Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3e840842
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3e840842
编写于
12月 27, 2018
作者:
X
Xin Pan
提交者:
GitHub
12月 27, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15053 from panyx0718/imperative_hold
refactor to avoid scope.
上级
e26cced7
f7294f8b
变更
14
显示空白变更内容
内联
并排
Showing
14 changed file
with
417 addition
and
305 deletion
+417
-305
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+7
-10
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+6
-1
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+69
-123
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+78
-29
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+95
-54
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+29
-51
paddle/fluid/operators/fill_constant_op.cu.cc
paddle/fluid/operators/fill_constant_op.cu.cc
+22
-0
paddle/fluid/operators/fill_constant_op.h
paddle/fluid/operators/fill_constant_op.h
+64
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+1
-4
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+8
-4
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+17
-20
python/paddle/fluid/imperative/base.py
python/paddle/fluid/imperative/base.py
+1
-2
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+17
-6
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+3
-1
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
3e840842
...
...
@@ -16,7 +16,6 @@ limitations under the License. */
#include <glog/logging.h>
#include <algorithm>
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
...
...
@@ -1041,12 +1040,11 @@ Scope* OperatorWithKernel::PrepareData(
proto
::
VarType
::
Type
OperatorWithKernel
::
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
{
auto
&
scope
=
ctx
.
scope
();
int
data_type
=
-
1
;
std
::
string
last_input_name
;
for
(
auto
&
input
:
this
->
inputs_
)
{
for
(
auto
&
ipt_name
:
input
.
second
)
{
auto
*
var
=
scope
.
FindVar
(
ipt_name
);
const
std
::
vector
<
const
Variable
*>
vars
=
ctx
.
MultiInputVar
(
input
.
first
);
for
(
size_t
i
=
0
;
i
<
vars
.
size
();
++
i
)
{
const
Variable
*
var
=
vars
[
i
];
if
(
var
!=
nullptr
)
{
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
...
...
@@ -1057,15 +1055,14 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
t
=
&
(
var
->
Get
<
SelectedRows
>
().
value
());
}
if
(
t
!=
nullptr
)
{
PADDLE_ENFORCE
(
t
->
IsInitialized
(),
"Input %s
is not initialized"
,
i
pt_name
);
PADDLE_ENFORCE
(
t
->
IsInitialized
(),
"Input %s
(%lu)
is not initialized"
,
i
nput
.
first
,
i
);
int
tmp
=
static_cast
<
int
>
(
t
->
type
());
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
"DataType of Paddle Op %s must be the same. Get
%s(%d) != %s
(%d)"
,
Type
(),
last_input_name
,
data_type
,
ipt_nam
e
,
tmp
);
"DataType of Paddle Op %s must be the same. Get
(%d) !=
(%d)"
,
Type
(),
data_typ
e
,
tmp
);
data_type
=
tmp
;
last_input_name
=
ipt_name
;
}
}
}
...
...
paddle/fluid/framework/operator.h
浏览文件 @
3e840842
...
...
@@ -81,6 +81,10 @@ class RuntimeContext {
RuntimeContext
(
const
VariableNameMap
&
innames
,
const
VariableNameMap
&
outnames
,
const
Scope
&
scope
);
RuntimeContext
(
const
VariableValueMap
&
invars
,
const
VariableValueMap
&
outvars
)
:
inputs
(
invars
),
outputs
(
outvars
)
{}
VariableValueMap
inputs
;
VariableValueMap
outputs
;
};
...
...
@@ -447,8 +451,9 @@ class OperatorWithKernel : public OperatorBase {
void
RuntimeInferShape
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
,
const
RuntimeContext
&
ctx
)
const
override
;
protected:
virtual
OpKernelType
GetExpectedKernelType
(
const
ExecutionContext
&
ctx
)
const
;
protected:
virtual
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
Tensor
&
tensor
,
const
OpKernelType
&
expected_kernel_type
)
const
;
...
...
paddle/fluid/imperative/layer.cc
浏览文件 @
3e840842
...
...
@@ -42,13 +42,9 @@ void AddTo(Variable* src, Variable* dst) {
class
Autograd
{
public:
explicit
Autograd
(
framework
::
Scope
*
scope
)
:
scope_
(
scope
)
{}
Autograd
(
)
{}
void
RunBackward
(
VarBase
*
var
)
{
PADDLE_ENFORCE
(
var
->
pre_op_
->
op_desc_
);
// TODO(panyx0718): Only create for vars that "require_grad"
(
*
var
->
pre_op_
->
output_vars_
)[
var
->
pre_op_out_idx_
]
->
grads_
=
var
->
grads_
;
std
::
deque
<
OpBase
*>
ready
;
ready
.
push_back
(
var
->
pre_op_
);
...
