diff --git a/doc/getstarted/build_and_install/docker_install_cn.rst b/doc/getstarted/build_and_install/docker_install_cn.rst index 02b96bb413156786db6dc77696c5640b97c10aa4..84e33177740ca1652efc09c8081c2519b4366906 100644 --- a/doc/getstarted/build_and_install/docker_install_cn.rst +++ b/doc/getstarted/build_and_install/docker_install_cn.rst @@ -74,13 +74,13 @@ PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以 .. code-block:: bash - docker run -it --rm paddlepaddle/paddle:0.10.0-dev /bin/bash + docker run -it --rm -v $(pwd):/paddle paddlepaddle/paddle:0.10.0-dev /bin/bash 或者,可以以后台进程方式运行容器: .. code-block:: bash - docker run -d -p 2202:22 -p 8888:8888 paddledev/paddle:0.10.0-dev + docker run -d -p 2202:22 -p 8888:8888 -v $(pwd):/paddle paddlepaddle/paddle:0.10.0-dev /usr/sbin/sshd -D 然后用密码 :code:`root` SSH进入容器: diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 9e98afb3119856776ef80e502379460b8c019d40..03985260241689a099ae9ebc136bd04831a44167 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -7,7 +7,7 @@ cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context) cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) -cc_library(lod_tensor SRCS lod_tensor.cc details/lod_tensor.cc DEPS ddim place tensor) +cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor) cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor) cc_test(variable_test SRCS variable_test.cc) @@ -15,23 +15,19 @@ cc_test(variable_test SRCS variable_test.cc) cc_library(scope SRCS scope.cc) cc_test(scope_test SRCS scope_test.cc DEPS scope) -proto_library(attribute_proto SRCS attribute.proto) -proto_library(op_proto SRCS op_proto.proto DEPS attribute_proto) -proto_library(op_desc SRCS op_desc.proto DEPS attribute_proto) -cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf) -cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf) +proto_library(framework_proto SRCS framework.proto) -cc_library(attribute SRCS attribute.cc DEPS op_desc op_proto) +cc_library(attribute SRCS attribute.cc DEPS framework_proto) -cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope attribute) +cc_library(operator SRCS operator.cc DEPS framework_proto device_context tensor scope attribute) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) -cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator) -cc_library(op_registry SRCS op_registry.cc DEPS op_desc grad_op_builder) +cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator) +cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op) -py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc.proto) +py_proto_compile(framework_py_proto SRCS framework.proto) # Generate an empty __init__.py to make framework_py_proto as a valid python module. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) diff --git a/paddle/framework/attribute.cc b/paddle/framework/attribute.cc index 4c5790693b7e48396e945d09f4fdc72b86aa5978..9eb07acdff1d00dd926f1cee9c24f9f151006d7e 100644 --- a/paddle/framework/attribute.cc +++ b/paddle/framework/attribute.cc @@ -44,7 +44,7 @@ AttrType AttrTypeID>() { return STRINGS; } -Attribute GetAttrValue(const AttrDesc& attr_desc) { +Attribute GetAttrValue(const OpDesc::Attr& attr_desc) { switch (attr_desc.type()) { case paddle::framework::AttrType::INT: { return attr_desc.i(); diff --git a/paddle/framework/attribute.h b/paddle/framework/attribute.h index 49a62bedb6aadab5ff05d8aa7dda42fe983314a0..08b47cabd4c2225c50022bd35734dcc2663324d6 100644 --- a/paddle/framework/attribute.h +++ b/paddle/framework/attribute.h @@ -20,8 +20,7 @@ limitations under the License. */ #include #include -#include "paddle/framework/attribute.pb.h" -#include "paddle/framework/op_desc.pb.h" +#include "paddle/framework/framework.pb.h" #include "paddle/platform/enforce.h" #include "paddle/platform/variant.h" @@ -37,7 +36,7 @@ typedef std::unordered_map AttributeMap; template AttrType AttrTypeID(); -Attribute GetAttrValue(const AttrDesc& attr_desc); +Attribute GetAttrValue(const OpDesc::Attr& attr_desc); // check whether a value(attribute) fit a certain limit template diff --git a/paddle/framework/attribute.proto b/paddle/framework/attribute.proto deleted file mode 100644 index 13ae312c10e934566384b8bd0f41dacd6c01fc2f..0000000000000000000000000000000000000000 --- a/paddle/framework/attribute.proto +++ /dev/null @@ -1,28 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -syntax = "proto2"; -package paddle.framework; - -// Attribute Type for paddle's Op. -// Op contains many attributes. Each type of attributes could be different. -// The AttrType will be shared between AttrDesc and AttrProto. -enum AttrType { - INT = 0; - FLOAT = 1; - STRING = 2; - INTS = 3; - FLOATS = 4; - STRINGS = 5; -} \ No newline at end of file diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index 437a44a8aafa650d654a1a77c60613abe07679fe..2118c9d5d4e1a0491ae11f57c08ed04980ced2e4 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -21,15 +21,25 @@ namespace paddle { namespace framework { -static bool AllInSet(const std::vector& names, - const std::string& suffix, - const std::unordered_set& set) { +template +static void ForEachVarName(Map& names, T callback) { for (auto& name : names) { - if (set.find(name + suffix) == set.end()) { - return false; + for (auto& n : name.second) { + if (callback(n)) return; } } - return true; +} + +// return whether all the names + suffixes in the set +static bool AllInSet( + const std::map>& names, + const std::string& suffix, const std::unordered_set& set) { + bool all_in_set = true; + ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) { + all_in_set = set.find(n + suffix) != set.end(); + return !all_in_set; + }); + return all_in_set; } static std::shared_ptr NOP() { @@ -39,7 +49,7 @@ static std::shared_ptr NOP() { return net_op; } -// Get backward operator from a forward operator, recursively implementation. +// Get backward operator from a forward operator, a recursive implementation. // // no_grad_names the gradient variable names without gradient calculating. // @@ -47,31 +57,35 @@ static std::shared_ptr NOP() { // BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and // pass `uniq_id` through recursive calling. // -// returns The backward operator. For simple situation, it is a simple -// operator. For complex situation, it is a NetOp. +// returns The backward operator. In a simple situation, it may be a simple +// operator, in a complex situation, it maybe a NetOp. // // See Backward.h for details static std::shared_ptr BackwardRecursive( const OperatorBase& forwardOp, std::unordered_set& no_grad_names, size_t& uniq_id); + std::shared_ptr BackwardRecursive( const OperatorBase& forwardOp, std::unordered_set& no_grad_names, size_t& uniq_id) { // If all input gradients of forwarding operator do not need to calculate, // just return an NOP. Not return null ptr because NOP does not take - // too much time for calculation, but it is useful for simplifying logic. - if (AllInSet(forwardOp.inputs_, kGradVarSuffix, no_grad_names)) { + // much time for calculation, but it is useful for simplifying logic. + if (AllInSet(forwardOp.inputs_ /*names*/, kGradVarSuffix /*suffix*/, + no_grad_names /*set*/)) { return NOP(); } // All output gradients of forwarding operator do not need to calculate. // Then all input gradients cannot be computed at all, and we put them into // `no_grad_names` set. Return an NOP. - if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) { - for (auto& name : forwardOp.inputs_) { - // Mark all input is not need - no_grad_names.insert(name + kGradVarSuffix); - } + if (AllInSet(forwardOp.outputs_ /*names*/, kGradVarSuffix /*suffix*/, + no_grad_names /*set*/)) { + ForEachVarName(forwardOp.inputs_, + [&no_grad_names](const std::string& name) -> bool { + no_grad_names.insert(GradVarName(name)); + return false; + }); return NOP(); } @@ -83,55 +97,65 @@ std::shared_ptr BackwardRecursive( auto& forwardNet = static_cast(forwardOp); // Map from output gradient variable name to operator's indices in - // backward net. That operator generates that variable. + // backward net's ops_. That operator generates that variable. std::unordered_map> dup_output_ops; size_t local_op_id = 0; - // reversely travel forwardNet + // reversely travel forwardNet and collect all duplicate outputs. for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend(); ++it, ++local_op_id) { auto fwd = *it; auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id); net->AddOp(bwd); - for (auto& out : bwd->outputs_) { - dup_output_ops[out].emplace_back(local_op_id); - } + ForEachVarName(bwd->outputs_, + [&dup_output_ops, local_op_id](const std::string& out) { + dup_output_ops[out].emplace_back(local_op_id); + return false; + }); } // Get unique ID for this method. auto uid = uniq_id++; // TODO(dzh): more comment + // multiple operators which have the same output (y for example) may + // overwrite the same y variable when backward, special operations are token + // to handle this case. For each duplicate output, rename it to an alias + // (original name with a offset), append an `add` op for its operator, + // and finally sum all the alias variable to the final output variable y. using Pos = std::pair>; std::list insert_position; for (auto& dup_output_op : dup_output_ops) { const std::string& name = dup_output_op.first; auto& dup_op = dup_output_op.second; + // no duplicate output if (dup_op.size() == 1) continue; - std::vector dup_outputs; + // process the duplicate outputs + std::vector dup_outputs; for (size_t i = 0; i < dup_op.size(); ++i) { + // rename each duplicate output to an alias auto op_offset = dup_op[i]; dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" + std::to_string(i)); net->ops_[op_offset]->Rename(name, dup_outputs.back()); } + // collect all the offset to append `add` op for each alias insert_position.push_back( - {dup_op.back(), - OpRegistry::CreateOp( - "add", {dup_outputs}, {name}, - {{"input_format", - std::vector{0, static_cast(dup_outputs.size())}}})}); + {dup_op.back(), OpRegistry::CreateOp("add", {{"X", {dup_outputs}}}, + {{"Out", {name}}}, {})}); } + // make sure the inserted `add` ops follow the BFS order. insert_position.sort( [](const Pos& l, const Pos& r) { return l.first > r.first; }); for (auto& pos : insert_position) { net->InsertOp(pos.first + 1, pos.second); } - } else { std::shared_ptr grad_op = OpRegistry::CreateGradOp(forwardOp); - for (std::string& grad_input : grad_op->inputs_) { + + ForEachVarName(grad_op->inputs_, [&no_grad_names, + &net](std::string& grad_input) { if (no_grad_names.count(grad_input)) { // +1 for \0 std::string prefix = grad_input.substr( @@ -140,16 +164,19 @@ std::shared_ptr BackwardRecursive( // If part of input gradient of that operator is not calculated, fill // zero variables to that input gradient. - net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {prefix}, - {grad_input}, {})); + net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {{"Src", {prefix}}}, + {{"Dst", {grad_input}}}, {})); } - } + return false; + }); - for (std::string& grad_output : grad_op->outputs_) { - if (no_grad_names.count(grad_output)) { - grad_output = kEmptyVarName; - } - } + ForEachVarName(grad_op->outputs_, + [&no_grad_names](std::string& grad_output) { + if (no_grad_names.count(grad_output)) { + grad_output = kEmptyVarName; + } + return false; + }); if (net->ops_.empty()) { // Current no aux op is added to network return grad_op; @@ -159,7 +186,7 @@ std::shared_ptr BackwardRecursive( net->type_ = "@GENERATED_BACKWARD@"; net->CompleteAddOp(); return net; -} +} // namespace framework // See header for comments std::shared_ptr Backward( diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index 41bd77d265c5cdcc831e33c7904ea46359daee4f..1a2bee50a1138a3f5fdd9a3522770bb38c711808 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -30,8 +30,7 @@ using DeviceContext = platform::DeviceContext; class EmptyOp : public OperatorBase { public: - DEFINE_OPERATOR_CTOR(EmptyOp, OperatorBase) - + using OperatorBase::OperatorBase; void InferShape(const Scope &scope) const override {} void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {} }; @@ -40,9 +39,9 @@ class RowWiseAddOpMaker : public OpProtoAndCheckerMaker { public: RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "Input X of Add").IgnoreGradient(); - AddInput("b", "Bias of Add").IgnoreGradient(); - AddOutput("Out", "Out of Add").IgnoreGradient(); + AddInput("X", "Input X of Add").AsNoGradient(); + AddInput("b", "Bias of Add").AsNoGradient(); + AddOutput("Out", "Out of Add").AsNoGradient(); AddComment("Add Op"); } }; @@ -51,8 +50,8 @@ class MulOpMaker : public OpProtoAndCheckerMaker { public: MulOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("A", "A"); - AddInput("B", "B"); + AddInput("X", "A"); + AddInput("Y", "B"); AddOutput("Out", "Out"); AddComment("Mul"); } @@ -63,7 +62,7 @@ class SigmoidOpMaker : public OpProtoAndCheckerMaker { SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "X"); - AddOutput("Y", "Y"); + AddOutput("Out", "Y"); AddComment("Sigmoid"); } }; @@ -73,21 +72,25 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "X input"); - AddOutput("Y", "Y output"); + AddOutput("Out", "Y output"); AddComment("NoGradOp, same input output. no Grad"); } }; class FcOp : public operators::NetOp { public: - void Init() override { - AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")}, - {Output("mul_result")}, {})); - auto b_name = Input("b"); + FcOp(const std::string &type, const VarNameMap &inputs, + const VarNameMap &outputs, const AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + AddOp(OpRegistry::CreateOp("mul", + {{"X", {Input("X")}}, {"Y", {Input("W")}}}, + {{"Out", {Output("mul_result")}}}, {})); + auto input_b = Inputs("b"); std::string before_act = "mul_result"; - if (b_name != kEmptyVarName) { - AddOp(OpRegistry::CreateOp("rowwise_add", {Output("mul_result"), b_name}, - {Output("add_result")}, {})); + if (input_b.size() != 0) { + AddOp(OpRegistry::CreateOp( + "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}}, + {{"Out", {Output("add_result")}}}, {})); before_act = "add_result"; } else { auto out_varname = Output("add_result"); @@ -96,8 +99,8 @@ class FcOp : public operators::NetOp { } } - AddOp(OpRegistry::CreateOp("sigmoid", {Output(before_act)}, {Output("Out")}, - {})); + AddOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}}, + {{"Out", {Output("Out")}}}, {})); CompleteAddOp(false); } }; @@ -109,8 +112,8 @@ class FcOpMaker : public OpProtoAndCheckerMaker { AddInput("X", "x"); AddInput("W", "w"); AddInput("b", "b"); - AddOutput("mul_result", "").SetTemporary(); - AddOutput("add_result", "").SetTemporary(); + AddOutput("mul_result", "").AsIntermediate(); + AddOutput("add_result", "").AsIntermediate(); AddOutput("Out", ""); AddComment(""); } @@ -141,7 +144,7 @@ class AddOpMaker : public OpProtoAndCheckerMaker { public: AddOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "x").SetMultiple(); + AddInput("X", "x").AsDuplicable(); AddOutput("Y", "y"); AddComment(""); } @@ -164,27 +167,24 @@ REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker, many_output_op_grad, f::EmptyOp); TEST(Backward, simple_op_grad) { - auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); + auto fwd = f::OpRegistry::CreateOp( + "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); ASSERT_NE(fwd, nullptr); auto gop = f::OpRegistry::CreateGradOp(*fwd); - ASSERT_EQ(4UL, gop->inputs_.size()); - ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]); + ASSERT_EQ(1UL, gop->inputs_.size()); ASSERT_EQ("rowwise_add_grad", gop->type_); - ASSERT_EQ(f::GradVarName("X"), gop->outputs_[0]); - ASSERT_EQ(f::GradVarName("b"), gop->outputs_[1]); - - ASSERT_EQ(f::GradVarName("X"), gop->Output(f::GradVarName("X"))); + ASSERT_EQ(f::GradVarName("x"), gop->Output(f::GradVarName("X"))); + ASSERT_EQ(f::GradVarName("b"), gop->Output(f::GradVarName("b"))); } TEST(Backward, simple_op_not_need_grad) { - auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); + auto fwd = f::OpRegistry::CreateOp( + "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); ASSERT_NE(fwd, nullptr); - auto gop = f::Backward(*fwd, {"X"}); - ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(), - f::GradVarName("X")), - gop->outputs_.end()); + auto gop = f::Backward(*fwd, {"x"}); + ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName); - auto no_input_gop = f::Backward(*fwd, {"X", "b"}); + auto no_input_gop = f::Backward(*fwd, {"x", "b"}); ASSERT_NE(no_input_gop, nullptr); ASSERT_TRUE(no_input_gop->IsNetOp()); ASSERT_EQ(0UL, @@ -192,8 +192,12 @@ TEST(Backward, simple_op_not_need_grad) { } TEST(Backward, net_fc_backward_normal) { - std::shared_ptr fwd = f::OpRegistry::CreateOp( - "fc", {"X", "w", "b"}, {"mul_result", "add_result", "out"}, {}); + std::shared_ptr fwd = + f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}}, + {{"mul_result", {"mul_res"}}, + {"add_result", {"add_re"}}, + {"Out", {"out"}}}, + {}); ASSERT_NE(fwd, nullptr); std::shared_ptr gop = f::Backward(*fwd, {}); ASSERT_TRUE(gop->IsNetOp()); @@ -215,8 +219,11 @@ TEST(Backward, net_fc_backward_normal) { TEST(Backward, net_fc_backward_not_have_b) { std::shared_ptr fwd = - f::OpRegistry::CreateOp("fc", {"X", "w", f::kEmptyVarName}, - {"mul_result", "add_result", "tmp"}, {}); + f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {}}}, + {{"mul_result", {"mul_res"}}, + {"add_result", {"add_res"}}, + {"Out", {"tmp"}}}, + {}); ASSERT_NE(fwd, nullptr); std::shared_ptr gop = f::Backward(*fwd, {}); ASSERT_TRUE(gop->IsNetOp()); @@ -235,38 +242,49 @@ TEST(Backward, net_fc_backward_not_have_b) { TEST(Backward, net_input_of_network_not_need_grad) { ops::NetOp net; - net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"}, - {"mul_tmp_0", "add_tmp_0", "hidden0"}, {})); - net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"}, - {"mul_tmp_1", "add_tmp_1", "hidden1"}, {})); + net.AddOp(f::OpRegistry::CreateOp( + "fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}}, + {{"mul_result", {"mul_tmp_0"}}, + {"add_result", {"add_tmp_0"}}, + {"Out", {"hidden0"}}}, + {})); + net.AddOp(f::OpRegistry::CreateOp( + "fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}}, + {{"mul_result", {"mul_tmp_1"}}, + {"add_result", {"add_tmp_1"}}, + {"Out", {"hidden1"}}}, + {})); net.CompleteAddOp(); - auto bwd = Backward(net, {"X"}); // X@GRAD is not need. + auto bwd = Backward(net, {"x"}); // x@GRAD is not need. ASSERT_TRUE(bwd->IsNetOp()); auto bwd_net = static_cast(bwd.get()); - std::unordered_set all_output = std::unordered_set( - bwd_net->outputs_.begin(), bwd_net->outputs_.end()); - all_output.erase(f::kEmptyVarName); + auto output_vars = bwd_net->OutputVars(true); + std::unordered_set all_outputs = + std::unordered_set(output_vars.begin(), output_vars.end()); + all_outputs.erase(f::kEmptyVarName); for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) { - ASSERT_NE(all_output.find(f::GradVarName(out)), all_output.end()); + ASSERT_NE(all_outputs.find(f::GradVarName(out)), all_outputs.end()); } // Not