engine
);
}
for
(
int
i
=
0
;
i
<
engine
->
network
()
->
getNbLayers
();
i
++
)
{
auto
layer
=
engine
->
network
()
->
getLayer
(
i
);
if
(
layer
->
getType
()
==
nvinfer1
::
LayerType
::
kSHUFFLE
)
{
auto
*
input_tensor
=
layer
->
getInput
(
0
);
auto
*
output_tensor
=
layer
->
getOutput
(
0
);
auto
output_tensor_name
=
output_tensor
->
getName
();
auto
input_tensor_name
=
input_tensor
->
getName
();
if
(
engine
->
DynamicRangeIsSet
(
input_tensor
)
&&
!
engine
->
DynamicRangeIsSet
(
output_tensor
))
{
float
output_scale
=
engine
->
GetTensorDynamicRange
(
input_tensor
);
VLOG
(
1
)
<<
"Set output tensor scale = "
<<
output_scale
<<
" for tensor in TensorRT: "
<<
output_tensor_name
<<
"."
;
engine
->
SetTensorDynamicRange
(
output_tensor
,
output_scale
);
}
else
{
VLOG
(
1
)
<<
"Failed to get input tensor scale for tensor in TensorRT: "
<<
input_tensor_name
<<
"."
;
}
}
}
}
// The scope here should be inited with the parameter vars.
...
...
@@ -273,8 +317,8 @@ class OpConverter {
continue
;
}
std
::
vector
<
int64_t
>
input_shape
;
input_shape
.
push_back
(
-
1
);
for
(
size_t
i
=
1
;
i
<
ranks
;
i
++
)
{
//
input_shape.push_back(-1);
for
(
size_t
i
=
0
;
i
<
ranks
;
i
++
)
{
if
(
min_input_shape
[
i
]
!=
max_input_shape
[
i
])
{
input_shape
.
push_back
(
-
1
);
}
else
{
...
...
@@ -402,6 +446,17 @@ class OpConverter {
return
c
;
}
nvinfer1
::
ITensor
*
FloorDiv
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ITensor
*
b
)
{
nvinfer1
::
ITensor
*
c
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
a
,
*
b
,
nvinfer1
::
ElementWiseOperation
::
kFLOOR_DIV
)
->
getOutput
(
0
);
return
c
;
}
nvinfer1
::
ITensor
*
Act
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ActivationType
act_type
)
{
nvinfer1
::
ITensor
*
c
=
...
...
@@ -422,22 +477,27 @@ class OpConverter {
->
getOutput
(
0
);
return
tensor
;
}
// Create and add Multi-D constant float layer
nvinfer1
::
ITensor
*
AddConstantLayer
(
const
float
*
data
,
template
<
typename
T
>
// Create and add Multi-D constant float
/int32
layer
nvinfer1
::
ITensor
*
AddConstantLayer
(
const
T
*
data
,
const
std
::
vector
<
int32_t
>&
weight_dims
,
const
std
::
string
&
weight_name
)
{
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
int
data_size
=
std
::
accumulate
(
weight_dims
.
begin
(),
weight_dims
.
end
(),
1
,
std
::
multiplies
<
int
>
());
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
tmp_tensor
->
Resize
({
data_size
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
data
[
i
];
}
engine_
->
SetWeights
(
weight_name
,
std
::
move
(
tmp_tensor
));
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
nvinfer1
::
DataType
trt_dtype
=
nvinfer1
::
DataType
::
kFLOAT
;
if
(
std
::
is_integral
<
T
>::
value
)
{
trt_dtype
=
nvinfer1
::
DataType
::
kINT32
;
}
TensorRTEngine
::
Weight
weight
{
trt_dtype
,
static_cast
<
void
*>
(
tmp_data
),
static_cast
<
size_t
>
(
data_size
)};
nvinfer1
::
Dims
trt_dims
;
...
...
@@ -449,44 +509,26 @@ class OpConverter {
return
const_layer
->
getOutput
(
0
);
}
// Create and add 1D constant float layer
nvinfer1
::
ITensor
*
Add1DConstantLayer
(
const
std
::
vector
<
float
>&
data
,
// Create and add 1D constant float/int32 layer
template
<
typename
T
>
nvinfer1
::
ITensor
*
Add1DConstantLayer
(
const
std
::
vector
<
T
>&
data
,
const
std
::
string
&
weight_name
=
""
,
bool
scalar
=
false
)
{
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
int
data_size
=
data
.
size
();
tmp_tensor
->
Resize
({
data_size
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
data
[
i
];
}
engine_
->
SetWeights
(
weight_name
,
std
::
move
(
tmp_tensor
));
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
tmp_data
),
static_cast
<
size_t
>
(
data_size
)};
nvinfer1
::
Dims
input_shape
;
input_shape
.
nbDims
=
scalar
?
0
:
1
;
input_shape
.
d
[
0
]
=
data_size
;
auto
const_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
input_shape
,
weight
.
get
());
return
const_layer
->
getOutput
(
0
);
}
// Create and add 1D constant layer
nvinfer1
::
ITensor
*
Add1DConstantLayer
(
const
std
::
vector
<
int
>&
data
,
const
std
::
string
&
weight_name
=
""
,
bool
scalar
=
false
)
{
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
int
data_size
=
data
.
size
();
tmp_tensor
->
Resize
({
data_size
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
int
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
data
[
i
];
nvinfer1
::
DataType
trt_dtype
=
nvinfer1
::
DataType
::
kFLOAT
;
if
(
std
::
is_integral
<
T
>::
value
)
{
trt_dtype
=
nvinfer1
::
DataType
::
kINT32
;
}
engine_
->
SetWeights
(
weight_name
,
std
::
move
(
tmp_tensor
));
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kINT32
,
TensorRTEngine
::
Weight
weight
{
trt_dtype
,
static_cast
<
void
*>
(
tmp_data
),
static_cast
<
size_t
>
(
data_size
)};
nvinfer1
::
Dims
input_shape
;
...