...
@@ -57,11 +53,14 @@ class Autograd {
while
(
!
ready
.
empty
())
{
OpBase
*
ready_op
=
ready
.
front
();
ready
.
pop_front
();
std
::
vector
<
Variable
*>
input_grads
=
ready_op
->
ApplyGrad
(
scope_
);
for
(
size_t
i
=
0
;
i
<
input_grads
.
size
();
++
i
)
{
if
(
!
input_grads
[
i
])
continue
;
OpBase
*
pre_op
=
ready_op
->
pre_ops_
->
at
(
i
);
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_grads
=
ready_op
->
ApplyGrad
();
for
(
auto
it
:
input_grads
)
{
const
std
::
vector
<
VarBase
*>&
ingrads
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
ingrads
.
size
();
++
i
)
{
if
(
!
ingrads
[
i
])
continue
;
OpBase
*
pre_op
=
ready_op
->
pre_ops_
[
it
.
first
][
i
];
if
(
!
pre_op
)
continue
;
dep_counts
[
pre_op
]
-=
1
;
...
...
@@ -73,6 +72,7 @@ class Autograd {
}
}
}
}
private:
std
::
map
<
OpBase
*
,
int
>
ComputeDepCounts
(
OpBase
*
op
)
{
...
...
@@ -85,7 +85,8 @@ class Autograd {
while
(
!
queue
.
empty
())
{
OpBase
*
candidate
=
queue
.
front
();
queue
.
pop_front
();
for
(
OpBase
*
pre_op
:
*
(
candidate
->
pre_ops_
))
{
for
(
auto
it
:
candidate
->
pre_ops_
)
{
for
(
OpBase
*
pre_op
:
it
.
second
)
{
if
(
!
pre_op
)
continue
;
if
(
visited
.
find
(
pre_op
)
==
visited
.
end
())
{
visited
.
insert
(
pre_op
);
...
...
@@ -94,129 +95,74 @@ class Autograd {
ret
[
pre_op
]
+=
1
;
}
}
}
return
ret
;
}
framework
::
Scope
*
scope_
;
};
framework
::
Variable
*
CreateVariable
(
const
std
::
string
&
name
,
const
framework
::
DDim
&
dim
,
float
val
,
framework
::
Scope
*
scope
,
bool
random_name
=
true
)
{
std
::
string
varname
=
name
;
if
(
random_name
)
{
std
::
mt19937
rng
;
rng
.
seed
(
std
::
random_device
()());
std
::
uniform_int_distribution
<
std
::
mt19937
::
result_type
>
dist6
(
1
,
std
::
numeric_limits
<
int
>::
max
());
int
id
=
dist6
(
rng
);
varname
=
string
::
Sprintf
(
"%s@%d"
,
varname
,
id
);
}
VLOG
(
3
)
<<
"creating var "
<<
varname
;
framework
::
Variable
*
var
=
scope
->
Var
(
varname
);
framework
::
LoDTensor
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
float
*
data
=
tensor
->
mutable_data
<
float
>
(
dim
,
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
tensor
->
numel
(),
val
);
return
var
;
}
framework
::
LoDTensor
&
VarBase
::
Grad
()
{
VLOG
(
3
)
<<
"get var grad "
<<
var_desc_
->
Name
();
return
*
grads_
->
GetMutable
<
framework
::
LoDTensor
>
();
}
void
VarBase
::
ApplyGrad
(
framework
::
Scope
*
scope
,
Variable
*
grad
)
{
VLOG
(
3
)
<<
"apply var grad "
<<
var_desc_
->
Name
()
<<
" "
<<
grad
->
Get
<
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
];
if
(
!
grads_
)
{
grads_
=
CreateVariable
(
string
::
Sprintf
(
"%s@IGrad"
,
var_desc_
->
Name
()),
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
(),
0.0
,
scope
);
}
AddTo
(
grad
,
grads_
);
VLOG
(
3
)
<<
"grad_ after apply var grad "
<<
var_desc_
->
Name
()
<<
" "
<<
grads_
->
Get
<
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
];
}
std
::
vector
<
Variable
*>
OpBase
::
ApplyGrad
(
framework
::
Scope
*
scope
)
{
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
if
(
!
grad_op_desc_
)
{
VLOG
(
3
)
<<
"op with no grad: "
<<
op_desc_
->
Type
();
return
{};
}
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
for
(
const
std
::
string
&
grad_invar
:
grad_op_desc_
->
InputArgumentNames
())
{
if
(
grad_to_var_
->
find
(
grad_invar
)
==
grad_to_var_
->
end
())
{
// grad op inputs can be forward inputs, so not in grad_to_var.