Generated X - ASSERT_EQ(all_output.find(f::GradVarName("X")), all_output.end()); + ASSERT_EQ(all_outputs.find(f::GradVarName("X")), all_outputs.end()); ASSERT_EQ(2UL, bwd_net->ops_.size()); ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp()); auto first_fc_grad = static_cast(bwd_net->ops_[1].get()); ASSERT_EQ(3UL, first_fc_grad->ops_.size()); ASSERT_EQ(f::kEmptyVarName, - first_fc_grad->ops_[2]->Output(f::GradVarName("A"))); + first_fc_grad->ops_[2]->Output(f::GradVarName("X"))); } TEST(Backward, net_shared_weight) { ops::NetOp net; - net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {})); - net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {})); + net.AddOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}}, + {{"Out", {"out"}}}, {})); + net.AddOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}}, + {{"Out", {"FinalOut"}}}, {})); net.CompleteAddOp(); auto bwd = f::Backward(net, {}); @@ -277,31 +295,37 @@ TEST(Backward, net_shared_weight) { } TEST(Backward, op_register_grad_not_for_network) { - auto fwd = f::OpRegistry::CreateOp( - "fc", {"X", "W", "b"}, {"mul_out", "add_out", "out1"}, - {{"temporary_index", std::vector{0, 1}}}); + auto fwd = + f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}}, + {{"mul_result", {"mul_out"}}, + {"add_result", {"add_out"}}, + {"Out", {"out1"}}}, + {{"temporary_index", std::vector{0, 1}}}); ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet); } TEST(Backward, op_all_input_are_not_need) { - auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); - auto backward = f::Backward(*fwd, {"X", "b"}); + auto fwd = f::OpRegistry::CreateOp( + "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); + auto backward = f::Backward(*fwd, {"x", "b"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); ASSERT_TRUE(net->ops_.empty()); } TEST(Backward, op_all_output_are_not_need) { - auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); - auto backward = f::Backward(*fwd, {"Out"}); + auto fwd = f::OpRegistry::CreateOp( + "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); + auto backward = f::Backward(*fwd, {"out"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); ASSERT_TRUE(net->ops_.empty()); } TEST(Backward, op_part_of_output_are_not_need) { - auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {}); + auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}}, + {{"y", {"Y"}}, {"z", {"Z"}}}, {}); auto backward = f::Backward(*fwd, {"Z"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); @@ -309,10 +333,10 @@ TEST(Backward, op_part_of_output_are_not_need) { auto &fill_zero = *net->ops_[0]; ASSERT_EQ("fill_zeros_like", fill_zero.type_); - ASSERT_EQ(1UL, fill_zero.inputs_.size()); - ASSERT_EQ("Z", fill_zero.inputs_[0]); - ASSERT_EQ(1UL, fill_zero.outputs_.size()); - ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.outputs_[0]); + ASSERT_EQ(1UL, fill_zero.Inputs("Src").size()); + ASSERT_EQ("Z", fill_zero.Input("Src")); + ASSERT_EQ(1UL, fill_zero.Outputs("Dst").size()); + ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Dst")); auto &d_many_out = *net->ops_[1]; ASSERT_EQ("many_output_op_grad", d_many_out.type_); @@ -324,44 +348,62 @@ TEST(Backward, op_part_of_output_are_not_need) { } TEST(Backward, op_part_of_input_are_not_need) { - auto fwd = f::OpRegistry::CreateOp("mul", {"a", "b"}, {"out"}, {}); + auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}}, + {{"Out", {"out"}}}, {}); auto backward = f::Backward(*fwd, {"a"}); auto &grad_mul = *backward; ASSERT_EQ(grad_mul.type_, "mul_grad"); ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL); ASSERT_EQ(grad_mul.outputs_.size(), 2UL); - ASSERT_EQ(grad_mul.Output(f::GradVarName("A")), f::kEmptyVarName); - ASSERT_EQ(grad_mul.Output(f::GradVarName("B")), f::GradVarName("b")); + ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName); + ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b")); ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out")); - ASSERT_EQ(grad_mul.Input("A"), "a"); - ASSERT_EQ(grad_mul.Input("B"), "b"); + ASSERT_EQ(grad_mul.Input("X"), "a"); + ASSERT_EQ(grad_mul.Input("Y"), "b"); ASSERT_EQ(grad_mul.Input("Out"), "out"); } TEST(Backward, linear_net_intermediate_variable_has_no_grad) { ops::NetOp net; - net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"}, - {"mul_out1", "add_out1", "out1"}, {})); - net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"}, - {"mul_out2", "tmp_out2", "out2"}, {})); - net.AddOp(f::OpRegistry::CreateOp("fc", {"out2", "w3", "b3"}, - {"mul_out3", "tmp_out3", "out3"}, {})); + net.AddOp(f::OpRegistry::CreateOp( + "fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}}, + {{"mul_result", {"mul_out1"}}, + {"add_result", {"add_out1"}}, + {"Out", {"out1"}}}, + {})); + net.AddOp(f::OpRegistry::CreateOp( + "fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}}, + {{"mul_result", {"mul_out2"}}, + {"add_result", {"tmp_out2"}}, + {"Out", {"out2"}}}, + {})); + net.AddOp(f::OpRegistry::CreateOp( + "fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}}, + {{"mul_result", {"mul_out3"}}, + {"add_result", {"tmp_out3"}}, + {"Out", {"out3"}}}, + {})); net.CompleteAddOp(); + auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"}); ASSERT_TRUE(backward->IsNetOp()); auto bwd_net = static_cast(backward.get()); ASSERT_EQ(bwd_net->ops_.size(), 3UL); auto &grad_fc = *bwd_net->ops_[0]; - EXPECT_EQ(grad_fc.inputs_.size(), - 3UL /* external input number */ + + const char *all = paddle::operators::NetOp::kAll; + EXPECT_EQ(grad_fc.inputs_[all].size(), + 2UL /* external input number */ + 1UL /* external output number*/ + 1UL /* number of gradient of external output*/ + 2U /* internal variable number*/); - EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/ - + 2UL /* input number of rowwise_add */ - + 1UL /* input number of sigmod */); - EXPECT_EQ(bwd_net->ops_[1]->inputs_.size(), 0UL); - EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL); - EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL); - EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL); + EXPECT_EQ(grad_fc.outputs_[all].size(), + 2UL /* input number of mul*/ + + 2UL /* input number of rowwise_add + */ + + 1UL /* input number of sigmod */); + EXPECT_EQ(bwd_net->ops_[1]->inputs_[all].size(), 0UL); + EXPECT_EQ(bwd_net->ops_[1]->outputs_[all].size(), 0UL); + EXPECT_EQ(bwd_net->ops_[2]->inputs_[all].size(), 0UL); + EXPECT_EQ(bwd_net->ops_[2]->outputs_[all].size(), 0UL); } diff --git a/paddle/framework/ddim.cc b/paddle/framework/ddim.cc index 545c1dcc2a1682839d90194002fdbb748d85e808..cfd3e8dfdec0e92620aef5cd246b4622b779ce19 100644 --- a/paddle/framework/ddim.cc +++ b/paddle/framework/ddim.cc @@ -283,6 +283,5 @@ std::ostream& operator<<(std::ostream& os, const DDim& ddim) { DDim::DDim(std::initializer_list init_list) { *this = make_ddim(init_list); } - } // namespace framework } // namespace paddle diff --git a/paddle/framework/details/lod_tensor.cc b/paddle/framework/details/lod_tensor.cc deleted file mode 100644 index 9ad3979e5b511517f75d2d43004f97ee1576953b..0000000000000000000000000000000000000000 --- a/paddle/framework/details/lod_tensor.cc +++ /dev/null @@ -1,62 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/framework/lod_tensor.h" - -#include - -namespace paddle { -namespace framework { -namespace details { - -using LOD = LODTensor::LOD; - -std::shared_ptr SliceLOD(const LOD &lod, size_t level_begin, - size_t level_end) { - auto new_lod = std::make_shared(); - new_lod->reserve(level_end - level_begin); - for (size_t i = level_begin; i < level_end; i++) { - new_lod->emplace_back(lod[i]); - } - return new_lod; -} - -std::shared_ptr SliceLOD(const LOD &lod, size_t level, size_t elem_begin, - size_t elem_end, bool tensor_shared) { - // slice the lod. - auto new_lod = std::make_shared(); - new_lod->reserve(lod.size() - level); - auto start = lod.at(level)[elem_begin]; - auto end = lod.at(level)[elem_end]; - - for (auto it = lod.begin() + level; it != lod.end(); it++) { - auto it_begin = std::find(it->begin(), it->end(), start); - auto it_end = std::find(it_begin, it->end(), end); - PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info"); - PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info"); - new_lod->emplace_back(it_begin, it_end + 1); - if (!tensor_shared) { - // reset offset if tensor is copyed and sliced. - std::transform(new_lod->back().begin(), new_lod->back().end(), - new_lod->back().begin(), - [start](int v) { return v - start; }); - PADDLE_ENFORCE(new_lod->back().front() == 0, "error in slice LOD"); - } - } - return new_lod; -} - -} // namespace details -} // namespace framework -} // namespace paddle diff --git a/paddle/framework/details/lod_tensor.h b/paddle/framework/details/lod_tensor.h deleted file mode 100644 index 9a6a6cd2ea41f02db991bdc0a2b917433dafed99..0000000000000000000000000000000000000000 --- a/paddle/framework/details/lod_tensor.h +++ /dev/null @@ -1,46 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#pragma once - -#include - -namespace paddle { -namespace framework { -namespace details { - -/* - * Slice levels from LOD. - * - * @lod: LOD to slice. - * @level_begin: level to begin slice. - * @level_end: level to end slice. - */ -std::shared_ptr SliceLOD(const LODTensor::LOD &lod, - size_t level_begin, size_t level_end); - -/* - * Slice elements from a level of LOD. - * - * @lod: LOD to slice. - * @level: which level to slice. - * @elem_begin: element's index to begin slice. - * @elem_end: element's index to end slice. - */ -std::shared_ptr SliceLOD(const LODTensor::LOD &lod, - size_t level, size_t elem_begin, - size_t elem_end, bool tensor_shared); -} // namespace details -} // namespace framework -} // namespace paddle diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto new file mode 100644 index 0000000000000000000000000000000000000000..7077e8aa2c77c24efdbb34ed3a13821fe7678455 --- /dev/null +++ b/paddle/framework/framework.proto @@ -0,0 +1,82 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +syntax = "proto2"; +package paddle.framework; + +enum AttrType { + INT = 0; + FLOAT = 1; + STRING = 2; + INTS = 3; + FLOATS = 4; + STRINGS = 5; +} + +// OpDesc describes an instance of a C++ framework::OperatorBase +// derived class type. +message OpDesc { + + message Attr { + required string name = 1; + required AttrType type = 2; + optional int32 i = 3; + optional float f = 4; + optional string s = 5; + repeated int32 ints = 6; + repeated float floats = 7; + repeated string strings = 8; + }; + + message Var { + required string parameter = 1; + repeated string arguments = 2; + }; + + required string type = 3; + repeated Var inputs = 1; + repeated Var outputs = 2; + repeated Attr attrs = 4; +}; + +// OpProto describes a C++ framework::OperatorBase derived class. +message OpProto { + + // VarProto describes the C++ type framework::Variable. + message Var { + required string name = 1; + required string comment = 2; + + optional bool duplicable = 3 [ default = false ]; + optional bool intermediate = 4 [ default = false ]; + optional bool no_gradient = 5 [ default = false ]; + } + + // AttrProto describes the C++ type Attribute. + message Attr { + required string name = 1; + required AttrType type = 2; + required string comment = 3; + // If that attribute is generated, it means the Paddle third + // language binding has responsibility to fill that + // attribute. End-User should not set that attribute. + optional bool generated = 4 [ default = false ]; + } + + required string type = 1; + repeated Var inputs = 2; + repeated Var outputs = 3; + repeated Attr attrs = 4; + required string comment = 5; +} diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc index b5c6bd3f56f3d8e16b58b76bd0215461c0f6d5ac..b316f2d535cc97183a28f39eec6a5a7b73e7c2d2 100644 --- a/paddle/framework/grad_op_builder.cc +++ b/paddle/framework/grad_op_builder.cc @@ -13,63 +13,28 @@ express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/grad_op_builder.h" -#include "paddle/framework/op_proto.pb.h" +#include "paddle/framework/framework.pb.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace framework { - -typedef std::vector Ints; - enum class OpArgType { IN, OUT }; -const Ints* AttrFormat(const AttributeMap& attrs, const std::string& key) { - return (attrs.count(key) > 0) ? &boost::get(attrs.at(key)) : nullptr; -} - -Ints* AttrFormat(AttributeMap& attrs, const std::string& key) { - return (attrs.count(key) > 0) ? &boost::get(attrs.at(key)) : nullptr; -} - -static void TransOpArg(const OperatorBase* src_op, - std::vector& grad_inputs, - std::vector& grad_outputs, - AttributeMap& grad_attrs, - std::unordered_map& grad_idxs, - const std::string& src_type, const std::string& dst_type, - int& idx, bool is_grad) { - const std::vector& src_inout = - (src_type == "input_format") ? src_op->inputs_ : src_op->outputs_; - - const std::vector* src_format = AttrFormat(src_op->Attrs(), src_type); - - std::vector& dst_inout = - (dst_type == "input_format") ? grad_inputs : grad_outputs; - - std::vector* dst_format = AttrFormat(grad_attrs, dst_type); - - const OpProto& proto = *(OpRegistry::op_info_map().at(src_op->type_).proto_); - +static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, + bool is_grad, OperatorBase::VarNameMap* vars) { + const auto& src_inout = + src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_; + auto& dst_inout = *vars; const auto& src_arg_list = - (src_type == "input_format") ? proto.inputs() : proto.outputs(); - + src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); for (const auto& arg : src_arg_list) { - std::string src_name = arg.name(); - std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name; - grad_idxs[dst_name] = idx++; - int src_arg_idx = src_op->in_out_idxs_->at(src_name); - int src_begin = - src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx); - int src_end = src_format == nullptr ? src_arg_idx + 1 - : src_format->at(src_arg_idx + 1); - for (int i = src_begin; i < src_end; ++i) { - std::string s = - is_grad ? src_inout[i] + kGradVarSuffix - : (arg.ignore_gradient() ? kEmptyVarName : src_inout[i]); - dst_inout.emplace_back(s); - } - if (dst_format != nullptr) { - dst_format->push_back(dst_inout.size()); + if (arg.no_gradient() && !is_grad) continue; + const std::string src_name = arg.name(); + std::string dst_name = is_grad ? GradVarName(src_name) : src_name; + dst_inout[dst_name].reserve(src_inout.at(src_name).size()); + for (auto& var_name : src_inout.at(src_name)) { + std::string s = is_grad ? GradVarName(var_name) : var_name; + dst_inout[dst_name].emplace_back(s); } } } @@ -82,44 +47,17 @@ OperatorBase* BuildGradOp(const OperatorBase* op) { PADDLE_ENFORCE(!grad_op_type.empty(), "'%s' has no gradient operator.", op->type_); - AttributeMap grad_attrs(op->Attrs()); - grad_attrs.erase("input_format"); - grad_attrs.erase("output_format"); - if (op->Attrs().count("input_format") > 0) { - grad_attrs["output_format"] = std::vector({0}); - } - if (op->Attrs().count("input_format") > 0 || - op->Attrs().count("output_format") > 0) { - grad_attrs["input_format"] = std::vector({0}); - } - - std::vector grad_inputs, grad_outputs; - - using VarIndexMap = std::unordered_map; - VarIndexMap* grad_idxs = new VarIndexMap; - int in_idx = 0; - int out_idx = 0; - TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs, - "input_format", "input_format", in_idx, false); // I - TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs, - "output_format", "input_format", in_idx, false); // G - TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs, - "output_format", "input_format", in_idx, true); // OG - TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs, - "input_format", "output_format", out_idx, true); // IG + OperatorBase::VarNameMap inputs; + OperatorBase::VarNameMap outputs; + TransOpArg(op, OpArgType::IN, false, &inputs); // I + TransOpArg(op, OpArgType::OUT, false, &inputs); // O + TransOpArg(op, OpArgType::OUT, true, &inputs); // OG + TransOpArg(op, OpArgType::IN, true, &outputs); // IG it = OpRegistry::op_info_map().find(grad_op_type); PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), "'%s' has not been registered.", grad_op_type); - OperatorBase* grad_op = it->second.creator_(); - - grad_op->type_ = grad_op_type; - grad_op->inputs_ = grad_inputs; - grad_op->outputs_ = grad_outputs; - grad_op->attrs_ = grad_attrs; - grad_op->in_out_idxs_.reset(grad_idxs); - - return grad_op; + return it->second.creator_(grad_op_type, inputs, outputs, op->attrs_); } } // namespace framework diff --git a/paddle/framework/grad_op_builder_test.cc b/paddle/framework/grad_op_builder_test.cc index 3d7f1a753da6ac2de22440f8f129dd016a1d269b..043503ada66ac1a1ef3e7b078296aa11b52135fb 100644 --- a/paddle/framework/grad_op_builder_test.cc +++ b/paddle/framework/grad_op_builder_test.cc @@ -13,10 +13,10 @@ class MutiInOutOpMaker : public OpProtoAndCheckerMaker { MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("In1", "a single input"); - AddInput("In2_mult", "a multiple input").SetMultiple(); + AddInput("In2_mult", "a multiple input").AsDuplicable(); AddInput("In3", "another single input"); AddOutput("Out1", "a single output"); - AddOutput("Out2_mult", "a multiple output").SetMultiple(); + AddOutput("Out2_mult", "a multiple output").AsDuplicable(); AddComment("test op with multiple inputs and outputs"); } }; @@ -26,10 +26,10 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker { IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("In1", "a single input"); - AddInput("In2_mult", "a multiple input").SetMultiple().IgnoreGradient(); - AddInput("In3_mult", "another multiple input").SetMultiple(); - AddOutput("Out1_mult", "a multiple output").SetMultiple(); - AddOutput("Out2", "a single output").IgnoreGradient(); + AddInput("In2_mult", "a multiple input").AsDuplicable().AsNoGradient(); + AddInput("In3_mult", "another multiple input").AsDuplicable(); + AddOutput("Out1_mult", "a multiple output").AsDuplicable(); + AddOutput("Out2", "a single output").AsNoGradient(); AddComment("op with inputs and outputs ignored in gradient calculating"); } }; @@ -40,33 +40,34 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker { namespace f = paddle::framework; TEST(GradOpBuilder, AddTwo) { - std::shared_ptr add_op( - f::OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {})); + std::shared_ptr add_op(f::OpRegistry::CreateOp( + "add_two", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {})); std::shared_ptr grad_add_op = f::OpRegistry::CreateGradOp(*add_op); - EXPECT_EQ(static_cast(grad_add_op->inputs_.size()), 4); - EXPECT_EQ(static_cast(grad_add_op->outputs_.size()), 2); + EXPECT_EQ(grad_add_op->inputs_.size(), 4UL); + EXPECT_EQ(grad_add_op->outputs_.size(), 