...
@@ -513,6 +555,61 @@ class OpConverter {
return
Add1DConstantLayer
(
tmp_data
,
weight_name
,
scalar
);
}
// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1
::
ITensor
*
ConvertWeight2ITensor
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
)
{
auto
*
var_v
=
scope
.
FindVar
(
name
);
auto
*
var_t
=
var_v
->
GetMutable
<
framework
::
LoDTensor
>
();
void
*
trt_ptr
=
nullptr
;
size_t
trt_num
=
static_cast
<
size_t
>
(
var_t
->
numel
());
nvinfer1
::
DataType
trt_dtype
=
nvinfer1
::
DataType
::
kFLOAT
;
if
(
var_t
->
dtype
()
==
phi
::
DataType
::
FLOAT32
)
{
float
*
data_ptr
=
engine_
->
GetWeightCPUData
(
name
,
var_t
);
trt_ptr
=
static_cast
<
void
*>
(
data_ptr
);
}
else
if
(
var_t
->
dtype
()
==
phi
::
DataType
::
INT32
)
{
int32_t
*
data_ptr
=
engine_
->
GetWeightCPUData
<
int32_t
>
(
name
,
var_t
);
trt_ptr
=
static_cast
<
void
*>
(
data_ptr
);
trt_dtype
=
nvinfer1
::
DataType
::
kINT32
;
}
else
if
(
var_t
->
dtype
()
==
phi
::
DataType
::
INT64
)
{
int64_t
*
data_ptr
=
engine_
->
GetWeightCPUData
<
int64_t
>
(
name
,
var_t
);
// We must create a new framework::Tensor()
std
::
unique_ptr
<
framework
::
Tensor
>
new_var_t
(
new
framework
::
Tensor
());
new_var_t
->
Resize
({
var_t
->
numel
()});
int32_t
*
new_data_ptr
=
new_var_t
->
mutable_data
<
int32_t
>
(
platform
::
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
trt_num
;
i
++
)
{
new_data_ptr
[
i
]
=
data_ptr
[
i
];
}
engine_
->
SetWeights
(
name
,
std
::
move
(
new_var_t
));
trt_ptr
=
static_cast
<
void
*>
(
new_data_ptr
);
trt_dtype
=
nvinfer1
::
DataType
::
kINT32
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported datatype in TensorRT"
));
}
// Now we have create weights, then we need create a itensor
auto
var_dims
=
var_t
->
dims
();
nvinfer1
::
Dims
trt_in_shape
;
trt_in_shape
.
nbDims
=
var_t
->
dims
().
size
();
for
(
int64_t
i
=
0
;
i
<
trt_in_shape
.
nbDims
;
i
++
)
{
trt_in_shape
.
d
[
i
]
=
var_dims
[
i
];
}
// In fact , this is not always right, because we can't determine if the 0th
// dimension is batch. Just for run chenqu's model
if
(
!
engine_
->
with_dynamic_shape
())
{
trt_in_shape
.
nbDims
--
;
for
(
int
i
=
0
;
i
<
trt_in_shape
.
nbDims
;
i
++
)
{
trt_in_shape
.
d
[
i
]
=
trt_in_shape
.
d
[
i
+
1
];
}
}
TensorRTEngine
::
Weight
weight
{
trt_dtype
,
trt_ptr
,
trt_num
};
nvinfer1
::
ILayer
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
trt_in_shape
,
weight
.
get
());
engine_
->
SetITensor
(
name
,
layer
->
getOutput
(
0
));
return
layer
->
getOutput
(
0
);
}
void
RreplenishLayerAndOutput
(
nvinfer1
::
ILayer
*
layer
,
const
std
::
string
&
layer_type
,
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
3fd6f09f
...
...
@@ -406,6 +406,15 @@ class TensorRTEngine {
void
SetTensorDynamicRange
(
nvinfer1
::
ITensor
*
tensor
,
float
range
)
{
quant_dynamic_range_
[
tensor
]
=
range
;
}
float
GetTensorDynamicRange
(
nvinfer1
::
ITensor
*
tensor
)
{
return
quant_dynamic_range_
[
tensor
];
}
bool
DynamicRangeIsSet
(
nvinfer1
::
ITensor
*
tensor
)
{
return
quant_dynamic_range_
.
count
(
tensor
);
}
template
<
typename
T
=
float
>
T
*
GetWeightCPUData
(
const
std
::
string
&
name
,
framework
::
Tensor
*
weight_tensor
);
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
浏览文件 @
3fd6f09f
...
...
@@ -150,7 +150,6 @@ void DynamicShapeTest(bool allow_build_at_runtime) {
else
CreateCUDATensor
(
&
scope
,
"x"
,
std
::
vector
<
int64_t
>
({
2
,
4
,
1
,
1
}));
CreateCUDATensor
(
&
scope
,
"y"
,
std
::
vector
<
int64_t
>
({
4
,
6
}));
CreateCUDATensor
(
&
scope
,
"z"
,
std
::
vector
<
int64_t
>
({
2
,
6
}));
CreateCUDATensor
(
&
scope
,
"y0"
,
std
::
vector
<
int64_t
>
({
6
,
8
}));
CreateCUDATensor
(
&
scope
,
"z0"
,
std
::
vector
<
int64_t
>
({
2
,
8
}));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录