continue
;
}
VLOG
(
3
)
<<
"op grad in var "
<<
grad_invar
;
block_
->
FindRecursiveOrCreateVar
(
grad_invar
);
framework
::
Variable
*
var
=
scope
->
Var
(
grad_invar
);
const
std
::
string
&
invar
=
grad_to_var_
->
at
(
grad_invar
);
for
(
VarBase
*
varbase
:
*
output_vars_
)
{
// Use the accumulated grads_ by sharing the input with grads_.
if
(
varbase
->
var_desc_
->
Name
()
==
invar
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
()
->
ShareDataWith
(
varbase
->
grads_
->
Get
<
framework
::
LoDTensor
>
());
break
;
}
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
tmp_vars
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_outputs
;
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
tmp_vars
.
emplace_back
(
new
framework
::
Variable
());
outputs
.
push_back
(
tmp_vars
.
back
().
get
());
outputs
.
back
()
->
GetMutable
<
framework
::
LoDTensor
>
();
}
}
for
(
const
std
::
string
&
outvar
:
grad_op_desc_
->
OutputArgumentNames
())
{
VLOG
(
3
)
<<
"grad outvar "
<<
outvar
;
block_
->
FindRecursiveOrCreateVar
(
outvar
);
framework
::
Variable
*
var
=
scope
->
Var
(
outvar
);
if
(
!
var
->
IsInitialized
())
{
framework
::
VarDesc
*
var_desc
=
block_
->
FindVar
(
outvar
);
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
}
}
grad_op_desc_
->
InferShape
(
*
block_
);
framework
::
RuntimeContext
ctx
(
grad_input_vars_
,
grad_outputs
);
// No need to do static infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc_
->
InferVarType
(
block_
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc_
);
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
opbase
->
Run
(
*
scope
,
platform
::
CPUPlace
());
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
// `ret` matches exactly with `input_vars_` of forward op.
std
::
vector
<
Variable
*>
ret
;
for
(
size_t
i
=
0
;
i
<
input_vars_
->
size
();
++
i
)
{
bool
found
=
false
;
VarBase
*
origin_var
=
(
*
input_vars_
)[
i
];
for
(
const
std
::
string
&
outvar
:
grad_op_desc_
->
OutputArgumentNames
())
{
Variable
*
var
=
scope
->
FindVar
(
outvar
);
std
::
string
orig_var
=
grad_to_var_
->
at
(
outvar
);
if
(
origin_var
->
var_desc_
->
Name
()
!=
orig_var
)
{
continue
;
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
auto
&
origin_outputs
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
];
AddTo
(
outputs
[
i
],
orig_grad
);
}
VLOG
(
3
)
<<
"apply grad "
<<
outvar
<<
" with origin "
<<
orig_var
;
origin_var
->
ApplyGrad
(
scope
,
var
);
found
=
true
;
ret
.
push_back
(
var
);
// TODO(panyx0718): There might be another outvar with the same name.
// In that case, it doesn't matter the first one or the second one is
// used.
break
;
}
if
(
!
found
)
{
ret
.
push_back
(
nullptr
);
}
}
return
ret
;
return
input_vars_
;
}
void
VarBase
::
RunBackward
(
framework
::
Scope
*
scope
)
{
grads_
=
CreateVariable
(
framework
::
GradVarName
(
var_desc_
->
Name
()),
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
(),
1.0
,
scope
,
false
);
void
VarBase
::
RunBackward
()
{
if
(
!
pre_op_
)
return
;
Autograd
(
scope
).
RunBackward
(
this
);
auto
grads_t
=
grads_
->
GetMutable
<
framework
::
LoDTensor
>
();
float
*
data
=
grads_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
grads_t
->
numel
(),
1.0
);
PADDLE_ENFORCE
(
grads_
==
pre_op_
->
output_vars_
[
pre_op_out_name_
][
pre_op_out_idx_
]
->
grads_
);
Autograd
().
RunBackward
(
this
);
}
}
// namespace imperative
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
3e840842
...
...
@@ -14,17 +14,69 @@
#pragma once
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
imperative
{
class
PreparedOp
{
public:
PreparedOp
(
const
framework
::
OperatorBase
&
op
,
const
framework
::
RuntimeContext
&
ctx
,
framework
::
OperatorWithKernel
::
OpKernelFunc
func
,
platform
::
DeviceContext
*
dev_ctx
)
:
op
(
op
),
ctx
(
ctx
),
func
(
func
),
dev_ctx
(
dev_ctx
)
{}
static
PreparedOp
Prepare
(
const
framework
::
RuntimeContext
&
ctx
,
const
framework
::
OperatorWithKernel
&
op
,
const
platform
::
Place
&
place
)
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
// check if op[type] has kernel registered.
auto
&
all_op_kernels
=
op
.
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
op
.