2UL); EXPECT_EQ(grad_add_op->Input("X"), "x"); EXPECT_EQ(grad_add_op->Input("Y"), "y"); EXPECT_EQ(grad_add_op->Input("Out"), "out"); - EXPECT_EQ(grad_add_op->Input("Out@GRAD"), "out@GRAD"); - EXPECT_EQ(grad_add_op->Output("X@GRAD"), "x@GRAD"); - EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD"); + EXPECT_EQ(grad_add_op->Input(f::GradVarName("Out")), f::GradVarName("out")); + EXPECT_EQ(grad_add_op->Output(f::GradVarName("X")), f::GradVarName("x")); + EXPECT_EQ(grad_add_op->Output(f::GradVarName("Y")), f::GradVarName("y")); } REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker, mult_io_grad, f::NOP); REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker, io_ignored_grad, f::NOP); TEST(GradOpBuilder, MutiInOut) { - f::AttributeMap attrs{{"input_format", std::vector{0, 1, 4, 5}}, - {"output_format", std::vector{0, 1, 3}}}; std::shared_ptr test_op(f::OpRegistry::CreateOp( - "mult_io", {"in1", "in2_1", "in2_2", "in2_3", "in3"}, - {"out1", "out2_1", "out2_2"}, attrs)); + "mult_io", + {{"In1", {"in1"}}, + {"In2_mult", {"in2_1", "in2_2", "in2_3"}}, + {"In3", {"in3"}}}, + {{"Out1", {"out1"}}, {"Out2_mult", {"out2_1", "out2_2"}}}, {})); std::shared_ptr grad_test_op = f::OpRegistry::CreateGradOp(*test_op); - ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); + ASSERT_EQ(grad_test_op->inputs_.size(), 3UL + 2UL + 2UL); EXPECT_EQ(grad_test_op->Input("In1"), "in1"); EXPECT_EQ(grad_test_op->Inputs("In2_mult"), std::vector({"in2_1", "in2_2", "in2_3"})); @@ -80,7 +81,7 @@ TEST(GradOpBuilder, MutiInOut) { std::vector( {f::GradVarName("out2_1"), f::GradVarName("out2_2")})); - ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); + ASSERT_EQ(grad_test_op->outputs_.size(), 3UL); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), std::vector({f::GradVarName("in2_1"), @@ -90,31 +91,29 @@ TEST(GradOpBuilder, MutiInOut) { } TEST(GradOpBuilder, IOIgnoredInGradient) { - f::AttributeMap attrs{{"input_format", std::vector{0, 1, 3, 5}}, - {"output_format", std::vector{0, 2, 3}}}; std::shared_ptr test_op(f::OpRegistry::CreateOp( - "io_ignored", {"in1", "in2_1", "in2_2", "in3_1", "in3_2"}, - {"out1_1", "out1_2", "out2"}, attrs)); + "io_ignored", + {{"In1", {"in1"}}, + {"In2_mult", {"in2_1", "in2_2"}}, + {"In3_mult", {"in3_1", "in3_2"}}}, + {{"Out1_mult", {"out1_1", "out1_2"}}, {"Out2", {"out2"}}}, {})); std::shared_ptr grad_test_op = f::OpRegistry::CreateGradOp(*test_op); // 'In2' and 'Out2' are ignored in gradient calculating - ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); + ASSERT_EQ(grad_test_op->inputs_.size(), 2UL + 1UL + 2UL); EXPECT_EQ(grad_test_op->Input("In1"), "in1"); - EXPECT_EQ(grad_test_op->Inputs("In2_mult"), - std::vector({f::kEmptyVarName, f::kEmptyVarName})); EXPECT_EQ(grad_test_op->Inputs("In3_mult"), std::vector({"in3_1", "in3_2"})); EXPECT_EQ(grad_test_op->Inputs("Out1_mult"), std::vector({"out1_1", "out1_2"})); - EXPECT_EQ(grad_test_op->Input("Out2"), f::kEmptyVarName); EXPECT_EQ(grad_test_op->Inputs(f::GradVarName("Out1_mult")), std::vector( {f::GradVarName("out1_1"), f::GradVarName("out1_2")})); EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out2")), f::GradVarName("out2")); - ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); + ASSERT_EQ(grad_test_op->outputs_.size(), 3UL); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), std::vector( diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index 70045dbf7afd0935e4df852b2f0e3ecd163a9316..2b178907747b3911292b070b65160a24c120b726 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -19,32 +19,59 @@ namespace paddle { namespace framework { -LODTensor LODTensor::SliceShared(size_t level_begin, size_t level_end) const { - PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced."); - auto new_lod = details::SliceLOD(*lod_start_pos_, level_begin, level_end); - // slice levels just need to update LOD info, each level will contains the - // whole tensor_, so no need to modify tensor_. - return LODTensor(tensor_, new_lod); +LODTensor::LOD LODTensor::LOD::SliceLevels(size_t level_begin, + size_t level_end) const { + LOD new_lod; + new_lod.reserve(level_end - level_begin); + for (size_t i = level_begin; i < level_end; i++) { + new_lod.emplace_back(at(i)); + } + return new_lod; } -LODTensor LODTensor::SliceShared(size_t level, size_t elem_begin, - size_t elem_end) const { - PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced."); - PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, - NumLevels()); - PADDLE_ENFORCE(elem_begin < NumElements(level), - "element begin [%d] out of range [%d]", elem_begin, - NumElements(level)); - PADDLE_ENFORCE(elem_end < NumElements(level) + 1, - "element end [%d] out of range [%d]", elem_end, - NumElements(level)); - - auto new_lod = details::SliceLOD(*lod_start_pos_, level, elem_begin, elem_end, - true /*tensor_shared*/); - - // slice elements just need to update LOD info, because offsets are not - // changed, so the original tensor_ can be reused. - return LODTensor(tensor_, new_lod); +LODTensor::LOD LODTensor::LOD::SliceInLevel(size_t level, size_t elem_begin, + size_t elem_end) const { + // slice the lod. + LOD new_lod; + new_lod.reserve(size() - level); + auto start = this->at(level)[elem_begin]; + auto end = this->at(level)[elem_end]; + + for (auto it = this->begin() + level; it != this->end(); it++) { + auto it_begin = std::find(it->begin(), it->end(), start); + auto it_end = std::find(it_begin, it->end(), end); + PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info"); + PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info"); + new_lod.emplace_back(it_begin, it_end + 1); + // reset offset if tensor is copyed and sliced. + std::transform(new_lod.back().begin(), new_lod.back().end(), + new_lod.back().begin(), + [start](int v) { return v - start; }); + PADDLE_ENFORCE_EQ(new_lod.back().front(), 0, "error in slice LOD"); + } + PADDLE_ENFORCE_LE(new_lod.size(), this->size()); + return new_lod; +} + +bool operator==(const LODTensor::LOD& a, const LODTensor::LOD& b) { + if (a.size() != b.size()) { + return false; + } + + for (size_t i = 0; i < a.size(); i++) { + const auto& a_level = a[i]; + const auto& b_level = b[i]; + if (a_level.size() != b_level.size()) { + return false; + } + for (size_t j = 0; j < a_level.size(); j++) { + if (a_level[j] != b_level[j]) { + return false; + } + } + } + + return true; } } // namespace framework diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 4933479b109694312e99595dc8ad6db70259efa6..9e27aec38d336db8a4f0adbed098d299aa741356 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -15,7 +15,7 @@ #pragma once #include -#if (!PADDLE_ONLY_CPU) +#if !defined(PADDLE_ONLY_CPU) #include #include #endif @@ -31,30 +31,29 @@ namespace framework { * LODTensor (Level of details Tensor) * see https://en.wikipedia.org/wiki/Level_of_details for reference. */ -class LODTensor { +class LODTensor : public Tensor { public: // Level save offsets of each unit. #ifdef PADDLE_ONLY_CPU - using Level = std::vector; + template + using Vector = std::vector; #else - using Level = thrust::device_vector; + template + using Vector = thrust::host_vector; #endif - // LOD stores offsets of each level of units, the largest units level first, + // LoD stores offsets of each level of units, the largest units level first, // then the smaller units level. Each Level stores the offsets of units in // Tesor. - typedef std::vector LOD; + class LOD : public std::vector> { + public: + LOD SliceLevels(size_t level_begin, size_t level_end) const; + LOD SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) const; + }; LODTensor() {} - LODTensor(const std::shared_ptr &tensor, - const std::shared_ptr &lod) { - Reset(tensor, lod); - } + explicit LODTensor(const LOD &lod) : lod_(lod) {} - void Reset(const std::shared_ptr &tensor, - const std::shared_ptr &lod) { - tensor_ = tensor; - lod_start_pos_ = lod; - } + virtual Tensor *Clone() const { return new LODTensor(lod_); } /* * Get a element from LOD. @@ -65,16 +64,14 @@ class LODTensor { PADDLE_ENFORCE(elem < NumElements(level), "element begin [%d] out of range [%d]", elem, NumElements(level)); - return (*lod_start_pos_)[level][elem]; + return (lod_)[level][elem]; } /* * Number of LODTensor's levels, each level has units of data, for example, * in the sentence's view, article, paragraph, sentence are 3 levels. */ - size_t NumLevels() const { - return lod_start_pos_ ? lod_start_pos_->size() : 0UL; - } + size_t NumLevels() const { return lod_.size(); } /* * Number of elements in a level. */ @@ -82,64 +79,71 @@ class LODTensor { PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, NumLevels()); // the last offset is the end of last element - return lod_start_pos_->at(level).size() - 1; + return lod_[level].size() - 1; } - /* - * Slice of levels[level_begin:level_end], with tensor copied. - */ - template - LODTensor SliceCopied(size_t level_begin, size_t level_end, - const platform::Place &dst_place) const; - /* * Slice of levels[level_begin:level_end], with tensor shared. */ - LODTensor SliceShared(size_t level_begin, size_t level_end) const; - - /* - * Slice of elements of a level, [elem_begin: elem_end], with tensor copied. - * @note: low performance in slice lod_start_pos_. - */ template - LODTensor SliceCopied(size_t level, size_t elem_begin, size_t elem_end, - const platform::Place &dst_place) const; + LODTensor SliceLevels(size_t level_begin, size_t level_end) const; /* * Slice of elements of a level, [elem_begin: elem_end], with tensor shared. - * @note: low performance in slice lod_start_pos_. - */ - LODTensor SliceShared(size_t level, size_t elem_begin, size_t elem_end) const; - - /* - * Copy other's lod_start_pos_, to share LOD info. - * @note: the LOD info should not be changed. + * @note: low performance in slice lod_. */ - void ShareLOD(const LODTensor &other) { - lod_start_pos_ = other.lod_start_pos_; - } + template + LODTensor SliceInLevel(size_t level, size_t elem_begin, + size_t elem_end) const; /* - * Copy other's lod_start_pos_'s content, free to mutate. + * Copy other's lod_'s content, free to mutate. */ - void CopyLOD(const LODTensor &other) { - lod_start_pos_ = std::make_shared(*other.lod_start_pos_); - } + void CopyLOD(const LODTensor &other) { lod_ = other.lod_; } /* * Determine whether LODTensor has a valid LOD info. */ - bool HasLOD() const { return bool(lod_start_pos_); } - LOD *lod() const { return lod_start_pos_.get(); } + const LOD &lod() const { return lod_; } + LOD *mutable_lod() { return &lod_; } - std::shared_ptr &tensor() { return tensor_; } - Tensor *raw_tensor() { return tensor_.get(); } + virtual ~LODTensor() {} private: - std::shared_ptr lod_start_pos_; - std::shared_ptr tensor_; + LOD lod_; }; +bool operator==(const LODTensor::LOD &a, const LODTensor::LOD &b); + +template +LODTensor LODTensor::SliceLevels(size_t level_begin, size_t level_end) const { + auto new_lod = lod_.SliceLevels(level_begin, level_end); + // slice levels just need to update LOD info, each level will contains the + // whole tensor_, so no need to modify tensor_. + LODTensor new_tensor(new_lod); + new_tensor.ShareDataWith(*this); + return new_tensor; +} + +template +LODTensor LODTensor::SliceInLevel(size_t level, size_t elem_begin, + size_t elem_end) const { + PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, + NumLevels()); + PADDLE_ENFORCE(elem_begin < NumElements(level), + "element begin [%d] out of range [%d]", elem_begin, + NumElements(level)); + PADDLE_ENFORCE(elem_end < NumElements(level) + 1, + "element end [%d] out of range [%d]", elem_end, + NumElements(level)); + + auto new_lod = lod_.SliceInLevel(level, elem_begin, elem_end); + + // slice elements just need to update LOD info, because offsets are not + // changed, so the original tensor_ can be reused. + LODTensor new_tensor(new_lod); + new_tensor.ShareDataWith(*this); + return new_tensor; +} + } // namespace framework } // namespace paddle - -#include "paddle/framework/lod_tensor_impl.h" diff --git a/paddle/framework/lod_tensor_impl.h b/paddle/framework/lod_tensor_impl.h deleted file mode 100644 index 0eb6469aea3ae25f035751da985b5bebb489d961..0000000000000000000000000000000000000000 --- a/paddle/framework/lod_tensor_impl.h +++ /dev/null @@ -1,60 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#pragma once - -#include "paddle/framework/details/lod_tensor.h" - -namespace paddle { -namespace framework { - -template -LODTensor LODTensor::SliceCopied(size_t level_begin, size_t level_end, - const platform::Place &dst_place) const { - PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced."); - auto new_lod = details::SliceLOD(*lod_start_pos_, level_begin, level_end); - auto new_tensor = std::make_shared(); - new_tensor->CopyFrom(*tensor_, dst_place); - - return LODTensor(new_tensor, new_lod); -} - -template -LODTensor LODTensor::SliceCopied(size_t level, size_t elem_begin, - size_t elem_end, - const platform::Place &dst_place) const { - PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced."); - PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, - NumLevels()); - PADDLE_ENFORCE(elem_begin < NumElements(level), - "element begin [%d] out of range [%d]", elem_begin, - NumElements(level)); - PADDLE_ENFORCE(elem_end < NumElements(level) + 1, - "element end [%d] out of range [%d]", elem_end, - NumElements(level)); - - auto new_lod = details::SliceLOD(*lod_start_pos_, level, elem_begin, elem_end, - false /*tensor_shared*/); - - auto start_idx = new_lod->front().front(); - auto end_idx = new_lod->front().back() - 1 /*the next element's start*/; - auto sliced_tensor = tensor_->Slice(start_idx, end_idx); - auto new_tensor = std::make_shared(); - new_tensor->CopyFrom(sliced_tensor, dst_place); - - return LODTensor(new_tensor, new_lod); -} - -} // namespace framework -} // namespace paddle diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc index 511716375e81e8fd89b071c940ee97327c268b8b..2881136ced6ef957a192e303e529b9b2867b3dda 100644 --- a/paddle/framework/lod_tensor_test.cc +++ b/paddle/framework/lod_tensor_test.cc @@ -15,6 +15,7 @@ #include #include +#include #include namespace paddle { @@ -29,22 +30,28 @@ class LODTensorTester : public ::testing::Test { // 0 10 20 // 0 5 10 15 20 // 0 2 5 7 10 12 15 20 - auto lod = std::make_shared(); - lod->push_back(std::vector{0, 10, 20}); - lod->push_back(std::vector{0, 5, 10, 15, 20}); - lod->push_back(std::vector{0, 2, 5, 7, 10, 12, 15, 17, 20}); + LODTensor::LOD lod; + lod.push_back(std::vector{0, 10, 20}); + lod.push_back(std::vector{0, 5, 10, 15, 20}); + lod.push_back(std::vector{0, 2, 5, 7, 10, 12, 15, 17, 20}); - auto tensor = std::make_shared(); - tensor->Resize({20 /*batch size*/, 128 /*dim*/}); + ASSERT_EQ(lod.size(), 3UL); + + tensor.Resize({20 /*batch size*/, 128 /*dim*/}); // malloc memory - tensor->mutable_data(place); + tensor.mutable_data(place); + + lod_tensor.reset(new LODTensor(lod)); + lod_tensor->Resize({20 /*batch size*/, 128 /*dim*/}); - lod_tensor->Reset(tensor, lod); + lod_tensor->ShareDataWith(tensor); + // lod_tensor->ShareDataWith(tensor); } protected: std::unique_ptr lod_tensor; platform::CPUPlace place; + Tensor tensor; }; TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor->NumLevels(), 3UL); } @@ -55,110 +62,54 @@ TEST_F(LODTensorTester, NumElements) { ASSERT_EQ(lod_tensor->NumElements(2), 8UL); } -TEST_F(LODTensorTester, SliceShared_Level) { - // slice 1 level - for (size_t level = 0; level < 3UL; ++level) { - auto new_lod_tensor = lod_tensor->SliceShared(level, level + 1); - ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level)); - ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor()); - } - // slice 2 level - for (size_t level = 0; level < 2UL; ++level) { - auto new_lod_tensor = lod_tensor->SliceShared(level, level + 2); - ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level)); - ASSERT_EQ(new_lod_tensor.NumElements(1), - lod_tensor->NumElements(level + 1)); - ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor()); - } -} - -TEST_F(LODTensorTester, SliceCopied_Level) { +TEST_F(LODTensorTester, SliceLevels) { // slice 1 level for (size_t level = 0; level < 3UL; ++level) { - auto new_lod_tensor = - lod_tensor->SliceCopied(level, level + 1, place); + auto new_lod_tensor = lod_tensor->SliceLevels(level, level + 1); ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level)); - // ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor()); - // TODO(superjom) add tensor comparation here. + // ASSERT_EQ(new_lod_tensor, *lod_tensor); } // slice 2 level for (size_t level = 0; level < 2UL; ++level) { - auto new_lod_tensor = - lod_tensor->SliceCopied(level, level + 2, place); + auto new_lod_tensor = lod_tensor->SliceLevels(level, level + 2); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level)); ASSERT_EQ(new_lod_tensor.NumElements(1), lod_tensor->NumElements(level + 1)); - // ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor()); - // TODO(superjom) add tensor comparation here. + ASSERT_EQ(new_lod_tensor.data(), lod_tensor->data()); } } -TEST_F(LODTensorTester, SliceShared_Element) { - size_t level = 0; - auto new_lod_tensor = lod_tensor->SliceShared(level, 0, 2); - ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); - ASSERT_EQ(new_lod_tensor.NumElements(2), 8UL); - ASSERT_EQ(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor()); - - level = 1; - new_lod_tensor = lod_tensor->SliceShared(level, 0, 2); - ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); - ASSERT_EQ(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor()); -} - -TEST_F(LODTensorTester, SliceCopied_Element) { +TEST_F(LODTensorTester, SliceInLevel) { size_t level = 0; - auto new_lod_tensor = lod_tensor->SliceCopied(level, 0, 2, place); - ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); - ASSERT_EQ(new_lod_tensor.NumElements(2), 8UL); - ASSERT_NE(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor()); + auto new_lod_tensor = lod_tensor->SliceInLevel(level, 0, 2); + EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL); + EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL); + EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL); + EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL); + ASSERT_EQ(new_lod_tensor.data(), lod_tensor->data()); level = 1; - new_lod_tensor = lod_tensor->SliceCopied(level, 0, 2, place); + new_lod_tensor = lod_tensor->SliceInLevel(level, 0, 2); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); - ASSERT_NE(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor()); - - level = 1; - // LOD is - // 0 5 10 - // 0 2 5 7 10 - new_lod_tensor = lod_tensor->SliceCopied(level, 1, 3, place); - ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); - - ASSERT_EQ(new_lod_tensor.lod_element(0, 0), 0UL); - ASSERT_EQ(new_lod_tensor.lod_element(0, 1), 5UL); - ASSERT_EQ(new_lod_tensor.lod_element(1, 0), 0UL); - ASSERT_EQ(new_lod_tensor.lod_element(1, 1), 2UL); - ASSERT_EQ(new_lod_tensor.lod_element(1, 2), 5UL); - ASSERT_EQ(new_lod_tensor.lod_element(1, 3), 7UL); - - // TODO(superjom) compare the content of these