Type
());
if
(
kernels_iter
==
all_op_kernels
.
end
())
{
PADDLE_THROW
(
"There are no kernels which are registered in the %s operator."
,
op
.
Type
());
}
framework
::
OperatorWithKernel
::
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
auto
expected_kernel_key
=
op
.
GetExpectedKernelType
(
framework
::
ExecutionContext
(
op
,
framework
::
Scope
(),
*
dev_ctx
,
ctx
));
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if
(
kernel_iter
==
kernels
.
end
()
&&
expected_kernel_key
.
library_type_
==
framework
::
LibraryType
::
kMKLDNN
)
{
VLOG
(
3
)
<<
"missing MKLDNN kernel: fallbacking to PLAIN one"
;
expected_kernel_key
.
library_type_
=
framework
::
LibraryType
::
kPlain
;
expected_kernel_key
.
data_layout_
=
framework
::
DataLayout
::
kAnyLayout
;
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
}
#endif
if
(
kernel_iter
==
kernels
.
end
())
{
PADDLE_THROW
(
"op %s does not have kernel for %s"
,
op
.
Type
(),
KernelTypeToString
(
expected_kernel_key
));
}
return
PreparedOp
(
op
,
ctx
,
kernel_iter
->
second
,
dev_ctx
);
}
const
framework
::
OperatorBase
&
op
;
const
framework
::
RuntimeContext
&
ctx
;
framework
::
OperatorWithKernel
::
OpKernelFunc
func
;
platform
::
DeviceContext
*
dev_ctx
;
};
class
OpBase
;
class
VarBase
{
...
...
@@ -33,18 +85,26 @@ class VarBase {
:
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
),
var_desc_
(
nullptr
),
var_
(
nullptr
),
grads_
(
nullptr
)
{}
virtual
~
VarBase
()
{}
var_
(
new
framework
::
Variable
()),
grads_
(
new
framework
::
Variable
())
{}
void
ApplyGrad
(
framework
::
Scope
*
scope
,
framework
::
Variable
*
grad
);
virtual
~
VarBase
()
{
if
(
var_
)
{
delete
var_
;
var_
=
nullptr
;
}
if
(
grads_
)
{
delete
grads_
;
grads_
=
nullptr
;
}
}
void
RunBackward
(
framework
::
Scope
*
scope
);
void
RunBackward
();
framework
::
LoDTensor
&
Grad
();
OpBase
*
pre_op_
;
std
::
string
pre_op_out_name_
;
int
pre_op_out_idx_
;
framework
::
VarDesc
*
var_desc_
;
...
...
@@ -54,35 +114,24 @@ class VarBase {
class
OpBase
{
public:
OpBase
()
:
input_vars_
(
new
std
::
vector
<
VarBase
*>
()),
output_vars_
(
new
std
::
vector
<
VarBase
*>
()),
pre_ops_
(
new
std
::
vector
<
OpBase
*>
()),
pre_ops_out_idx_
(
new
std
::
vector
<
int
>
()),
op_desc_
(
nullptr
),
grad_op_desc_
(
nullptr
)
{}
OpBase
()
:
op_desc_
(
nullptr
),
grad_op_desc_
(
nullptr
)
{}
virtual
~
OpBase
()
{
delete
input_vars_
;
delete
output_vars_
;
delete
pre_ops_
;
delete
pre_ops_out_idx_
;
if
(
grad_op_desc_
)
delete
grad_op_desc_
;
if
(
grad_to_var_
)
delete
grad_to_var_
;
}
std
::
vector
<
framework
::
Variable
*>
ApplyGrad
(
framework
::
Scope
*
scope
);
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
ApplyGrad
(
);
std
::
vector
<
VarBase
*>*
input_vars_
;
std
::
vector
<
VarBase
*>*
output_vars_
;
std
::
vector
<
OpBase
*>*
pre_ops_
;
std
::
vector
<
int
>*
pre_ops_out_idx_
;
framework
::
OpDesc
*
op_desc_
;
framework
::
OpDesc
*
grad_op_desc_
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
output_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>
pre_ops_
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
pre_ops_out_idx_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_input_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_output_vars_
;
framework
::
BlockDesc
*
block_
;
};
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
3e840842
...
...
@@ -20,7 +20,6 @@
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/imperative/engine.h"
#include "paddle/fluid/imperative/layer.h"
...
...
@@ -41,22 +40,28 @@ void CreateGradOp(const framework::OpDesc& op_desc,
*
grad_op_desc
=
grad_op_descs
[
0
].
release
();
}
void
InitVar
(
framework
::
Variable
*
var
,
framework
::
Variable
*
grad_var
)
{
auto
&
var_t
=
var
->
Get
<
framework
::
LoDTensor
>
();
float
*
data
=
grad_var
->
GetMutable
<
framework
::
LoDTensor
>
()
->
mutable_data
<
float
>
(
var_t
.
dims
(),
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
var_t
.
numel
(),
0.0
);
}
class
Tracer
{
public:
explicit
Tracer
(
framework
::
BlockDesc
*
root_block
,
framework
::
BlockDesc
*
startup_block
)
:
root_block_
(
root_block
),
startup_block_
(
startup_block
)
{
root_scope_
=
new
framework
::
Scope
();
scopes_
[
root_block_
]
=
root_scope_
;
scopes_
[
startup_block_
]
=
root_scope_
;
}
:
root_block_
(
root_block
),
startup_block_
(
startup_block
)
{}
virtual
~
Tracer
()
{
delete
root_scope_
;
}
virtual
~
Tracer
()
{}
void
Trace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
const
std
::
vector
<
VarBase
*>&
outputs
,
void
Trace
(
OpBase
*
op
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>&
inputs
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>&
outputs
,
framework
::
BlockDesc
*
block
)
{
framework
::
Scope
*
scope
=
GetScope
(
block
);
std
::
map
<
std
::
string
,
VarBase
*>
vars
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
op_desc
->
InferShape
(
*
block
);
...
...
@@ -64,77 +69,113 @@ class Tracer {
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
*
op
->
input_vars_
=
inputs
;
for
(
VarBase
*
input
:
inputs
)
{
const
std
::
string
vname
=
input
->
var_desc_
->
Name
();
framework
::
Variable
*
var
=
scope
->
Var
(
vname
);
input
->
var_
=
var
;
if
(
!
var
->
IsInitialized
())
{
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
vname
);
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
VariableValueMap
invars_map
;
framework
::
VariableValueMap
outvars_map
;
op
->
input_vars_
=
inputs
;
for
(
auto
it
:
op
->
input_vars_
)
{
auto
&
invars
=
invars_map
[
it
.
first
];
for
(
VarBase
*
inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
inp
->
var_
,
"op %s input %s nullptr"
,
op
->
op_desc_
->
Type
(),
inp
->
var_desc_
->
Name
());
invars
.
push_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
pre_op_
)
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
pre_op_out_idx_
);
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
op
->
pre_ops_
[
it
.
first
].
push_back
(
nullptr
);
}
if
(
input
->
pre_op_
)
{
op
->
pre_ops_
->
push_back
(
input
->
pre_op_
);
op
->
pre_ops_out_idx_
->
push_back
(
input
->
pre_op_out_idx_
);
}
else
{
op
->
pre_ops_
->
push_back
(
nullptr
);
VLOG
(
3
)
<<
"input vname "
<<
inp
->
var_desc_
->
Name
()
<<
" "
<<
inp
->
var_
->
IsInitialized
();
}
VLOG
(
3
)
<<
"input vname "
<<
vname
<<
" "
<<
var
->
Get
<
framework
::
LoDTensor
>
().
dims
().
size
();
}
*
op
->
output_vars_
=
outputs
;
op
->
output_vars_
=
outputs
;
for
(
auto
it
:
op
->
output_vars_
)
{
auto
&
outvars
=
outvars_map
[
it
.
first
];
const
std
::
vector
<
VarBase
*>&
outputs
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
const
std
::
string
vname
=
outputs
[
i
]
->
var_desc_
->
Name
();
framework
::
Variable
*
var
=
scope
->
Var
(
vname
);
if
(
!
var
->
IsInitialized
())
{
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
vname
);
VarBase
*
out
=
outputs
[
i
];
outvars
.
push_back
(
out
->
var_
);
vars
[
out
->
var_desc_
->
Name
()]
=
out
;
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
out
->
var_desc_
->
Name
());
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
out
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
it
.
first
;
out
->
pre_op_out_idx_
=
i
;
VLOG
(
3
)
<<
"output vname "
<<
out
->
var_desc_
->
Name
()
<<
" "
<<
out
->
var_
->
IsInitialized
();
}
outputs
[
i
]
->
var_
=
var
;
outputs
[
i
]
->
pre_op_
=
op
;
outputs
[
i
]
->
pre_op_out_idx_
=
i
;
}
VLOG
(
3
)
<<
"tracer running "
<<
op_desc
->
Type
();
op_base
->
Run
(
*
scope
,
platform
::
CPUPlace
());
framework
::
RuntimeContext
ctx
(
invars_map
,
outvars_map
);
// TODO(panyx0718): Cache p.