tensors + ASSERT_EQ(new_lod_tensor.data(), lod_tensor->data()); } TEST_F(LODTensorTester, ShareLOD) { LODTensor new_lod_tensor; - new_lod_tensor.ShareLOD(*lod_tensor); + new_lod_tensor.CopyLOD(*lod_tensor); ASSERT_EQ(new_lod_tensor.lod(), lod_tensor->lod()); } TEST_F(LODTensorTester, CopyLOD) { LODTensor new_lod_tensor; new_lod_tensor.CopyLOD(*lod_tensor); - ASSERT_NE(new_lod_tensor.lod(), lod_tensor->lod()); + bool equals = std::equal(lod_tensor->lod().begin(), lod_tensor->lod().end(), + new_lod_tensor.lod().begin()); + ASSERT_TRUE(equals); } } // namespace framework diff --git a/paddle/framework/op_desc.proto b/paddle/framework/op_desc.proto deleted file mode 100644 index d95ba26f88ae181f991440e0df30c80f80a7eb2a..0000000000000000000000000000000000000000 --- a/paddle/framework/op_desc.proto +++ /dev/null @@ -1,56 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -syntax = "proto2"; -package paddle.framework; - -import "attribute.proto"; - -// AttrDesc is used to describe Attributes of an Operator. It contain's -// name, type, and value of Attribute. -// -// e.g, for scale=3.0: name=scala, type=AttrType.FLOAT, value=3.0 -message AttrDesc { - required string name = 1; - required AttrType type = 2; - optional int32 i = 3; - optional float f = 4; - optional string s = 5; - repeated int32 ints = 6; - repeated float floats = 7; - repeated string strings = 8; -}; - -// Protocol Message to describe an Operator. -// -// In PaddlePaddle, Operator is used to do a certain computation such -// as "add", "sub", "cosine", etc. -// (1) Operator needs to know the input and output variable names. -// (2) Some ops may have special attributes such as "scale" in "CosineOp". -// -// 3rd-party language can build this proto message and call -// AddOp(const OpDesc& op_desc) of Paddle core to create an Operator. -message OpDesc { - // input names of this Operator. - repeated string inputs = 1; - - // output names of this Operator. - repeated string outputs = 2; - - // type of this Operator, such as "add", "sub", "fc". - required string type = 3; - - // Attributes of this Operator. e.g., scale=3.0 in cosine op. - repeated AttrDesc attrs = 4; -}; \ No newline at end of file diff --git a/paddle/framework/op_desc_test.cc b/paddle/framework/op_desc_test.cc deleted file mode 100644 index d0c52523b64725ee11c281b086f9ffed6a09e787..0000000000000000000000000000000000000000 --- a/paddle/framework/op_desc_test.cc +++ /dev/null @@ -1,35 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include -#include - -TEST(OpDesc, Create) { - paddle::framework::OpDesc op_desc; - op_desc.set_type("add"); - op_desc.add_inputs("X"); - op_desc.add_inputs("Y"); - op_desc.add_outputs("Z"); - - auto attr = op_desc.mutable_attrs()->Add(); - attr->set_type(paddle::framework::AttrType::FLOAT); - attr->set_f(3.14); - - // required field name is not set, so IsInitialized should be false. - ASSERT_FALSE(op_desc.IsInitialized()); - - attr->set_name("add"); - // after all required fields are set, IsInitialized should be true now. - ASSERT_TRUE(op_desc.IsInitialized()); -} \ No newline at end of file diff --git a/paddle/framework/op_proto.proto b/paddle/framework/op_proto.proto deleted file mode 100644 index 52292162874b9ca207fb0d3917df41ade096b143..0000000000000000000000000000000000000000 --- a/paddle/framework/op_proto.proto +++ /dev/null @@ -1,116 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -// Protocol Message for 3rd-party language binding. -// -// Paddle Python package will use `OpProto` to generate op creation methods. -// The op creation methods take user's input and generate `OpDesc` proto -// message, -// then pass `OpDesc` to C++ side and create Op pointer. -// -syntax = "proto2"; -package paddle.framework; - -import "attribute.proto"; - -// Attribute protocol message for 3rd-party language binding. -// It will store the Op support what attribute and what type. -message AttrProto { - // Supported attribute name. e.g. `scale` for cosine op. - required string name = 1; - - // Supported attribute type. - required AttrType type = 2; - - // Supported attribute comments. It helps 3rd-party language generate - // doc-string. - required string comment = 3; - - // If that attribute is generated, it means the Paddle third language - // binding has responsibility to fill that attribute. End-User should - // not set that attribute. - optional bool generated = 4 [ default = false ]; -} - -// Input or output message for 3rd-party language binding. -// It contains parameter name and its comments. -message VarProto { - // Input or output name in that op creation function. - // e.g. `cos(a, b, output, ...)`, "a", "b", "output" are names. - required string name = 1; - - // The comment for that input. It helps 3rd-party language generate - // doc-string. - required string comment = 2; - - // Is that input/output could be a list or not. - // If so, that Op should write a attributed named `input_format` or - // `output_format`. - // - // e.g. - // If the op is a fc op, the inputs are `X`, `W`, `b`. The `X` and `W` - // could be multiple, so the multiple of `X` and `W` is True, and OpDesc - // will hold a attribute of them. - // - // The Op desc of same fc could be - // { - // "type": "fc", - // "input": ["X1", "X2", "W1", "W2", "b"], - // "output": "fc.out", - // "attrs" : { - // "input_format": [0, 2, 4, 5] - // } - // } - // - optional bool multiple = 3 [ default = false ]; - - // It marks that output is a temporary output. That output is not used by - // user, but used by other op internally as input. If other op is not use - // that output, it could be optimized early. - // - // Attribute temporary_index will be set in OpDesc if there is some - // outputs are temporary. - // - // output = [ "xxx.out1", "xxx.tmp", "xxx.out2"], - // attrs = { - // "temporary_index": [1] - // } - optional bool temporary = 4 [ default = false ]; - - // The gradient of operator can be ignored immediately - // e.g. operator AddOp, y = x1 + x2, the gradient of dy/dx1, dy/dx2 - // can be ignored for the future optimized on graph. - optional bool ignore_gradient = 6; -} - -// Op protocol message for 3rd-party language binding. -// It contains all information for generating op creation method. -message OpProto { - // The input information to generate op creation method. - repeated VarProto inputs = 1; - - // The output information to generate op creation method. - repeated VarProto outputs = 2; - - // The attribute information to generate op creation method. - repeated AttrProto attrs = 3; - - // The comments for that Op. It helps 3rd-party language generate - // doc-string. The whole documentation of that Op is generated by comment, - // inputs, outputs, attrs together. - required string comment = 4; - - // The type of that Op. - required string type = 5; -} diff --git a/paddle/framework/op_proto_test.cc b/paddle/framework/op_proto_test.cc deleted file mode 100644 index 9c054bde44e77571330cbc59074705f0cfc1cfb6..0000000000000000000000000000000000000000 --- a/paddle/framework/op_proto_test.cc +++ /dev/null @@ -1,31 +0,0 @@ -#include -#include - -TEST(TestOpProto, ALL) { - paddle::framework::OpProto proto; - { - auto ipt = proto.mutable_inputs()->Add(); - *ipt->mutable_name() = "a"; - *ipt->mutable_comment() = "the one input of cosine op"; - } - { - auto ipt = proto.mutable_inputs()->Add(); - *ipt->mutable_name() = "b"; - *ipt->mutable_comment() = "the other input of cosine op"; - } - { - auto opt = proto.mutable_outputs()->Add(); - *opt->mutable_name() = "output"; - *opt->mutable_comment() = "the output of cosine op"; - } - { - auto attr = proto.mutable_attrs()->Add(); - *attr->mutable_name() = "scale"; - attr->set_type(paddle::framework::AttrType::FLOAT); - *attr->mutable_comment() = "the scale attribute of cosine op"; - } - proto.set_type("cos"); - *proto.mutable_comment() = "cosine op, output = scale * cos(a, b)"; - - ASSERT_TRUE(proto.IsInitialized()); -} \ No newline at end of file diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 23f641cba2b2a22f12b439577732e987fe3ba66c..6dd5f4af224f3c0c26e907f1a2eb977e6597d5dc 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -21,8 +21,9 @@ limitations under the License. */ #include #include #include "paddle/framework/attribute.h" +#include "paddle/framework/framework.pb.h" #include "paddle/framework/grad_op_builder.h" -#include "paddle/framework/op_desc.pb.h" +#include "paddle/framework/operator.h" #include "paddle/framework/scope.h" namespace paddle { @@ -45,52 +46,48 @@ class OpProtoAndCheckerMaker { protected: struct VariableBuilder { - VarProto* var_; - std::function on_multiple_; - std::function on_temporary_; + OpProto::Var* var_; - VariableBuilder& SetMultiple() { - var_->set_multiple(true); - on_multiple_(); + VariableBuilder& AsDuplicable() { + var_->set_duplicable(true); return *this; } - VariableBuilder& SetTemporary() { - PADDLE_ENFORCE(bool(on_temporary_), "Cannot set temporary"); - var_->set_temporary(true); - on_temporary_(); + VariableBuilder& AsIntermediate() { + var_->set_intermediate(true); return *this; } - VariableBuilder& IgnoreGradient() { - var_->set_ignore_gradient(true); + // TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it + // means that input/output is not needed when calculate gradient. It does + // not mean no gradient when backward. It should be changed soon. + VariableBuilder& AsNoGradient() { + var_->set_no_gradient(true); return *this; } }; VariableBuilder AddInput(const std::string& name, const std::string& comment) { - VarProto* input = proto_->add_inputs(); + auto* input = proto_->add_inputs(); input->set_name(name); input->set_comment(comment); - return VariableBuilder{input, [=] { this->SetHasMultipleInput(); }, - nullptr}; + return VariableBuilder{input}; } VariableBuilder AddOutput(const std::string& name, const std::string& comment) { - VarProto* output = proto_->add_outputs(); + auto* output = proto_->add_outputs(); output->set_name(name); output->set_comment(comment); - return VariableBuilder{output, [=] { this->SetHasMultipleOutput(); }, - [=] { this->SetHasTemporaryOutput(); }}; + return VariableBuilder{output}; } template TypedAttrChecker& AddAttr(const std::string& name, const std::string& comment, bool generated = false) { - AttrProto* attr = proto_->add_attrs(); + auto* attr = proto_->add_attrs(); attr->set_name(name); attr->set_comment(comment); attr->set_generated(generated); @@ -101,53 +98,6 @@ class OpProtoAndCheckerMaker { void AddComment(const std::string& comment) { proto_->set_comment(comment); } private: - void SetHasMultiple(const std::string& in_out, bool* flag) { - if (!*flag) { - AddAttr>(in_out + "_format", - "The multiple index of " + in_out + - "\n" - R"DOC( -This attribute is used by Paddle core framework. Paddle's Op support each input -or output could be a list of variable. This attribute is used to show how that -list organized. - -e.g. - input = ["a", "b", "c", "d", "e", "f"] - input_format = [0, 4, 5, 6] - -means - The number of all input variables this op is six, and they are segmented into - three inputs. - - The first input is input[0:4], second is input[4:5], third is input[5:6]. -)DOC", - /*generated*/ true); - *flag = true; - } - } - - void SetHasMultipleInput() { SetHasMultiple("input", &has_multiple_input_); } - void SetHasMultipleOutput() { - SetHasMultiple("output", &has_multiple_output_); - } - - void SetHasTemporaryOutput() { - if (!has_temporary_output_) { - AddAttr>("temporary_index", - R"DOC(The temporary index of output. - -Not all output of Paddle Op is used by user. For faster computation, each op -could output some its internal state to other op, other op could take that -output to make compute faster. - -Add a mark to which output is temporary is helpful for future optimization. -)DOC", - /*generated*/ true) - .SetDefault(std::vector()); - has_temporary_output_ = true; - } - } - void CheckNoDuplicatedInOutAttrs() { std::unordered_set names; auto checker = [&](const std::string& name) { @@ -168,9 +118,6 @@ Add a mark to which output is temporary is helpful for future optimization. OpProto* proto_; OpAttrChecker* op_checker_; bool validated_{false}; - bool has_multiple_input_{false}; - bool has_multiple_output_{false}; - bool has_temporary_output_{false}; }; class NOPMaker : public OpProtoAndCheckerMaker { @@ -187,8 +134,10 @@ struct OpInfo { }; class OpRegistry { - using VarIndexMap = std::unordered_map; - using VarNameList = std::vector; + using VarNameMap = OperatorBase::VarNameMap; + using OpCreator = std::function; public: template @@ -197,7 +146,11 @@ class OpRegistry { PADDLE_ENFORCE(op_info_map().count(op_type) == 0, "'%s' is registered more than once.", op_type); OpInfo op_info; - op_info.creator_ = [] { return new OpType; }; + op_info.creator_ = [](const std::string& type, const VarNameMap& inputs, + const VarNameMap& outputs, + const AttributeMap& attrs) { + return new OpType(type, inputs, outputs, attrs); + }; op_info.grad_op_type_ = grad_op_type; if (std::type_index(typeid(ProtoMakerType)) != std::type_index(typeid(NOPMaker))) { @@ -210,18 +163,6 @@ class OpRegistry { op_info.proto_->IsInitialized(), "Fail to initialize %s's OpProto, because %s is not initialized", op_type, op_info.proto_->InitializationErrorString()); - // ======will be refactored in following PRs============ // - VarIndexMaps()[op_type].reset(new VarIndexMap()); - auto& varmap = *VarIndexMaps()[op_type]; - int idx = 0; - for (auto& var : op_info.proto_->inputs()) { - varmap[var.name()] = idx++; - } - idx = 0; - for (auto& var : op_info.proto_->outputs()) { - varmap[var.name()] = idx++; - } - // ================================================ // } else { op_info.proto_ = nullptr; op_info.checker_ = nullptr; @@ -238,41 +179,29 @@ class OpRegistry { const VarNameList& outputs, const AttributeMap& attrs) { auto it = op_info_map().find(type); - PADDLE_ENFORCE(it != op_info_map().end(), "'%s' has not been registered.", - type); - - auto op = it->second.creator_(); - op->type_ = type; - op->inputs_ = inputs; - op->outputs_ = outputs; - - op->attrs_ = attrs; - it->second.checker_->Check(op->attrs_); - - GenerateTempVariableName(op); + PADDLE_ENFORCE(it != op_info_map().end(), + "Operator '%s' has not been registered.", type); + it->second.checker_->Check(attrs); + auto op = it->second.creator_(type, inputs, outputs, attrs); + return std::shared_ptr(op); + } - { - auto var_index_it = VarIndexMaps().find(type); - if (var_index_it != VarIndexMaps().end()) { - op->in_out_idxs_ = var_index_it->second; - } + static VarNameMap ConvertOpDescVarsToVarNameMap( + const google::protobuf::RepeatedPtrField& op_desc_vars) { + VarNameMap ret_val; + for (auto& var : op_desc_vars) { + auto& var_names = ret_val[var.parameter()]; + auto& var_names_in_proto = var.arguments(); + var_names.reserve(static_cast(var_names_in_proto.size())); + std::copy(var_names_in_proto.begin(), var_names_in_proto.end(), + std::back_inserter(var_names)); } - - op->Init(); - return std::shared_ptr(op); + return ret_val; } static std::shared_ptr CreateOp(const OpDesc& op_desc) { - std::vector inputs; - inputs.reserve((size_t)op_desc.inputs_size()); - std::copy(op_desc.inputs().begin(), op_desc.inputs().end(), - std::back_inserter(inputs)); - - std::vector outputs; - outputs.reserve((size_t)op_desc.outputs_size()); - std::copy(op_desc.outputs().begin(), op_desc.outputs().end(), - std::back_inserter(outputs)); - + VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); + VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); AttributeMap attrs; for (auto& attr : op_desc.attrs()) { attrs[attr.name()] = GetAttrValue(attr); @@ -285,7 +214,6 @@ class OpRegistry { PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops"); std::shared_ptr grad_op(BuildGradOp(&op)); - grad_op->Init(); return grad_op; } @@ -293,35 +221,17 @@ class OpRegistry { static std::unordered_map op_info_map_; return op_info_map_; } - - static std::unordered_map>& - VarIndexMaps() { - static std::unordered_map> maps_; - return maps_; - } - - private: - static void GenerateTempVariableName(OperatorBase* op) { - static std::atomic gUniqId(0UL); - for (auto& outname : op->outputs_) { - if (outname == kTempVarName) { - outname += op->type_; - outname += "@"; - outname += std::to_string(gUniqId.fetch_add(1)); - } - } - } }; class Registrar { public: - // In our design, various kinds of classes, e.g., operators and kernels, have - // their corresponding registry and registrar. The action of registration is - // in the constructor of a global registrar variable, which, however, are not - // used in the code that calls package framework, and would be removed from - // the generated binary file by the linker. To avoid such removal, we add - // Touch to all registrar classes and make USE_OP macros to call this - // method. So, as long as the callee code calls USE_OP, the global + // In our design, various kinds of classes, e.g., operators and kernels, + // have their corresponding registry and registrar. The action of + // registration is in the constructor of a global registrar variable, which, + // however, are not used in the code that calls package framework, and would + // be removed from the generated binary file by the linker. To avoid such + // removal, we add Touch to all registrar classes and make USE_OP macros to + // call this method. So, as long as the callee code calls USE_OP, the global // registrar variable won't be removed by the linker. void Touch() {} }; @@ -387,16 +297,6 @@ class OpKernelRegistrar : public Registrar { return 0; \ } -/** - * Macro to Forbid user register Gradient Operator. - */ -/* -#define NO_GRADIENT(op_type) \ - STATIC_ASSERT_GLOBAL_NAMESPACE( \ - __reg_gradient_op__##op_type##_##op_type##_grad, \ - "NO_GRADIENT must be called in global namespace") -*/ - #define REGISTER_OP_GPU_KERNEL(op_type, ...) \ REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__) diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index f7782e90912a19228066f3719c83277ec00db322..1a85d568350dc04ca1df28129de19cd45b5204b8 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -7,8 +7,7 @@ namespace paddle { namespace framework { class CosineOp : public OperatorBase { public: - DEFINE_OPERATOR_CTOR(CosineOp, OperatorBase) - + using OperatorBase::OperatorBase; void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} void InferShape(const Scope& scope) const override {} @@ -29,8 +28,7 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class MyTestOp : public OperatorBase { public: - DEFINE_OPERATOR_CTOR(MyTestOp, OperatorBase) - + using OperatorBase::OperatorBase; void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} @@ -40,8 +38,8 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { public: MyTestOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("input", "input of cosine op").SetMultiple(); - AddOutput("output", "output of cosine op").SetTemporary(); + AddInput("input", "input of