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
op_base
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
if
(
block
==
startup_block_
)
{
op
->
grad_op_desc_
=
nullptr
;
op
->
grad_to_var_
=
nullptr
;
}
else
{
framework
::
OpDesc
*
grad_op_desc
;
auto
grad_to_var
=
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
();
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
);
op
->
grad_op_desc_
=
grad_op_desc
;
op
->
grad_to_var_
=
grad_to_var
;
for
(
auto
it
:
grad_op_desc
->
Inputs
())
{
auto
&
grad_in_vars
=
op
->
grad_input_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_invar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_invar
);
auto
var_it
=
grad_to_var
->
find
(
grad_invar
);
if
(
var_it
==
grad_to_var
->
end
())
{
auto
fwd_var_it
=
vars
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
}
else
{
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
);
}
op
->
block_
=
block
;
grad_in_vars
.
push_back
(
var
->
grads_
)
;
}
framework
::
Scope
*
GetScope
(
framework
::
BlockDesc
*
block
)
{
if
(
scopes_
.
find
(
block
)
!=
scopes_
.
end
())
{
return
scopes_
.
at
(
block
);
}
framework
::
BlockDesc
*
parent_block
=
block
->
ParentBlock
();
PADDLE_ENFORCE
(
scopes_
.
find
(
parent_block
)
!=
scopes_
.
end
());
framework
::
Scope
*
scope
=
&
scopes_
[
parent_block
]
->
NewScope
();
scopes_
[
block
]
=
scope
;
return
scope
;
}
for
(
auto
it
:
grad_op_desc
->
Outputs
())
{
auto
&
grad_out_vars
=
op
->
grad_output_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_outvar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_outvar
);
auto
var_it
=
grad_to_var
->
find
(
grad_outvar
);
PADDLE_ENFORCE
(
var_it
!=
grad_to_var
->
end
());
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
);
}
grad_out_vars
.
push_back
(
var
->
grads_
);
}
}
}
op
->
block_
=
block
;
}
private:
std
::
map
<
framework
::
BlockDesc
*
,
framework
::
Scope
*>
scopes_
;
framework
::
BlockDesc
*
root_block_
;
framework
::
BlockDesc
*
startup_block_
;
framework
::
Scope
*
root_scope_
;
};
}
// namespace imperative
...
...
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
3e840842
...
...
@@ -12,68 +12,40 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/fill_constant_op.h"
namespace
paddle
{
namespace
operators
{
class
FillConstant
InferShape
:
public
framework
::
InferShapeBase
{
class
FillConstant
Op
:
public
framework
::
OperatorWithKernel
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FillConstantOp should not be null."
);
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int64_t
>>
(
"shape"
);
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int64_t
>>
(
"shape"
);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
shape
));
}
};
class
FillConstantOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
Attr
<
int
>
(
"dtype"
));
auto
value
=
Attr
<
float
>
(
"value"
);
auto
force_cpu
=
Attr
<
bool
>
(
"force_cpu"
);
framework
::
Tensor
*
tensor
=
nullptr
;
auto
&
out_var
=
*
scope
.
FindVar
(
Output
(
"Out"
));
if
(
out_var
.
IsType
<
framework
::
LoDTensor
>
())
{
tensor
=
out_var
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
(
Attr
<
std
::
vector
<
int64_t
>>
(
"shape"
)));
}
else
if
(
out_var
.
IsType
<
framework
::
SelectedRows
>
())
{
tensor
=
out_var
.
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
Attr
<
std
::
vector
<
int64_t
>>
(
"shape"
)));
}
else
{
PADDLE_THROW
(
"fill constant op's output only"
"supports SelectedRows and LoDTensor"
);
}
if
(
force_cpu
)
{
auto
cpu
=
platform
::
CPUPlace
();
tensor
->
mutable_data
(
cpu
,
data_type
);
}
else
{
tensor
->
mutable_data
(
dev_place
,
data_type
);
}
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
math
::
set_constant
(
dev_ctx
,
tensor
,
value
);
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
proto
::
VarType
::
Type
(
ctx
.
Attr
<
int
>
(
"dtype"
)),
ctx
.
GetPlace
());
}
};
class
FillConstantOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"dtype"
)));
auto
&
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetDataType
(
data_type
);
}
};
class
FillConstantOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -107,7 +79,13 @@ Fill up a variable with specified constant value.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fill_constant
,
ops
::
FillConstantOp
,
ops
::
FillConstantInferShape
,
ops
::
FillConstantOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
FillConstantOpVarTypeInference
);
REGISTER_OPERATOR
(
fill_constant
,
ops
::
FillConstantOp
,
ops
::
FillConstantOpMaker
,
ops
::
FillConstantOpVarTypeInference
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fill_constant
,
ops
::
FillConstantKernel
<
float
>
,
ops
::
FillConstantKernel
<
double
>
,
ops
::
FillConstantKernel
<
int64_t
>
,
ops
::
FillConstantKernel
<
int
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/fill_constant_op.cu.cc
0 → 100644
浏览文件 @
3e840842
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fill_constant_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
fill_constant
,
ops
::
FillConstantKernel
<
float
>
,
ops
::
FillConstantKernel
<
double
>
,
ops
::
FillConstantKernel
<
int64_t
>
,
ops
::
FillConstantKernel
<
int
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/fill_constant_op.h
0 → 100644
浏览文件 @
3e840842
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
FillConstantKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"dtype"
));
auto
value
=
ctx
.
Attr
<
float
>
(
"value"
);
auto
force_cpu
=
ctx
.
Attr
<
bool
>
(
"force_cpu"
);
framework
::
Tensor
*
tensor
=
nullptr
;
framework
::
Variable
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
(
ctx
.
Attr
<
std
::
vector
<
int64_t
>>
(
"shape"
)));
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
tensor
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
ctx
.
Attr
<
std
::
vector
<
int64_t
>>
(
"shape"
)));
}
else
{
PADDLE_THROW
(
"fill constant op's output only"
"supports SelectedRows and LoDTensor"
);
}
if
(
force_cpu
)
{
tensor
->
mutable_data
(
platform
::
CPUPlace
(),
data_type
);
}
else
{
tensor
->
mutable_data
(
ctx
.
GetPlace
(),
data_type
);
}
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
ctx
.
GetPlace
());
math
::
set_constant
(
dev_ctx
,
tensor
,
value
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/pybind/imperative.cc
浏览文件 @
3e840842
...
...
@@ -14,7 +14,6 @@ limitations under the License. */
#include "paddle/fluid/pybind/imperative.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/imperative/tracer.h"
namespace
paddle
{
...
...
@@ -28,9 +27,7 @@ void BindTracer(pybind11::module *m) {
framework
::
BlockDesc
*
startup_block
)
{
new
(
&
self
)
imperative
::
Tracer
(
root_block
,
startup_block
);
})
.
def
(
"trace"
,
&
imperative
::
Tracer
::
Trace
)
.
def
(
"get_scope"
,
&
imperative
::
Tracer
::
GetScope
,
pybind11
::
return_value_policy
::
reference
);
.
def
(
"trace"
,
&
imperative
::
Tracer
::
Trace
);
}
}
// namespace pybind
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
3e840842
...
...
@@ -124,9 +124,7 @@ PYBIND11_MODULE(core, m) {
py
::
class_
<
imperative
::
VarBase
,
PyVarBase
>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<>
())
.
def
(
"_run_backward"
,
[](
imperative
::
VarBase
&
self
,
framework
::
Scope
*
scope
)
{
self
.
RunBackward
(
scope
);
})
[](
imperative
::
VarBase
&
self
)
{
self
.
RunBackward
();
})
.
def
(
"_grad"
,
&
imperative
::
VarBase
::
Grad
)
.
def_property
(
"desc"
,
...
...
@@ -134,6 +132,12 @@ PYBIND11_MODULE(core, m) {
[](
imperative
::
VarBase
&
self
,
framework
::
VarDesc
*
var_desc
)
{
self
.
var_desc_
=
var_desc
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"var"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
[](
imperative
::
VarBase
&
self
,
framework
::
Variable
*
var
)
{
self
.
var_
=
var
;
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
...
...
python/paddle/fluid/framework.py
浏览文件 @
3e840842
...
...
@@ -15,6 +15,7 @@
from
__future__
import
print_function
import
collections
from
collections
import
defaultdict
import
contextlib
import
os
import
re
...
...
@@ -369,13 +370,11 @@ class Variable(object):
self
.
_ivar
.
desc
=
self
.
desc
def
_numpy
(
self
):
scope
=
_imperative_tracer
().
get_scope
(
self
.
block
.
desc
)
tensor
=
core
.
get_variable_tensor
(
scope
,
self
.
desc
.
name
())
tensor
=
self
.
_ivar
.
var
.
get_tensor
()
return
np
.
array
(
tensor
)
def
_backward
(
self
):
scope
=
_imperative_tracer
().
get_scope
(
self
.
block
.
desc
)
self
.
_ivar
.
_run_backward
(
scope
)
self
.
_ivar
.
_run_backward
()
def
_gradient
(
self
):
return
np
.
array
(
self
.
_ivar
.
_grad
())
...
...
@@ -692,20 +691,20 @@ class Operator(object):
if
_in_imperative_mode
():
self
.
iop
=
core
.