cosine op").AsDuplicable(); + AddOutput("output", "output of cosine op").AsIntermediate(); auto my_checker = [](int i) { PADDLE_ENFORCE(i % 2 == 0, "'test_attr' must be even!"); }; @@ -53,6 +51,14 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { } // namespace framework } // namespace paddle +static void BuildVar(const std::string& param_name, + std::initializer_list arguments, + paddle::framework::OpDesc::Var* var) { + var->set_parameter(param_name); + for (auto& arg_name : arguments) { + var->add_arguments(arg_name); + } +} REGISTER_OP_WITHOUT_GRADIENT(cos_sim, paddle::framework::CosineOp, paddle::framework::CosineOpProtoAndCheckerMaker); REGISTER_OP_WITHOUT_GRADIENT(my_test_op, paddle::framework::MyTestOp, @@ -61,8 +67,8 @@ REGISTER_OP_WITHOUT_GRADIENT(my_test_op, paddle::framework::MyTestOp, TEST(OpRegistry, CreateOp) { paddle::framework::OpDesc op_desc; op_desc.set_type("cos_sim"); - op_desc.add_inputs("aa"); - op_desc.add_outputs("bb"); + BuildVar("input", {"aa"}, op_desc.add_inputs()); + BuildVar("output", {"bb"}, op_desc.add_outputs()); float scale = 3.3; auto attr = op_desc.mutable_attrs()->Add(); @@ -82,8 +88,8 @@ TEST(OpRegistry, CreateOp) { TEST(OpRegistry, IllegalAttr) { paddle::framework::OpDesc op_desc; op_desc.set_type("cos_sim"); - op_desc.add_inputs("aa"); - op_desc.add_outputs("bb"); + BuildVar("input", {"aa"}, op_desc.add_inputs()); + BuildVar("output", {"bb"}, op_desc.add_outputs()); auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); @@ -107,8 +113,8 @@ TEST(OpRegistry, IllegalAttr) { TEST(OpRegistry, DefaultValue) { paddle::framework::OpDesc op_desc; op_desc.set_type("cos_sim"); - op_desc.add_inputs("aa"); - op_desc.add_outputs("bb"); + BuildVar("input", {"aa"}, op_desc.add_inputs()); + BuildVar("output", {"bb"}, op_desc.add_outputs()); ASSERT_TRUE(op_desc.IsInitialized()); @@ -120,20 +126,11 @@ TEST(OpRegistry, DefaultValue) { ASSERT_EQ(op->GetAttr("scale"), 1.0); } -static void SetInputFormat(paddle::framework::OpDesc* desc) { - auto attr = desc->add_attrs(); - attr->set_name("input_format"); - attr->set_type(paddle::framework::INTS); - attr->mutable_ints()->Add(0); - attr->mutable_ints()->Add(1); -} - TEST(OpRegistry, CustomChecker) { paddle::framework::OpDesc op_desc; op_desc.set_type("my_test_op"); - op_desc.add_inputs("ii"); - op_desc.add_outputs("oo"); - SetInputFormat(&op_desc); + BuildVar("input", {"ii"}, op_desc.add_inputs()); + BuildVar("output", {"oo"}, op_desc.add_outputs()); // attr 'test_attr' is not set bool caught = false; @@ -173,7 +170,6 @@ TEST(OpRegistry, CustomChecker) { attr->set_name("test_attr"); attr->set_type(paddle::framework::AttrType::INT); attr->set_i(4); - SetInputFormat(&op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc); paddle::platform::CPUDeviceContext dev_ctx; paddle::framework::Scope scope; diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index d9a013b883abdec4422806f90e36da7410a4fa0c..c054804477f6058de7e0c7ea7efb46a9668a8fd1 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include - #include "paddle/framework/operator.h" +#include +#include "paddle/framework/op_registry.h" namespace paddle { namespace framework { @@ -34,83 +34,134 @@ ExecutionContext::GetEigenDevice() const { #endif const std::string& OperatorBase::Input(const std::string& name) const { - PADDLE_ENFORCE_NOT_NULL(in_out_idxs_, - "Input Output Indices could not be nullptr"); - auto it = in_out_idxs_->find(name); - PADDLE_ENFORCE(it != in_out_idxs_->end(), "no key [%s] in in_out_idxs_", - name); - if (attrs_.count("input_format") == 0) { - return inputs_.at((size_t)it->second); - } else { - const auto& input_format = GetAttr>("input_format"); - int idx = input_format[it->second]; - return inputs_.at((size_t)idx); - } + auto& ins = Inputs(name); + PADDLE_ENFORCE_EQ(ins.size(), 1UL, + "Op %s input %s should contain only one variable", type_, + name); + return ins[0]; } -std::vector OperatorBase::Inputs(const std::string& name) const { - PADDLE_ENFORCE_NOT_NULL(in_out_idxs_, "IO Idx could not be nullptr"); - auto input_format = GetAttr>("input_format"); - auto offset = in_out_idxs_->at(name); - PADDLE_ENFORCE(input_format.at(static_cast(offset) + 1) <= - static_cast(inputs_.size()), - "Input Out Of Range"); - - return std::vector{ - inputs_.begin() + input_format.at(offset), - inputs_.begin() + input_format.at(offset + 1)}; +const std::vector& OperatorBase::Inputs( + const std::string& name) const { + auto it = inputs_.find(name); + PADDLE_ENFORCE(it != inputs_.end(), "Op %s do not have input %s", type_, + name); + return it->second; } const std::string& OperatorBase::Output(const std::string& name) const { - PADDLE_ENFORCE_NOT_NULL(in_out_idxs_, "InOut Indice could not be nullptr"); - auto it = in_out_idxs_->find(name); - PADDLE_ENFORCE(it != in_out_idxs_->end(), "no key [%s] in in_out_idxs_", - name); - if (attrs_.count("output_format") == 0) { - return outputs_.at((size_t)it->second); - } else { - const auto& output_format = GetAttr>("output_format"); - int idx = output_format[it->second]; - return outputs_.at((size_t)idx); - } + auto& outs = Outputs(name); + PADDLE_ENFORCE_EQ(outs.size(), 1UL, + "Op %s output %s should contain only one variable", type_, + name); + return outs[0]; } -std::vector OperatorBase::Outputs(const std::string& name) const { - PADDLE_ENFORCE_NOT_NULL(in_out_idxs_, "InOut Indice could not be nullptr"); - auto output_format = GetAttr>("output_format"); - auto offset = in_out_idxs_->at(name); - PADDLE_ENFORCE(output_format.at(static_cast(offset) + 1) <= - static_cast(outputs_.size()), - "Output Out of Range"); - return std::vector{ - outputs_.begin() + output_format.at(offset), - outputs_.begin() + output_format.at(offset + 1)}; +const std::vector& OperatorBase::Outputs( + const std::string& name) const { + auto it = outputs_.find(name); + PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output %s", type_, + name); + return it->second; } std::string OperatorBase::DebugString() const { std::stringstream ss; - ss << "Op(" << type_ << "), inputs:("; - for (size_t i = 0; i < inputs_.size(); ++i) { - ss << inputs_[i]; - if (i != inputs_.size() - 1) { + ss << "Op(" << type_ << "), inputs:{"; + for (auto it = inputs_.begin(); it != inputs_.end();) { + auto& input = *it; + ss << input.first << "["; + for (size_t i = 0; i < input.second.size(); ++i) { + ss << input.second[i]; + if (i != input.second.size() - 1) { + ss << ", "; + } + } + ss << "]"; + ++it; + if (it != inputs_.end()) { ss << ", "; } } - ss << "), outputs:("; - for (size_t i = 0; i < outputs_.size(); ++i) { - ss << outputs_[i]; - if (i != outputs_.size() - 1) { + ss << "}, outputs:{"; + for (auto it = outputs_.begin(); it != outputs_.end();) { + auto& output = *it; + ss << output.first << "["; + for (size_t i = 0; i < output.second.size(); ++i) { + ss << output.second[i]; + if (i != output.second.size() - 1) { + ss << ", "; + } + } + ss << "]"; + ++it; + if (it != outputs_.end()) { ss << ", "; } } - ss << ")."; + ss << "}."; return ss.str(); } void OperatorBase::Rename(const std::string& old_name, const std::string& new_name) { - std::replace(inputs_.begin(), inputs_.end(), old_name, new_name); - std::replace(outputs_.begin(), outputs_.end(), old_name, new_name); + for (auto& input : inputs_) { + std::replace(input.second.begin(), input.second.end(), old_name, new_name); + } + for (auto& output : outputs_) { + std::replace(output.second.begin(), output.second.end(), old_name, + new_name); + } +} + +OperatorBase::OperatorBase(const std::string& type, + const OperatorBase::VarNameMap& inputs, + const OperatorBase::VarNameMap& outputs, + const AttributeMap& attrs) + : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) { + static std::atomic gUniqId(0UL); + for (auto& output : outputs_) { + for (auto& output_name : output.second) { + if (output_name == kTempVarName) { + output_name += type_; + output_name += "@"; + output_name += std::to_string(gUniqId.fetch_add(1)); + } + } + } +} + +std::vector OperatorBase::OutputVars(bool has_intermediate) const { + std::vector ret_val; + if (has_intermediate) { + // push all outputs into ret_val + for (auto& o : outputs_) { + ret_val.reserve(ret_val.size() + o.second.size()); + ret_val.insert(ret_val.end(), o.second.begin(), o.second.end()); + } + return ret_val; + } + auto it = OpRegistry::op_info_map().find(type_); + PADDLE_ENFORCE( + it != OpRegistry::op_info_map().end(), + "Operator %s not registered, cannot figure out intermediate outputs", + type_); + PADDLE_ENFORCE( + it->second.proto_ != nullptr, + "Operator %s has no OpProto, cannot figure out intermediate outputs", + type_); + + // get all OpProto::Var for outputs + for (auto& o : it->second.proto_.outputs()) { + // ignore all intermediate output + if (o.intermediate()) continue; + auto out = outputs_.find(o.name()); + if (out != outputs_.end()) { + ret_val.reserve(ret_val.size() + out->second.size()); + ret_val.insert(ret_val.end(), out->second.begin(), out->second.end()); + } + } + return ret_val; } } // namespace framework diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index c8c49b54556b0a3ecc6f60fb3c4d752b810c520c..606ab9e502ed5e80562ad04bf645d114ac698441 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -20,8 +20,7 @@ limitations under the License. */ #include #include "paddle/framework/attribute.h" -#include "paddle/framework/op_desc.pb.h" -#include "paddle/framework/op_proto.pb.h" +#include "paddle/framework/framework.pb.h" #include "paddle/framework/scope.h" #include "paddle/framework/tensor.h" #include "paddle/platform/device_context.h" @@ -55,16 +54,6 @@ class OperatorBase; class InferShapeContext; class ExecutionContext; -#define DEFINE_OPERATOR_CTOR(Class, ParentClass) \ - public: \ - Class() { /* TODO(yi): This constructor is to be removed. */ \ - } \ - Class(const std::string& type, const std::vector& inputs, \ - const std::vector& outputs, \ - const ::paddle::framework::AttributeMap& attrs, \ - std::unordered_map* in_out_idxs) \ - : ParentClass(type, inputs, outputs, attrs, in_out_idxs) {} - /** * OperatorBase has the basic element that Net will call to do computation. * Only CreateOperator from OpRegistry will new Operator directly. User @@ -73,16 +62,14 @@ class ExecutionContext; */ class OperatorBase { public: - OperatorBase() {} // TODO(yi): This constructor is to be removed. - OperatorBase(const std::string& type, const std::vector& inputs, - const std::vector& outputs, - const AttributeMap& attrs, - std::unordered_map* in_out_idxs) - : type_(type), - inputs_(inputs), - outputs_(outputs), - attrs_(attrs), - in_out_idxs_(in_out_idxs) {} + using VarNameMap = std::map>; + + OperatorBase(const std::string& type, const VarNameMap& inputs, + const VarNameMap& outputs, const AttributeMap& attrs); + + OperatorBase(const OperatorBase& o) = delete; + OperatorBase& operator=(const OperatorBase& o) = delete; + OperatorBase(OperatorBase&& o) = delete; virtual ~OperatorBase() {} @@ -95,10 +82,6 @@ class OperatorBase { virtual std::string DebugString() const; - /// Init will be called after CreateOperator, you can put some initialization - /// logic here. - virtual void Init() {} - /// InferShape infer the size of Variables used by this Operator with /// information inside scope virtual void InferShape(const Scope& scope) const = 0; @@ -117,22 +100,18 @@ class OperatorBase { //! Get a input with argument's name described in `op_proto` const std::string& Input(const std::string& name) const; //! Get a input which has multiple variables. - //! TODO add a vector_view to prevent memory copy. - std::vector Inputs(const std::string& name) const; + const std::vector& Inputs(const std::string& name) const; //! Get a output with argument's name described in `op_proto` const std::string& Output(const std::string& name) const; //! Get an output which has multiple variables. //! TODO add a vector_view to prevent memory copy. - std::vector Outputs(const std::string& name) const; + const std::vector& Outputs(const std::string& name) const; + + virtual std::vector OutputVars(bool has_intermediate) const; - const std::string Type() const { return type_; } - const std::vector Inputs() const { return inputs_; } - const std::vector Outputs() const { return outputs_; } + std::string Type() const { return type_; } const AttributeMap& Attrs() const { return attrs_; } - const std::unordered_map* InOutIdx() const { - return in_out_idxs_.get(); - } public: std::string type_; @@ -140,19 +119,17 @@ class OperatorBase { // I (Inputs) // O (Outputs) // OG (Output Gradients) - std::vector inputs_; + VarNameMap inputs_; + // NOTE: in case of OpGrad, outputs_ contains // IG (Inputs Gradients) - std::vector outputs_; + VarNameMap outputs_; AttributeMap attrs_; - // store the arguments' offset described in op_desc. - std::shared_ptr> in_out_idxs_; }; class NOP : public OperatorBase { public: - DEFINE_OPERATOR_CTOR(NOP, OperatorBase) - + using OperatorBase::OperatorBase; void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} @@ -163,16 +140,12 @@ class InferShapeContext { InferShapeContext(const OperatorBase& op, const Scope& scope) : op_(op), scope_(scope) {} - size_t InputSize() const { return op_.inputs_.size(); } - - size_t OutputSize() const { return op_.outputs_.size(); } - - const Variable* InputVar(const size_t index) const { - return scope_.FindVar(op_.inputs_.at(index)); + size_t InputSize(const std::string& name) const { + return op_.Inputs(name).size(); } - Variable* OutputVar(const size_t index) const { - return scope_.FindVar(op_.outputs_.at(index)); + size_t OutputSize(const std::string& name) const { + return op_.Outputs(name).size(); } const Variable* InputVar(const std::string& name) const { @@ -204,27 +177,9 @@ class InferShapeContext { return res; } - template - const T* Input(const size_t index) const { - auto var = InputVar(index); - PADDLE_ENFORCE_NOT_NULL(var, "Input(%d) should not be nullptr", index); - return &var->Get(); - } - - template - T* Output(const size_t index) const { - auto var = OutputVar(index); - PADDLE_ENFORCE_NOT_NULL( - var, - "Output(%d) not be nullptr, which means variable [%s] does not " - "exist in scope", - index, op_.outputs_[index]); - return var->GetMutable(); - } - template const T* Input(const std::string& name) const { - auto var = InputVar(name); + auto* var = InputVar(name); PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name); return &var->Get(); } @@ -300,6 +255,10 @@ class ExecutionContext : public InferShapeContext { platform::Place GetPlace() const { return device_context_->GetPlace(); } + const platform::DeviceContext* device_context() const { + return device_context_; + } + const platform::DeviceContext* device_context_; }; @@ -319,14 +278,6 @@ class OpKernel { class OperatorWithKernel : public OperatorBase { public: - OperatorWithKernel() {} // TODO(yi): This constructor is to be removed. - OperatorWithKernel(const std::string& type, - const std::vector& inputs, - const std::vector& outputs, - const AttributeMap& attrs, - std::unordered_map* in_out_idxs) - : OperatorBase(type, inputs, outputs, attrs, in_out_idxs) {} - struct OpKernelKey { platform::Place place_; @@ -350,6 +301,10 @@ class OperatorWithKernel : public OperatorBase { using OpKernelMap = std::unordered_map, OpKernelHash>; + OperatorWithKernel(const std::string& type, const VarNameMap& inputs, + const VarNameMap& outputs, const AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void InferShape(const Scope& scope) const override { InferShape(InferShapeContext(*this, scope)); } diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index aadc599a4270dd8801dedcb93060fe8d71f12430..0441cec9f6d10246fba38b02b4de3cbe2ee4766b 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -23,22 +23,22 @@ static int op_run_num = 0; class OpWithoutKernelTest : public OperatorBase { public: - DEFINE_OPERATOR_CTOR(OpWithoutKernelTest, OperatorBase) - - void Init() override { x = 1; } + OpWithoutKernelTest(const std::string& type, const VarNameMap& inputs, + const VarNameMap& outputs, const AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs), x(1) {} void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override { - op_run_num++; - ASSERT_EQ((int)inputs_.size(), 1); - ASSERT_EQ((int)outputs_.size(), 1); - ASSERT_EQ(scope.FindVar(inputs_[0]), nullptr); + ++op_run_num; + ASSERT_EQ(static_cast(inputs_.size()), 1); + ASSERT_EQ(static_cast(outputs_.size()), 1); + ASSERT_EQ(scope.FindVar(inputs_.at("input")[0]), nullptr); ASSERT_EQ(x, 1); - ASSERT_NE(scope.FindVar(outputs_[0]), nullptr); + ASSERT_NE(scope.FindVar(outputs_.at("output")[0]), nullptr); } public: - float x = 0; + int x{0}; }; class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { @@ -56,6 +56,15 @@ class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { } // namespace framework } // namespace paddle +static void BuildVar(const std::string& param_name, + std::initializer_list arguments, + paddle::framework::OpDesc::Var* var) { + var->set_parameter(param_name); + for (auto& arg_name : arguments) { + *var->mutable_arguments()->Add() = arg_name; + } +} + REGISTER_OP_WITHOUT_GRADIENT( test_operator, paddle::framework::OpWithoutKernelTest, paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker); @@ -63,8 +72,9 @@ REGISTER_OP_WITHOUT_GRADIENT( TEST(OperatorBase, all) { paddle::framework::OpDesc op_desc; op_desc.set_type("test_operator"); - *op_desc.mutable_inputs()->Add() = "IN1"; - *op_desc.mutable_outputs()->Add() = "OUT1"; + BuildVar("input", {"IN1"}, op_desc.add_inputs()); + BuildVar("output", {"OUT1"}, op_desc.add_outputs()); + auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); attr->set_type(paddle::framework::AttrType::FLOAT); @@ -101,7 +111,8 @@ static int cpu_kernel_run_num = 0; class OpWithKernelTest : public OperatorWithKernel { public: - DEFINE_OPERATOR_CTOR(OpWithKernelTest, OperatorWithKernel) + using OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext& ctx) const override {} }; @@ -118,35 +129,15 @@ class CPUKernelTest : public OpKernel { } }; -// multiple inputs test -class OperatorMultiInputsTest : public OperatorBase { - public: - DEFINE_OPERATOR_CTOR(OperatorMultiInputsTest, OperatorBase) - - void Init() override { x = 1; } - void InferShape(const Scope& scope) const override {} - void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const override { - ASSERT_EQ(scope.FindVar(inputs_[0]), nullptr); - ASSERT_EQ(x, 1); - ASSERT_NE(scope.FindVar(outputs_[0]), nullptr); - ASSERT_EQ(Input("x"), "IN1"); - ASSERT_EQ(Input("y"), "OUT1"); - } - - public: - float x = 0; -}; - class OpKernelTestMultiInputsProtoAndCheckerMaker : public OpProtoAndCheckerMaker { public: OpKernelTestMultiInputsProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("xs", "inputs of test op").SetMultiple(); + AddInput("xs", "inputs of test op").AsDuplicable(); AddInput("k", "input of test op"); - AddOutput("ys", "outputs of test op").SetMultiple(); + AddOutput("ys", "outputs of test op").AsDuplicable(); AddAttr("scale", "scale of cosine op") .SetDefault(1.0) .LargerThan(0.0); @@ -204,8 +195,9 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel, TEST(OpKernel, all) { paddle::framework::OpDesc op_desc; op_desc.set_type("op_with_kernel"); - *op_desc.mutable_inputs()->Add() = "IN1"; - *op_desc.mutable_outputs()->Add() = "OUT1"; + BuildVar("x", {"IN1"}, op_desc.add_inputs()); + BuildVar("y", {"OUT1"}, op_desc.add_outputs()); + auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); attr->set_type(paddle::framework::AttrType::FLOAT); @@ -232,32 +224,15 @@ TEST(OpKernel, multi_inputs) { OpDesc op_desc; op_desc.set_type("op_multi_inputs_with_kernel"); - *op_desc.mutable_inputs()->Add() = "x0"; - *op_desc.mutable_inputs()->Add() = "x1"; - *op_desc.mutable_inputs()->Add() = "x2"; - *op_desc.mutable_inputs()->Add() = "k0"; - *op_desc.mutable_outputs()->Add() = "y0"; - *op_desc.mutable_outputs()->Add() = "y1"; + BuildVar("xs", {"x0", "x1", "x2"}, op_desc.add_inputs()); + BuildVar("k", {"k0"}, op_desc.add_inputs()); + BuildVar("ys", {"y0", "y1"}, op_desc.add_outputs()); + auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_f(3.14); - auto attr0 = op_desc.mutable_attrs()->Add(); - attr0->set_name("input_format"); - attr0->set_type(paddle::framework::AttrType::INTS); - auto input_format = attr0->mutable_ints(); - input_format->Add(0); // x0 - input_format->Add(3); // k - input_format->Add(4); // end - - auto attr1 = op_desc.mutable_attrs()->Add(); - attr1->set_name("output_format"); - attr1->set_type(paddle::framework::AttrType::INTS); - auto output_format = attr1->mutable_ints(); - output_format->Add(0); // y0 - output_format->Add(2); // y1 - paddle::platform::CPUDeviceContext cpu_device_context; paddle::framework::Scope scope; scope.NewVar("x0")->GetMutable(); diff --git a/paddle/framework/pybind.cc b/paddle/framework/pybind.cc index 56a89d87fd83401b55db2603034f3016149a429a..108ae79d2cd178b12a303ed32a5f72c967a45dab 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/framework/pybind.cc @@ -56,30 +56,18 @@ void ExposeOperator(ClassType &m) { return op.type_; }) .def("outputs", - [](const typename ClassType::type &op) -> std::vector { + [](const typename ClassType::type &op) + -> std::map> { return op.outputs_; }) .def("inputs", - [](const typename ClassType::type &op) -> std::vector { - return op.inputs_; + [](const typename ClassType::type &op) { return op.inputs_; }) + .def("__str__", &ClassType::type::DebugString) + .def("no_intermediate_outputs", + [](const typename ClassType::type &op) { + return op.OutputVars(false); }) - .def("support_gpu", &ClassType::type::SupportGPU) - .def("temp_outputs", - [](const typename ClassType::type &op) -> std::vector { - auto iter = op.attrs_.find("temporary_index"); - std::vector ret; - if (iter == op.attrs_.end()) { - return ret; - } else { - auto tmp_idx = boost::get>(iter->second); - ret.reserve(tmp_idx.size()); - for (auto &index : tmp_idx) { - ret.push_back(op.outputs_.at(index)); - } - return ret; - } - }) - .def("__str__", &ClassType::type::DebugString); + .def("support_gpu", &ClassType::type::SupportGPU); } static size_t UniqueIntegerGenerator() { diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index cd1b4de426a49fa66dbbf8cf7d09990ac8d21227..b8c779f4e5fc7bc51298cdd35b26c2c8ac98edf6 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -105,6 +105,8 @@ class Tensor { template inline Tensor Slice(const int& begin_idx, const int& end_idx) const; + platform::Place place() const { return holder_->place(); } + private: template inline void check_memory_size() const; diff --git a/paddle/gserver/tests/LayerGradUtil.cpp b/paddle/gserver/tests/LayerGradUtil.cpp index fd9cfa1dc7a9028cb2c5c98baca98ffb2a837bac..a38880e14cdfcef05461dae567d198e5400c6bb1 100644 --- a/paddle/gserver/tests/LayerGradUtil.cpp +++ b/paddle/gserver/tests/LayerGradUtil.cpp @@ -388,14 +388,23 @@ void initDataLayer(TestConfig testConf, data.grad->zeroMem(); break; case INPUT_SELF_DEFINE_DATA: { - size_t height = testConf.inputDefs[i].selfDefinedData->getHeight(); - size_t width = testConf.inputDefs[i].selfDefinedData->getWidth(); - CHECK_GT(static_cast(height), 0); - CHECK_GT(static_cast(width), 0); - data.value = Matrix::create(height, width, false, useGpu); - data.grad = Matrix::create(height, width, false, useGpu); - data.value->copyFrom(*testConf.inputDefs[i].selfDefinedData); - data.grad->zeroMem(); + if (testConf.inputDefs[i].ids.size()) { + data.ids = IVector::create(testConf.inputDefs[i].ids.size(), useGpu); + data.ids->copyFrom(testConf.inputDefs[i].ids.data(), + testConf.inputDefs[i].ids.size()); + } else if (testConf.inputDefs[i].selfDefinedData) { + size_t height = testConf.inputDefs[i].selfDefinedData->getHeight(); + size_t width = testConf.inputDefs[i].selfDefinedData->getWidth(); + CHECK_GT(static_cast(height), 0); + CHECK_GT(static_cast(width), 0); + data.value = Matrix::create(height, width, false, useGpu); + data.grad = Matrix::create(height, width, false, useGpu); + data.value->copyFrom(*testConf.inputDefs[i].selfDefinedData); + data.grad->zeroMem(); + } else { + LOG(FATAL) << "No self-defined data are given."; + return; + } const std::vector& labelSeqStartPositions = testConf.inputDefs[i].labelSeqStartPositions; diff --git a/paddle/gserver/tests/LayerGradUtil.h b/paddle/gserver/tests/LayerGradUtil.h index 5debedf5ef6a3262578ca01b335e664f9a334d35..88e831f78bd165f63806df6c081d84411be51502 100644 --- a/paddle/gserver/tests/LayerGradUtil.h +++ b/paddle/gserver/tests/LayerGradUtil.h @@ -68,6 +68,7 @@ struct InputDef { std::vector labelInitValue; std::vector labelSeqStartPositions; std::vector labelSubSeqStartPositions; + std::vector ids; MatrixPtr selfDefinedData; InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) { @@ -95,6 +96,23 @@ struct InputDef { isStatic = false; } + InputDef(InputType type, + string nameIn, + const std::vector& ids, + const std::vector& selfDefinedSeqStartPos = {}, + const std::vector& selfDefinedSubSeqStartPos = {}) + : labelSeqStartPositions(selfDefinedSeqStartPos), + labelSubSeqStartPositions(selfDefinedSubSeqStartPos), + ids(ids) { + selfDefinedData = nullptr; + inputType = type; + name = nameIn; + dim = 0; + sparse = {""}; + paraSize = 0; + isStatic = false; + } + InputDef(InputType type, string nameIn, size_t dimIn, diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index c181bd7b881c08dfd80d640b1ddce10b3c74d758..373611cc0ee952de813f01d32d1516e1a8384750 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -41,6 +41,7 @@ function(op_library TARGET) endif() endfunction() +add_subdirectory(math) cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_library(net_op SRCS net_op.cc DEPS op_registry) @@ -50,7 +51,7 @@ op_library(add_op SRCS add_op.cc add_op.cu) op_library(mean_op SRCS mean_op.cc mean_op.cu) -op_library(mul_op SRCS mul_op.cc mul_op.cu) +op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) op_library(rowwise_add_op SRCS rowwise_add_op.cu rowwise_add_op.cc) op_library(sigmoid_op SRCS sigmoid_op.cc sigmoid_op.cu) @@ -62,7 +63,7 @@ op_library(fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu) op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc - DEPS op_desc tensor op_registry operator net_op) + DEPS framework_proto tensor op_registry operator net_op) cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op) op_library(uniform_random_op SRCS uniform_random_op.cc uniform_random_op.cu) diff --git a/paddle/operators/add_op.cc b/paddle/operators/add_op.cc index 47f3b527e329bacb2a76c18467ebf2f11c2f89cb..8ab748ed71e9a5dc0ee0259a78a2b886870bec5b 100644 --- a/paddle/operators/add_op.cc +++ b/paddle/operators/add_op.cc @@ -18,17 +18,15 @@ namespace paddle { namespace operators { class AddOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(AddOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.InputSize(), 2); - PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), "Inputs of AddOp must all be set"); - PADDLE_ENFORCE(ctx.OutputVar(0) != nullptr, - "Outputs of AddOp must all be set"); - PADDLE_ENFORCE(ctx.Input(0)->dims() == ctx.Input(1)->dims(), - "Two input of Add Op's dimension must be same."); - ctx.Output(0)->Resize(ctx.Input(0)->dims()); + PADDLE_ENFORCE_EQ(ctx.Input("X")->dims(), + ctx.Input("Y")->dims(), + "Two input of Add Op's dimension must be same."); + ctx.Output("Out")->Resize(ctx.Input("X")->dims()); } }; @@ -48,7 +46,9 @@ The equation is: Out = X + Y }; class AddOpGrad : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(AddOpGrad, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override {} }; diff --git a/paddle/operators/add_op.h b/paddle/operators/add_op.h index d76c10957e943deb970b1d79a1507a36669314e3..a7307b6818aa3d10ff215d06281e2b53196fd101 100644 --- a/paddle/operators/add_op.h +++ b/paddle/operators/add_op.h @@ -28,9 +28,9 @@ template class AddKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto input0 = context.Input(0); - auto input1 = context.Input(1); - auto output = context.Output(0); + auto* input0 = context.Input("X"); + auto* input1 = context.Input("Y"); + auto* output = context.Output("Out"); output->mutable_data(context.GetPlace()); diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index 2db30a3bc1df91256c20126458736cdf8673ece6..a623c551e1088365ade6f73bc6149977b6ef017e 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -18,29 +18,25 @@ namespace paddle { namespace operators { class OnehotCrossEntropyOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(OnehotCrossEntropyOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.InputSize(), 2, - "Input size of OnehotCrossEntropyOp must be two"); - PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1, - "Output size of OnehotCrossEntropyOp must be one"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), - "0-th input of OnehotCrossEntropyOp should be set"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(1), - "1-th input of OnehotCrossEntropyOp should be set"); - PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(0), - "Outputs of OnehotCrossEntropyOp must all be set"); - PADDLE_ENFORCE_EQ(ctx.Input(0)->dims().size(), 2); - PADDLE_ENFORCE_EQ(ctx.Output(0)->dims().size(), 1, - "label's dimension must be 1."); - ctx.Output(0)->Resize({ctx.Input(0)->dims()[0]}); + auto *X = ctx.Input("X"); + auto *label = ctx.Input("label"); + + PADDLE_ENFORCE_EQ(X->dims().size(), 2, "X's dimension must be 2."); + PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label's dimension must be 1."); + PADDLE_ENFORCE_EQ(X->dims()[0], label->dims()[0]); + ctx.Output("Y")->Resize({X->dims()[0]}); } }; class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(OnehotCrossEntropyGradientOp, - framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { auto X_grad = ctx.Output(framework::GradVarName("X")); diff --git a/paddle/operators/cross_entropy_op.h b/paddle/operators/cross_entropy_op.h index d1bbc2cb66d6ce84ddcdcb87648f23c6ce77b748..b7df92c9a98ebf12b72a8d3d8e8e4e1a950f06c9 100644 --- a/paddle/operators/cross_entropy_op.h +++ b/paddle/operators/cross_entropy_op.h @@ -45,7 +45,7 @@ class OnehotCrossEntropyOpKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& ctx) const override { auto X = ctx.Input("X"); const T* Xdata = X->data(); - const int* label_data = ctx.Input(1)->data(); + const int* label_data = ctx.Input("label")->data(); auto Y = ctx.Output("Y"); Y->mutable_data(ctx.GetPlace()); diff --git a/paddle/operators/fill_zeros_like_op.cc b/paddle/operators/fill_zeros_like_op.cc index 48e3506d556469e414ed6550b60148115242f9a1..9d51f6e3a16fe96125599bb440d40237aeb9a028 100644 --- a/paddle/operators/fill_zeros_like_op.cc +++ b/paddle/operators/fill_zeros_like_op.cc @@ -18,19 +18,13 @@ namespace paddle { namespace operators { class FillZerosLikeOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(FillZerosLikeOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.InputSize(), 1UL, - "Input size of FillZerosLikeOp must be one."); - PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1UL, - "Output size of AddOp must be one."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), - "Input of FillZerosLikeOp must be set."); - PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(0), - "Output of FillZerosLikeOp must be set."); - ctx.Output(0)->Resize( - ctx.Input(0)->dims()); + ctx.Output("Dst")->Resize( + ctx.Input("Src")->dims()); } }; diff --git a/paddle/operators/fill_zeros_like_op.h b/paddle/operators/fill_zeros_like_op.h index f846c7a8ab15e2cd997564edb36660a1360227a8..fd380ca8514b0ac50f39613368a4836bd485668b 100644 --- a/paddle/operators/fill_zeros_like_op.h +++ b/paddle/operators/fill_zeros_like_op.h @@ -23,7 +23,7 @@ template class FillZerosLikeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* output = context.Output(0); + auto* output = context.Output("Dst"); output->mutable_data(context.GetPlace()); auto t = framework::EigenVector::Flatten(*output); t.device(context.GetEigenDevice()) = t.constant(T(0)); diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index b826a4694333c0700993fbf4e78d68561affd2c0..f30bbce9586d61063b4b61d98695bb568ef73c8d 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -43,7 +43,9 @@ class GaussianRandomKernel : public framework::OpKernel { }; class GaussianRandomOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(GaussianRandomOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext& context) const override { auto* tensor = context.Output(0); diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..abcaf940ab0128d6948acc620d678632c8f48960 --- /dev/null +++ b/paddle/operators/math/CMakeLists.txt @@ -0,0 +1,13 @@ +if(WITH_MKLML) + set(BLAS_LIB mklml) +else() + set(BLAS_LIB cblas) +endif() + +if(WITH_GPU) + nv_library(math_function SRCS math_function.cc math_function.cu DEPS ${BLAS_LIB} device_context) +else() + cc_library(math_function SRCS math_function.cc DEPS ${BLAS_LIB} device_context) +endif() + +nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) diff --git a/paddle/operators/math/math_function.cc b/paddle/operators/math/math_function.cc new file mode 100644 index 0000000000000000000000000000000000000000..affdd1ac2cd486930881ee6b34a4b32f41df7ee9 --- /dev/null +++ b/paddle/operators/math/math_function.cc @@ -0,0 +1,114 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { +namespace math { + +template <> +void gemm(const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, + const int N, const int K, + const float alpha, const float* A, + const float* B, const float beta, float* C, + platform::DeviceContext* context) { + int lda = K; + int ldb = N; + int ldc = N; + cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb, + beta, C, ldc); +} + +template <> +void gemm(const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, + const int N, const int K, + const double alpha, const double* A, + const double* B, const double beta, + double* C, + platform::DeviceContext* context) { + int lda = K; + int ldb = N; + int ldc = N; + cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb, + beta, C, ldc); +} + +template <> +void matmul(const framework::Tensor& matrix_a, + bool trans_a, + const framework::Tensor& matrix_b, + bool trans_b, float alpha, + framework::Tensor* matrix_out, + float beta, + platform::DeviceContext* context) { + auto dim_a = matrix_a.dims(); + auto dim_b = matrix_b.dims(); + auto dim_out = matrix_out->dims(); + PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, + "The input and output of matmul be matrix"); + + PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) && + platform::is_cpu_place(matrix_b.place()) && + platform::is_cpu_place(matrix_out->place()), + "Matrix must all be in CPUPlace"); + + int M = dim_out[0]; + int N = dim_out[1]; + int K = (trans_a == false) ? dim_a[1] : dim_a[0]; + + CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; + CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; + + gemm( + transA, transB, M, N, K, alpha, matrix_a.data(), + matrix_b.data(), beta, matrix_out->data(), context); +} + +template <> +void matmul(const framework::Tensor& matrix_a, + bool trans_a, + const framework::Tensor& matrix_b, + bool trans_b, double alpha, + framework::Tensor* matrix_out, + double beta, + platform::DeviceContext* context) { + auto dim_a = matrix_a.dims(); + auto dim_b = matrix_b.dims(); + auto dim_out = matrix_out->dims(); + PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, + "The input and output of matmul be matrix"); + + PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) && + platform::is_cpu_place(matrix_b.place()) && + platform::is_cpu_place(matrix_out->place()), + "Matrix must all be in CPUPlace"); + + int M = dim_out[0]; + int N = dim_out[1]; + int K = (trans_a == false) ? dim_a[1] : dim_a[0]; + + CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; + CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; + + gemm( + transA, transB, M, N, K, alpha, matrix_a.data(), + matrix_b.data(), beta, matrix_out->data(), context); +} + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/math_function.cu b/paddle/operators/math/math_function.cu new file mode 100644 index 0000000000000000000000000000000000000000..da40b27c948918e4997f4a046d2145552296158b --- /dev/null +++ b/paddle/operators/math/math_function.cu @@ -0,0 +1,127 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { +namespace math { + +template <> +void gemm(const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, + const int N, const int K, + const float alpha, const float* A, + const float* B, const float beta, float* C, + platform::DeviceContext* context) { + // Note that cublas follows fortran order, so the order is different from + // the cblas convention. + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + cublasOperation_t cuTransA = + (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + cublasOperation_t cuTransB = + (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + + PADDLE_ENFORCE(platform::dynload::cublasSgemm( + reinterpret_cast(context)->cublas_handle(), + cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); +} + +template <> +void gemm(const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, + const int N, const int K, + const double alpha, const double* A, + const double* B, const double beta, + double* C, + platform::DeviceContext* context) { + // Note that cublas follows fortran order, so the order is different from + // the cblas convention. + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + cublasOperation_t cuTransA = + (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + cublasOperation_t cuTransB = + (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + PADDLE_ENFORCE(platform::dynload::cublasDgemm( + reinterpret_cast(context)->cublas_handle(), + cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); +} + +template <> +void matmul(const framework::Tensor& matrix_a, + bool trans_a, + const framework::Tensor& matrix_b, + bool