OpBase
()
self
.
iop
.
desc
=
self
.
desc
self
.
inputs
=
[]
self
.
inputs
=
defaultdict
(
list
)
if
inputs
is
not
None
:
for
inp
in
inputs
.
values
(
):
if
isinstance
(
inp
,
Variable
):
self
.
inputs
.
append
(
inp
)
elif
isinstance
(
inp
,
list
)
or
isinstance
(
inp
,
tuple
):
self
.
inputs
.
extend
(
inp
[:
])
self
.
outputs
=
[]
for
k
,
v
in
six
.
iteritems
(
inputs
):
if
isinstance
(
v
,
Variable
):
self
.
inputs
[
k
].
append
(
v
.
_ivar
)
elif
isinstance
(
v
,
list
)
or
isinstance
(
v
,
tuple
):
self
.
inputs
[
k
].
extend
([
var
.
_ivar
for
var
in
v
])
self
.
outputs
=
defaultdict
(
list
)
if
outputs
is
not
None
:
for
out
in
outputs
.
values
(
):
if
isinstance
(
out
,
Variable
):
self
.
outputs
.
append
(
out
)
elif
isinstance
(
out
,
list
)
or
isinstance
(
out
,
tuple
):
self
.
outputs
.
extend
(
out
[:
])
for
k
,
v
in
six
.
iteritems
(
outputs
):
if
isinstance
(
v
,
Variable
):
self
.
outputs
[
k
].
append
(
v
.
_ivar
)
elif
isinstance
(
v
,
list
)
or
isinstance
(
v
,
tuple
):
self
.
outputs
[
k
].
extend
([
var
.
_ivar
for
var
in
v
])
def
_has_kernel
(
self
,
op_type
):
return
op_type
not
in
self
.
OP_WITHOUT_KERNEL_SET
...
...
@@ -1273,8 +1272,7 @@ class Block(object):
op_desc
=
self
.
desc
.
append_op
()
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
if
_in_imperative_mode
():
_imperative_tracer
().
trace
(
op
.
iop
,
[
v
.
_ivar
for
v
in
op
.
inputs
],
[
v
.
_ivar
for
v
in
op
.
outputs
],
self
.
desc
)
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
)
self
.
ops
.
append
(
op
)
return
op
...
...
@@ -1325,8 +1323,7 @@ class Block(object):
op_desc
=
self
.
desc
.
_prepend_op
()
op
=
Operator
(
self
,
op_desc
,
*
args
,
**
kwargs
)
if
_in_imperative_mode
():
_imperative_tracer
().
trace
(
op
.
iop
,
[
v
.
_ivar
for
v
in
op
.
inputs
],
[
v
.
_ivar
for
v
in
op
.
outputs
],
self
.
desc
)
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
)
self
.
ops
.
insert
(
0
,
op
)
return
op
...
...
python/paddle/fluid/imperative/base.py
浏览文件 @
3e840842
...
...
@@ -46,8 +46,7 @@ def to_variable(value, block=None):
name
=
None
,
shape
=
value
.
shape
,
dtype
=
value
.
dtype
)
scope
=
framework
.
_imperative_tracer
().
get_scope
(
block
.
desc
)
var
=
scope
.
var
(
py_var
.
name
)
var
=
py_var
.
_ivar
.
var
tensor
=
var
.
get_tensor
()
tensor
.
set
(
value
,
core
.
CPUPlace
())
return
py_var
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
3e840842
...
...
@@ -20,7 +20,7 @@ import six
import
sys
import
numpy
as
np
from
.framework
import
Variable
,
Parameter
,
default_main_program
,
default_startup_program
,
dtype_is_floating
from
.framework
import
Variable
,
Parameter
,
default_main_program
,
default_startup_program
,
dtype_is_floating
,
_in_imperative_mode
from
.
import
unique_name
from
paddle.fluid.initializer
import
Constant
,
Xavier
from
paddle.fluid.imperative
import
base
...
...
@@ -313,9 +313,20 @@ class LayerHelper(object):
param
=
self
.
_create_weight_normalize
(
attr
,
shape
,
dtype
)
WeightNormParamAttr
.
params_with_weight_norm
.
append
(
param
)
return
param
if
_in_imperative_mode
():
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
())
# In imperative mode, we want the returned parameter to be
# initialized so that it can be used imperatively.
return
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
(
with_initializer
=
True
))
else
:
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
(
with_initializer
=
True
))
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
(
with_initializer
=
True
))
return
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
())
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
3e840842
...
...
@@ -38,7 +38,9 @@ class MyLayer(fluid.imperative.PyLayer):
def
forward
(
self
,
inputs
):
x
=
fluid
.
layers
.
relu
(
inputs
[
0
])
self
.
_x_for_debug
=
x
return
[
fluid
.
layers
.
elementwise_mul
(
x
,
x
)]
x
=
fluid
.
layers
.
elementwise_mul
(
x
,
x
)
x
=
fluid
.
layers
.
reduce_sum
(
x
)
return
[
x
]
class
MLP
(
fluid
.
imperative
.
PyLayer
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录