trans_b, float alpha, + framework::Tensor* matrix_out, + float beta, + platform::DeviceContext* context) { + auto dim_a = matrix_a.dims(); + auto dim_b = matrix_b.dims(); + auto dim_out = matrix_out->dims(); + PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, + "The input and output of matmul be matrix"); + + PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) && + platform::is_gpu_place(matrix_b.place()) && + platform::is_gpu_place(matrix_out->place()), + "Matrix must all be in GPUPlace"); + + int M = dim_out[0]; + int N = dim_out[1]; + int K = (trans_a == false) ? dim_a[1] : dim_a[0]; + + CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; + CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; + + gemm( + transA, transB, M, N, K, alpha, matrix_a.data(), + matrix_b.data(), beta, matrix_out->data(), context); +} + +template <> +void matmul(const framework::Tensor& matrix_a, + bool trans_a, + const framework::Tensor& matrix_b, + bool trans_b, double alpha, + framework::Tensor* matrix_out, + double beta, + platform::DeviceContext* context) { + auto dim_a = matrix_a.dims(); + auto dim_b = matrix_b.dims(); + auto dim_out = matrix_out->dims(); + PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, + "The input and output of matmul be matrix"); + + PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) && + platform::is_gpu_place(matrix_b.place()) && + platform::is_gpu_place(matrix_out->place()), + "Matrix must all be in GPUPlace"); + + int M = dim_out[0]; + int N = dim_out[1]; + int K = (trans_a == false) ? dim_a[1] : dim_a[0]; + + CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; + CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; + + gemm( + transA, transB, M, N, K, alpha, matrix_a.data(), + matrix_b.data(), beta, matrix_out->data(), context); +} + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/math_function.h b/paddle/operators/math/math_function.h new file mode 100644 index 0000000000000000000000000000000000000000..155589fadb3ed9f59160a750d546dd8093a56cbe --- /dev/null +++ b/paddle/operators/math/math_function.h @@ -0,0 +1,82 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#ifdef PADDLE_USE_MKLML +#include +#include +#include +#endif + +#ifdef PADDLE_USE_MKL +#include +#include +#endif + +#ifdef PADDLE_USE_ATLAS +extern "C" { +#include +#include +} +#endif + +#ifdef PADDLE_USE_OPENBLAS +#include +#include +#endif + +#ifndef LAPACK_FOUND +extern "C" { +#include +int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda, + int* ipiv); +int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda, + int* ipiv); +int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda, + const int* ipiv); +int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda, + const int* ipiv); +} +#endif + +#include + +#include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/enforce.h" + +namespace paddle { +namespace operators { +namespace math { + +// Support continuous memory now +// If transA = N, and transB = N +// Then matrixA: M * K, matrixB: K * N matrixC : M * N +// For more detailed info, please refer to +// http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html +template +void gemm(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, + const int M, const int N, const int K, const T alpha, const T* A, + const T* B, const T beta, T* C, platform::DeviceContext* context); + +// matrix multiply with continuous memory +template +void matmul(const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, T alpha, + framework::Tensor* matrix_out, T beta, + platform::DeviceContext* context); + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/math_function_test.cc b/paddle/operators/math/math_function_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..6c020c4ff7285b43bc5836d80c173d3a068e72b3 --- /dev/null +++ b/paddle/operators/math/math_function_test.cc @@ -0,0 +1,75 @@ +#include "paddle/operators/math/math_function.h" +#include "gtest/gtest.h" + +#ifndef PADDLE_ONLY_CPU +TEST(math_function, notrans_mul_trans) { + paddle::framework::Tensor input1; + paddle::framework::Tensor input1_gpu; + paddle::framework::Tensor input2_gpu; + paddle::framework::Tensor out_gpu; + paddle::framework::Tensor out; + + auto* cpu_place = new paddle::platform::CPUPlace(); + float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); + float arr[6] = {0, 1, 2, 3, 4, 5}; + memcpy(input1_ptr, arr, 6 * sizeof(float)); + + auto* gpu_place = new paddle::platform::GPUPlace(0); + paddle::platform::DeviceContext* context = + new paddle::platform::CUDADeviceContext(*gpu_place); + + input1_gpu.CopyFrom(input1, *gpu_place); + input2_gpu.CopyFrom(input1, *gpu_place); + + out_gpu.mutable_data({2, 2}, *gpu_place); + + paddle::operators::math::matmul( + input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0, context); + + out.CopyFrom(out_gpu, *cpu_place); + + float* out_ptr = out.data(); + EXPECT_EQ(out_ptr[0], 5); + EXPECT_EQ(out_ptr[1], 14); + EXPECT_EQ(out_ptr[2], 14); + EXPECT_EQ(out_ptr[3], 50); +} + +TEST(math_function, trans_mul_notrans) { + paddle::framework::Tensor input1; + paddle::framework::Tensor input1_gpu; + paddle::framework::Tensor input2_gpu; + paddle::framework::Tensor out_gpu; + paddle::framework::Tensor out; + + auto* cpu_place = new paddle::platform::CPUPlace(); + float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); + float arr[6] = {0, 1, 2, 3, 4, 5}; + memcpy(input1_ptr, arr, 6 * sizeof(float)); + + auto* gpu_place = new paddle::platform::GPUPlace(0); + paddle::platform::DeviceContext* context = + new paddle::platform::CUDADeviceContext(*gpu_place); + + input1_gpu.CopyFrom(input1, *gpu_place); + input2_gpu.CopyFrom(input1, *gpu_place); + + out_gpu.mutable_data({3, 3}, *gpu_place); + + paddle::operators::math::matmul( + input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0, context); + + out.CopyFrom(out_gpu, *cpu_place); + + float* out_ptr = out.data(); + EXPECT_EQ(out_ptr[0], 9); + EXPECT_EQ(out_ptr[1], 12); + EXPECT_EQ(out_ptr[2], 15); + EXPECT_EQ(out_ptr[3], 12); + EXPECT_EQ(out_ptr[4], 17); + EXPECT_EQ(out_ptr[5], 22); + EXPECT_EQ(out_ptr[6], 15); + EXPECT_EQ(out_ptr[7], 22); + EXPECT_EQ(out_ptr[8], 29); +} +#endif diff --git a/paddle/operators/mean_op.cc b/paddle/operators/mean_op.cc index 3bdd71d2e514728fca79958abaf5f93fc161ac1a..49d0f43508b1ee3df0c6b5987942970e1649e310 100644 --- a/paddle/operators/mean_op.cc +++ b/paddle/operators/mean_op.cc @@ -18,14 +18,14 @@ namespace paddle { namespace operators { class MeanOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(MeanOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.InputSize(), 1, "Input size of AddOp must be one"); - PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1, "Output size of AddOp must be one"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), "input should be set"); - PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(0), "output should be set"); - ctx.Output(0)->Resize(framework::make_ddim({1})); + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), + "Input of MeanOp must be initialized."); + ctx.Output("Out")->Resize({1}); } }; @@ -34,13 +34,15 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker { MeanOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of mean op"); - AddOutput("Out", "The output of mean op").IgnoreGradient(); + AddOutput("Out", "The output of mean op").AsNoGradient(); AddComment("Mean Operator"); } }; class MeanGradOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(MeanGradOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { ctx.Output(framework::GradVarName("X")) diff --git a/paddle/operators/mean_op.h b/paddle/operators/mean_op.h index e8595a14faa7c1b03734f814c78f9cbf1819fbb5..fcb703e63bd5a82f9ffac2bf64e06fd0218dbdaa 100644 --- a/paddle/operators/mean_op.h +++ b/paddle/operators/mean_op.h @@ -31,14 +31,14 @@ template class MeanKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto input = context.Input(0); - auto output = context.Output(0); + auto* input = context.Input("X"); + auto* output = context.Output("Out"); output->mutable_data(context.GetPlace()); auto X = EigenVector::Flatten(*input); auto y = EigenScalar::From(*output); - auto place = context.GetEigenDevice(); + auto& place = context.GetEigenDevice(); y.device(place) = X.mean(); } diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index db77228245590d9e2405820384e2db62595546f1..95d19fb6aad37143e65759b03e12e3e78bce5915 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -13,17 +13,19 @@ limitations under the License. */ #include "paddle/operators/mul_op.h" +#include "paddle/operators/math/math_function.h" namespace paddle { namespace operators { class MulOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(MulOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE(ctx.InputSize() == 2, "The mul op must take two inputs"); - auto dim0 = ctx.Input(0)->dims(); - auto dim1 = ctx.Input(1)->dims(); + auto dim0 = ctx.Input("X")->dims(); + auto dim1 = ctx.Input("Y")->dims(); PADDLE_ENFORCE_EQ(dim0.size(), 2, "input X(%s) should be a tensor with 2 dims, a matrix", ctx.op_.Input("X")); @@ -33,8 +35,7 @@ class MulOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ( dim0[1], dim1[0], "First matrix's width must be equal with second matrix's height."); - PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1, "The mul op takes only one output"); - ctx.Output(0)->Resize({dim0[0], dim1[1]}); + ctx.Output("Out")->Resize({dim0[0], dim1[1]}); } }; @@ -54,7 +55,9 @@ The equation is: Out = X * Y }; class MulOpGrad : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(MulOpGrad, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override {} std::string DebugString() const override { diff --git a/paddle/operators/mul_op.cu b/paddle/operators/mul_op.cu index 43debbc21a365a15c914e60e151f7782b82080cb..346a7e505d123b5e4e831daa39a1f6349b3dcccf 100644 --- a/paddle/operators/mul_op.cu +++ b/paddle/operators/mul_op.cu @@ -16,5 +16,4 @@ #include "paddle/operators/mul_op.h" namespace ops = paddle::operators; - REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); diff --git a/paddle/operators/mul_op.h b/paddle/operators/mul_op.h index ab12631c03453a18fbb067e2d12c2bc332acd567..b7812fd1a7a72f5ce543e18c8b7b5b51deff2204 100644 --- a/paddle/operators/mul_op.h +++ b/paddle/operators/mul_op.h @@ -13,6 +13,9 @@ limitations under the License. */ #pragma once + +#include "paddle/operators/math/math_function.h" + #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" @@ -30,17 +33,14 @@ class MulKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& context) const override { Eigen::array, 1> dim_pair = { {Eigen::IndexPair(1, 0)}}; - - auto input0 = context.Input("X"); - auto input1 = context.Input("Y"); - auto output = context.Output(0); - + auto* input0 = context.Input("X"); + auto* input1 = context.Input("Y"); + auto* output = context.Output("Out"); output->mutable_data(context.GetPlace()); - auto X = EigenMatrix::From(*input0); auto Y = EigenMatrix::From(*input1); auto Z = EigenMatrix::From(*output); - auto place = context.GetEigenDevice(); + auto& place = context.GetEigenDevice(); Z.device(place) = X.contract(Y, dim_pair); } diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index a466c4f30fe87db4ad2a44518e083b57f3cbc2ed..1d1b290440ec125bdb5b190745735dd077261731 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -15,48 +15,42 @@ */ #include "paddle/operators/net_op.h" +#include +#include "paddle/framework/op_registry.h" namespace paddle { namespace operators { +const char NetOp::kAll[] = "all"; + void NetOp::CompleteAddOp(bool calc) { add_op_done_ = true; if (!calc) return; - std::unordered_set input_set; - std::unordered_set output_set; - std::unordered_set temp_output; + std::set input_set; + std::set output_set; for (auto& op : ops_) { for (auto& ipt : op->inputs_) { - if (!Contains(output_set, ipt)) { // Not other op's output - input_set.insert(ipt); - } else { - temp_output.insert(ipt); + for (auto& var_name : ipt.second) { + if (!Contains(output_set, var_name)) { // Not other op's output + input_set.insert(var_name); + } else { + intermediate_outputs_.insert(var_name); + } } } for (auto& opt : op->outputs_) { - output_set.insert(opt); - } - } - - inputs_.reserve(input_set.size()); - std::copy(input_set.begin(), input_set.end(), std::back_inserter(inputs_)); - std::sort(inputs_.begin(), inputs_.end()); - - outputs_.reserve(output_set.size()); - std::copy(output_set.begin(), output_set.end(), std::back_inserter(outputs_)); - std::sort(outputs_.begin(), outputs_.end()); - - std::vector tmp_index; - tmp_index.reserve(temp_output.size()); - int output_len = static_cast(outputs_.size()); - for (int i = 0; i < output_len; ++i) { - if (Contains(temp_output, outputs_[i])) { - tmp_index.push_back(i); + for (auto& var_name : opt.second) { + output_set.insert(var_name); + } } } - - attrs_["temporary_index"] = tmp_index; + auto& inputs = inputs_[kAll]; + inputs.reserve(input_set.size()); + std::copy(input_set.begin(), input_set.end(), std::back_inserter(inputs)); + auto& outputs = outputs_[kAll]; + outputs.reserve(output_set.size()); + std::copy(output_set.begin(), output_set.end(), std::back_inserter(outputs)); } std::string NetOp::DebugString() const { @@ -73,5 +67,25 @@ std::string NetOp::DebugString() const { bool NetOp::IsNetOp() const { return true; } +std::vector NetOp::OutputVars(bool has_intermediate) const { + if (has_intermediate) { + return this->outputs_.at(kAll); + } + auto& all = this->outputs_.at(kAll); + std::vector ret_val; + for (auto& each : all) { + if (!Contains(intermediate_outputs_, each)) { + ret_val.push_back(each); + } + } + return ret_val; +} + +NetOp::NetOp(const std::string& type, + const framework::OperatorBase::VarNameMap& inputs, + const framework::OperatorBase::VarNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + } // namespace operators } // namespace paddle diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index 24c9e61c66933c6be5bf44b3537e00b70a33922f..4a3408c158a029a96740717280c1562671fa938f 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once +#include "paddle/framework/framework.pb.h" #include "paddle/framework/op_registry.h" namespace paddle { @@ -35,7 +36,10 @@ namespace operators { */ class NetOp : public framework::OperatorBase { public: - DEFINE_OPERATOR_CTOR(NetOp, framework::OperatorBase) + static const char kAll[]; + NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {} + NetOp(const std::string& type, const VarNameMap& inputs, + const VarNameMap& outputs, const framework::AttributeMap& attrs); /** * Infer all the operators' input and output variables' shapes, will be called @@ -92,11 +96,13 @@ class NetOp : public framework::OperatorBase { std::string DebugString() const override; bool IsNetOp() const override; + std::vector OutputVars(bool has_intermediate) const override; std::vector> ops_; private: bool add_op_done_{false}; + std::set intermediate_outputs_; template static bool Contains(T container, KeyType key) { diff --git a/paddle/operators/net_op_test.cc b/paddle/operators/net_op_test.cc index 0d5c3de798d0b580860d24ea9a61a6a4ede5d0ab..f7aa56262ef71c24bf668950f6e9914e5f96ff70 100644 --- a/paddle/operators/net_op_test.cc +++ b/paddle/operators/net_op_test.cc @@ -12,8 +12,7 @@ static int run_cnt = 0; class TestOp : public framework::OperatorBase { public: - DEFINE_OPERATOR_CTOR(TestOp, framework::OperatorBase) - + using framework::OperatorBase::OperatorBase; void InferShape(const Scope& scope) const override { ++infer_shape_cnt; } void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override { @@ -23,8 +22,7 @@ class TestOp : public framework::OperatorBase { class EmptyOp : public framework::OperatorBase { public: - DEFINE_OPERATOR_CTOR(EmptyOp, framework::OperatorBase) - + using framework::OperatorBase::OperatorBase; void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const DeviceContext& dev_ctx) const override {} }; @@ -46,40 +44,32 @@ TEST(OpKernel, all) { auto net = std::make_shared(); ASSERT_NE(net, nullptr); - auto op1 = std::make_shared(); - op1->inputs_ = {"x", "w1", "b1"}; - op1->outputs_ = {"y"}; + auto op1 = std::shared_ptr( + new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, + {{"Out", {"y"}}}, {})); net->AddOp(op1); - auto op2 = std::make_shared(); - op2->inputs_ = {"y", "w2", "b2"}; - op2->outputs_ = {"z"}; + auto op2 = std::shared_ptr( + new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}}, + {{"Out", {"z"}}}, {})); net->AddOp(op2); net->CompleteAddOp(); - AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, net->inputs_); - AssertSameVectorWithoutOrder({"y", "z"}, net->outputs_); - auto tmp_idx_iter = net->attrs_.find("temporary_index"); - ASSERT_NE(net->attrs_.end(), tmp_idx_iter); - auto& tmp_idx = boost::get>(tmp_idx_iter->second); - ASSERT_EQ(1UL, tmp_idx.size()); - ASSERT_EQ("y", net->outputs_[tmp_idx[0]]); + AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, + net->inputs_.at(NetOp::kAll)); + AssertSameVectorWithoutOrder({"y", "z"}, net->outputs_.at(NetOp::kAll)); - Scope scope; - platform::CPUDeviceContext dev_ctx; + auto final_outs = net->OutputVars(false); - net->InferShape(scope); - net->Run(scope, dev_ctx); - ASSERT_EQ(2, infer_shape_cnt); - ASSERT_EQ(2, run_cnt); - ASSERT_THROW(net->AddOp(op2), platform::EnforceNotMet); + ASSERT_EQ(final_outs.size(), 1UL); + ASSERT_EQ(final_outs[0], "z"); } TEST(NetOp, insert_op) { NetOp net; - auto op1 = std::make_shared(); - op1->inputs_ = {"x", "w1", "b1"}; - op1->outputs_ = {"y"}; + auto op1 = std::shared_ptr( + new EmptyOp("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, + {{"Out", {"y"}}}, {})); net.AddOp(op1); net.InsertOp(0, op1); ASSERT_EQ(2UL, net.ops_.size()); diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index 91be1ce5193dd5f3fbab6ebc38c18123120c4a85..51868de4a79b6421ba001bcc36412e567247ae27 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -91,12 +91,17 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { // create step net's temp inputs for (auto& input : net_op->inputs_) { // the weight are located in parent scope - if (!step_scope.FindVar(input)) - step_scope.NewVar(input)->GetMutable(); + for (auto& var_name : input.second) { + if (!step_scope.FindVar(var_name)) { + step_scope.NewVar(var_name)->GetMutable(); + } + } } // create stepnet's outputs for (const auto& output : net_op->outputs_) { - step_scope.NewVar(output); + for (auto& var_name : output.second) { + step_scope.NewVar(var_name); + } } step_scopes->emplace_back(&step_scope); } @@ -130,8 +135,11 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{ "inlink@grad", "inlink_alias", "outlink_alias", "memories", "pre_memories", "boot_memories@grad"}; -void RecurrentOp::Init() { - OperatorBase::Init(); +RecurrentOp::RecurrentOp(const std::string& type, + const framework::OperatorBase::VarNameMap& inputs, + const framework::OperatorBase::VarNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) { std::unique_ptr arg(new rnn::Argument()); rnn::InitArgument(kArgName, arg.get(), *this); alg_.Init(std::move(arg)); @@ -147,13 +155,13 @@ class RecurrentAlgorithmProtoAndCheckerMaker // inputs and outputs stored in proto AddInput(name.inlinks, "the inputs that need to be segmented for each step.") - .SetMultiple(); + .AsDuplicable(); AddInput(name.boot_memories, "variables to initialize memories.") - .SetMultiple(); + .AsDuplicable(); AddInput(name.step_net, "network shared by all steps."); AddOutput(name.outlinks, "the outputs that need to concated for all steps.") - .SetMultiple(); + .AsDuplicable(); AddOutput(name.step_scopes, "step scopes"); // Attributes stored in AttributeMap @@ -225,8 +233,11 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/); } -void RecurrentGradientOp::Init() { - OperatorBase::Init(); +RecurrentGradientOp::RecurrentGradientOp( + const std::string& type, const framework::OperatorBase::VarNameMap& inputs, + const framework::OperatorBase::VarNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) { std::unique_ptr arg(new rnn::Argument()); rnn::InitArgument(kArgName, arg.get(), *this); alg_.Init(std::move(arg)); diff --git a/paddle/operators/recurrent_op.h b/paddle/operators/recurrent_op.h index fdd9d005378e63b8d44803fb2b4be83d134c6a5b..8f4f2444d844b4ba5948f001a365a7ecaeecc106 100644 --- a/paddle/operators/recurrent_op.h +++ b/paddle/operators/recurrent_op.h @@ -100,13 +100,12 @@ class RecurrentGradientAlgorithm { }; class RecurrentOp final : public framework::OperatorBase { - DEFINE_OPERATOR_CTOR(RecurrentOp, framework::OperatorBase) public: - void Init() override; - + RecurrentOp(const std::string& type, const VarNameMap& inputs, + const VarNameMap& outputs, const framework::AttributeMap& attrs); /** - * InferShape must be called before Run. - */ + * InferShape must be called before Run. + */ void InferShape(const framework::Scope& scope) const override { alg_.InferShape(scope); } @@ -124,7 +123,9 @@ class RecurrentOp final : public framework::OperatorBase { class RecurrentGradientOp final : public framework::OperatorBase { public: - void Init() override; + RecurrentGradientOp(const std::string& type, const VarNameMap& inputs, + const VarNameMap& outputs, + const framework::AttributeMap& attrs); /** * InferShape must be called before Run. diff --git a/paddle/operators/recurrent_op_test.cc b/paddle/operators/recurrent_op_test.cc index 0c9a343415835540c7543f15f40c53b78a6a55c4..2f6eff0720847fdfa6443d2fc233e92dac2d0fab 100644 --- a/paddle/operators/recurrent_op_test.cc +++ b/paddle/operators/recurrent_op_test.cc @@ -25,157 +25,7 @@ namespace paddle { namespace operators { -using framework::make_ddim; -using framework::DDim; -using framework::Tensor; -using framework::Variable; -using framework::Scope; -using framework::OpRegistry; - -class RecurrentOpTest : public ::testing::Test { - protected: - virtual void SetUp() override { - CreateGlobalVariables(); - CreateStepNet(); - CreateRNNOp(); - } - - virtual void TearDown() override {} - - void CreateGlobalVariables() { - // create input, and init content - LOG(INFO) << "create global variable x"; - for (auto inlink : std::vector{"x", "x0", "x1", "h"}) { - Variable* x = scope_.NewVar(inlink); - DDim dims = make_ddim(std::vector{ - 10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); - x->GetMutable()->mutable_data(dims, platform::CPUPlace()); - } - // create output alias just for test - for (auto inlink : std::vector{"h@alias"}) { - Variable* x = scope_.NewVar(inlink); - DDim dims = - make_ddim(std::vector{20 /*batch size*/, 30 /*input dim*/}); - x->GetMutable()->mutable_data(dims, platform::CPUPlace()); - } - - LOG(INFO) << "create global variable w"; - Variable* w = scope_.NewVar("rnn/w"); - w->GetMutable()->mutable_data( - make_ddim(std::vector{30, 30}), platform::CPUPlace()); - - for (auto boot : std::vector{"h_boot"}) { - LOG(INFO) << "create global variable " << boot; - Variable* h_boot = scope_.NewVar(boot); - h_boot->GetMutable()->mutable_data( - make_ddim(std::vector{20 /*batch size*/, 30 /*input dim*/}), - platform::CPUPlace()); - } - - LOG(INFO) << "create variable step_scopes"; - scope_.NewVar("step_scopes"); - - LOG(INFO) << "create variable h"; - scope_.NewVar("h"); - } - - void CreateRNNOp() { - framework::OpDesc op_desc; - - op_desc.set_type("recurrent_op"); - // inlinks 0 - op_desc.add_inputs("x"); - op_desc.add_inputs("x0"); - op_desc.add_inputs("x1"); - // boot_memories 3 - op_desc.add_inputs("h_boot"); - // step net 5 - op_desc.add_inputs("step_net"); - // outlinks 6 - op_desc.add_outputs("h"); - // step scopes 7 - op_desc.add_outputs("step_scopes"); - - auto _input_format = std::vector{ - 0, // in_link - 3, // memories - 4 // step_net - }; - auto input_format = op_desc.add_attrs(); - input_format->set_name("input_format"); - input_format->set_type(paddle::framework::AttrType::INTS); - for (auto i : _input_format) { - input_format->add_ints(i); - } - - auto output_format = op_desc.add_attrs(); - output_format->set_name("output_format"); - output_format->set_type(paddle::framework::AttrType::INTS); - for (auto i : std::vector{0, 1, 2}) { - output_format->add_ints(i); - } - - auto inlink_alias = op_desc.add_attrs(); - inlink_alias->set_name("inlink_alias"); - inlink_alias->set_type(paddle::framework::AttrType::STRINGS); - - auto outlink_alias = op_desc.add_attrs(); - outlink_alias->set_name("outlink_alias"); - outlink_alias->set_type(paddle::framework::AttrType::STRINGS); - - auto pre_memories = op_desc.add_attrs(); - pre_memories->set_name("pre_memories"); - pre_memories->set_type(paddle::framework::AttrType::STRINGS); - - auto memories = op_desc.add_attrs(); - memories->set_name("memories"); - memories->set_type(paddle::framework::AttrType::STRINGS); - - // create inlink_alias - for (const auto& item : - std::vector{"x@alias", "x0@alias", "x1@alias"}) { - inlink_alias->add_strings(item); - } - // pre memories - for (const auto& item : std::vector{"rnn/h@pre"}) { - pre_memories->add_strings(item); - } - // memories - for (const auto& item : std::vector{"rnn/h"}) { - memories->add_strings(item); - } - // output alias - for (const auto& item : std::vector{"h@alias"}) { - outlink_alias->add_strings(item); - } - - rnn_op_ = OpRegistry::CreateOp(op_desc); - - LOG(INFO) << "rnn_op finish init"; - } - - void CreateStepNet() { - LOG(INFO) << "create variable step_net"; - Variable* var = scope_.NewVar("step_net"); - auto net = var->GetMutable(); - net->AddOp( - OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {})); - - net->AddOp( - OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {})); - net->CompleteAddOp(); - } - - // father scope - Scope scope_; - std::shared_ptr rnn_op_; -}; - -TEST_F(RecurrentOpTest, Run) { - platform::CPUDeviceContext ctx; - rnn_op_->InferShape(scope_); - rnn_op_->Run(scope_, ctx); -} +using namespace paddle::framework; class RecurrentGradientAlgorithmTest : public ::testing::Test { protected: @@ -281,11 +131,13 @@ class RecurrentGradientAlgorithmTest : public ::testing::Test { LOG(INFO) << "create variable step_net"; Variable* var = scope_.NewVar("step_net"); auto net = var->GetMutable(); - net->AddOp(OpRegistry::CreateOp("mul", {"rnn/h_pre", "rnn/w", "rnn/s_grad"}, - {"rnn/h_pre_grad", "rnn/w_grad"}, {})); + // TODO(qingqing) modify backward op create for RNNOp unit test + // and the unit test will be removed to Python. + // net->AddOp(OpRegistry::CreateOp("mul", {"X", {"rnn/h_pre", "rnn/w", + // "rnn/s_grad"}}, {"Y", {"rnn/h_pre_grad", "rnn/w_grad"}}, {})); - net->AddOp(OpRegistry::CreateOp("add_two", {"rnn/h_grad"}, - {"rnn/x_grad", "rnn/s_grad"}, {})); + // net->AddOp(OpRegistry::CreateOp("add_two", {"X", {"rnn/h_grad"}}, + // {"Y", {"rnn/x_grad"}}, {"Out", "rnn/s_grad"}}, {})); net->CompleteAddOp(); } @@ -359,7 +211,8 @@ TEST(RecurrentOp, LinkMemories) { memories.push_back(mem_attr); for (size_t i = 1; i < len; ++i) { - rnn::LinkMemories(step_scopes, memories, i, -1, false /*infer_shape_mode*/); + rnn::LinkMemories(step_scopes, memories, i, -1, false + /*infer_shape_mode*/); } // check for (size_t i = 0; i < len - 1; ++i) { @@ -375,7 +228,8 @@ TEST(RecurrentOp, LinkMemories) { } for (int i = len - 2; i >= 0; --i) { - rnn::LinkMemories(step_scopes, memories, i, 1, false /*infer_shape_mode*/); + rnn::LinkMemories(step_scopes, memories, i, 1, false + /*infer_shape_mode*/); } // check for (int i = len - 2; i >= 0; --i) { diff --git a/paddle/operators/rowwise_add_op.cc b/paddle/operators/rowwise_add_op.cc index 01f287377f5d16ab88e34b5797ede33185a6d96c..8375d988045dc24fa1109646b46ff477e2a78132 100644 --- a/paddle/operators/rowwise_add_op.cc +++ b/paddle/operators/rowwise_add_op.cc @@ -18,19 +18,19 @@ namespace paddle { namespace operators { class RowWiseAddOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(RowWiseAddOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE(ctx.InputSize() == 2UL, - "Two inputs is needed by rowwise add"); - auto dim0 = ctx.Input(0)->dims(); - auto dim1 = ctx.Input(1)->dims(); + auto dim0 = ctx.Input("X")->dims(); + auto dim1 = ctx.Input("b")->dims(); PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix"); PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector"); PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same"); - PADDLE_ENFORCE(ctx.OutputSize() == 1, "The output size must be 1"); - ctx.Output(0)->Resize(ctx.Input(0)->dims()); + PADDLE_ENFORCE(ctx.OutputSize("Out") == 1, "The output size must be 1"); + ctx.Output("Out")->Resize(ctx.Input("X")->dims()); } }; diff --git a/paddle/operators/rowwise_add_op.h b/paddle/operators/rowwise_add_op.h index 82e9d70e959441869b958c1241fa5f5beef4c50c..01f88f2198774fbaa4c98ff9bf286f2f08496a9a 100644 --- a/paddle/operators/rowwise_add_op.h +++ b/paddle/operators/rowwise_add_op.h @@ -31,11 +31,11 @@ template class RowWiseAddKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto out = context.Output(0); + auto out = context.Output("Out"); out->mutable_data(context.GetPlace()); - auto input = EigenMatrix::From(*context.Input(0)); - auto bias = EigenVector::From(*context.Input(1)); + auto input = EigenMatrix::From(*context.Input("X")); + auto bias = EigenVector::From(*context.Input("b")); auto output = EigenMatrix::From(*out); const int bias_size = bias.dimension(0); diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index 6c6ed041afaf849b885d1d132398049cfbf95c79..ad267e7f087943ff3b8326a7baf2ce3955fa51c2 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -18,17 +18,15 @@ namespace paddle { namespace operators { class SGDOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(SGDOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.InputSize(), 2, "Input size of SGDOp must be two"); - PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1, "Output size of SGDOp must be one"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), "inputs[0] mast be set"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(1), "inputs[1] mast be set"); - PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(0), "outputs[0] mast be set"); - PADDLE_ENFORCE(ctx.Input(0)->dims() == ctx.Input(1)->dims(), - "Two input of SGD Op's dimension must be same."); - ctx.Output(0)->Resize(ctx.Input(0)->dims()); + PADDLE_ENFORCE( + ctx.Input("param")->dims() == ctx.Input("grad")->dims(), + "Two input of SGD Op's dimension must be same."); + ctx.Output("param_out")->Resize(ctx.Input("param")->dims()); } }; diff --git a/paddle/operators/sigmoid_op.cc b/paddle/operators/sigmoid_op.cc index c10cda8d6f2a3f4eb400ff345d6efec452bae983..d773a4f2d50e82146a729b1cda085ce86ade89cc 100644 --- a/paddle/operators/sigmoid_op.cc +++ b/paddle/operators/sigmoid_op.cc @@ -18,12 +18,12 @@ namespace paddle { namespace operators { class SigmoidOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(SigmoidOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE(ctx.InputSize() == 1, "Sigmoid Op only have one input"); - PADDLE_ENFORCE(ctx.OutputSize() == 1, "Sigmoid Op only have one output"); - ctx.Output(0)->Resize(ctx.Input(0)->dims()); + ctx.Output("Y")->Resize(ctx.Input("X")->dims()); } }; @@ -39,7 +39,9 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker { }; class SigmoidOpGrad : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(SigmoidOpGrad, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { ctx.Output(0)->Resize(ctx.Input(0)->dims()); diff --git a/paddle/operators/sigmoid_op.h b/paddle/operators/sigmoid_op.h index 7af879b2091e4a7f80a3a64be029394156650c23..11ab923eb346c1f8de3a6bbebdfa874b6530004a 100644 --- a/paddle/operators/sigmoid_op.h +++ b/paddle/operators/sigmoid_op.h @@ -28,8 +28,8 @@ template class SigmoidKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto input = context.Input(0); - auto output = context.Output(0); + auto input = context.Input("X"); + auto output = context.Output("Y"); output->mutable_data(context.GetPlace()); // The clipping is used in Paddle's raw implenmention diff --git a/paddle/operators/softmax_op.cc b/paddle/operators/softmax_op.cc index 7b681accc811a3f2afe4109ca17f2eda37c58ec7..40c51a64c49bc064f55975ef6ced1d54070f1291 100644 --- a/paddle/operators/softmax_op.cc +++ b/paddle/operators/softmax_op.cc @@ -18,15 +18,13 @@ namespace paddle { namespace operators { class SoftmaxOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(SoftmaxOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.InputSize(), 1UL, - "Only one input is need for softmax"); - PADDLE_ENFORCE_EQ(ctx.Input("X")->dims().size(), 2UL, - "The input of softmax op must be matrix"); - PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1UL, - "Only one output is need for softmax"); + PADDLE_ENFORCE(ctx.Input("X")->dims().size() == 2UL, + "The input of softmax op must be matrix"); ctx.Output("Y")->Resize(ctx.Input("X")->dims()); } }; @@ -43,14 +41,12 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { }; class SoftmaxOpGrad : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(SoftmaxOpGrad, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.InputSize(), 3UL, - "Input of SoftmaxOpGrad should be 3, X, Y, YG"); - PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1UL, - "Output of SoftmaxOpGrad should be 1"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null"); + PADDLE_ENFORCE(ctx.InputVar("Y") != nullptr, "Input(Y) should not be null"); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")), "Input(Y@GRAD) should not be null"); PADDLE_ENFORCE(ctx.Input("Y")->dims() == diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index 9410693ccec8b463f002693e75dbc8dae0271d52..a0a0d4d914b37fca4250e5218a953f573611a086 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -27,7 +27,7 @@ template class CPUUniformRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* tensor = context.Output(0); + auto* tensor = context.Output("Out"); T* data = tensor->mutable_data(context.GetPlace()); unsigned int seed = static_cast(context.op_.GetAttr("seed")); @@ -46,12 +46,14 @@ class CPUUniformRandomKernel : public framework::OpKernel { }; class UniformRandomOp : public framework::OperatorWithKernel { - DEFINE_OPERATOR_CTOR(UniformRandomOp, framework::OperatorWithKernel) + public: + using framework::OperatorWithKernel::OperatorWithKernel; + protected: void InferShape(const framework::InferShapeContext& ctx) const override { PADDLE_ENFORCE(GetAttr("min") < GetAttr("max"), "uniform_random's min must less then max"); - auto* tensor = ctx.Output(0); + auto* tensor = ctx.Output("Out"); auto dims = GetAttr>("dims"); tensor->Resize(framework::make_ddim(dims)); } diff --git a/paddle/operators/uniform_random_op.cu b/paddle/operators/uniform_random_op.cu index b35ebe7b630be72a5856ec1d3cc32bfaf097aa8a..7a243555b6385af690e9632dfa81bf96d70f925d 100644 --- a/paddle/operators/uniform_random_op.cu +++ b/paddle/operators/uniform_random_op.cu @@ -46,7 +46,7 @@ template class GPUUniformRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* tensor = context.Output(0); + auto* tensor = context.Output("Out"); T* data = tensor->mutable_data(context.GetPlace()); unsigned int seed = static_cast(context.op_.GetAttr("seed")); diff --git a/paddle/platform/dynload/cublas.h b/paddle/platform/dynload/cublas.h index aad8097dbb33cbf6c0f2b4b3efb1376fbe96bc74..9d8343c0b5e200b390ccda760f09816959952e9d 100644 --- a/paddle/platform/dynload/cublas.h +++ b/paddle/platform/dynload/cublas.h @@ -62,12 +62,12 @@ extern void *cublas_dso_handle; DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) #define CUBLAS_BLAS_ROUTINE_EACH(__macro) \ - __macro(cublasSgemv); \ - __macro(cublasDgemv); \ - __macro(cublasSgemm); \ - __macro(cublasDgemm); \ - __macro(cublasSgeam); \ - __macro(cublasDgeam); \ + __macro(cublasSgemv_v2); \ + __macro(cublasDgemv_v2); \ + __macro(cublasSgemm_v2); \ + __macro(cublasDgemm_v2); \ + __macro(cublasSgeam_v2); \ + __macro(cublasDgeam_v2); \ __macro(cublasCreate_v2); \ __macro(cublasDestroy_v2); \ __macro(cublasSetStream_v2); \ diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h index 337a059fb1494d500be0fd2437e59c863ae1563c..15fdf7a94f462a87f7edae1429eb0c4da0b17a84 100644 --- a/paddle/platform/enforce.h +++ b/paddle/platform/enforce.h @@ -14,14 +14,21 @@ limitations under the License. */ #pragma once -#include +#include // for dladdr +#include // for backtrace #include +#include #include #include #include + #include "paddle/string/printf.h" #include "paddle/string/to_string.h" +#ifdef __GNUC__ +#include // for __cxa_demangle +#endif + #ifndef PADDLE_ONLY_CPU #include "paddle/platform/dynload/cublas.h" @@ -39,6 +46,19 @@ limitations under the License. */ namespace paddle { namespace platform { +namespace { +#ifdef __GNUC__ +inline std::string demangle(std::string name) { + int status = -4; // some arbitrary value to eliminate the compiler warning + std::unique_ptr res{ + abi::__cxa_demangle(name.c_str(), NULL, NULL, &status), std::free}; + return (status == 0) ? res.get() : name; +} +#else +inline std::string demangle(std::string name) { return name; } +#endif +} + struct EnforceNotMet : public std::exception { std::exception_ptr exp_; std::string err_str_; @@ -48,15 +68,29 @@ struct EnforceNotMet : public std::exception { std::rethrow_exception(exp_); } catch (const std::exception& exp) { std::ostringstream sout; + sout << string::Sprintf("%s at [%s:%d]", exp.what(), f, l) << std::endl; - sout << "Call Stacks: " << std::endl; + sout << "PaddlePaddle Call Stacks: " << std::endl; + void* call_stack[TRACE_STACK_LIMIT]; - int sz = backtrace(call_stack, TRACE_STACK_LIMIT); - auto line = backtrace_symbols(call_stack, sz); - for (int i = 0; i < sz; ++i) { - sout << line[i] << std::endl; + auto size = backtrace(call_stack, TRACE_STACK_LIMIT); + auto symbols = backtrace_symbols(call_stack, size); + + Dl_info info; + for (int i = 0; i < size; ++i) { + if (dladdr(call_stack[i], &info)) { + auto demangled = demangle(info.dli_sname); + auto addr_offset = static_cast(call_stack[i]) - + static_cast(info.dli_saddr); + sout << string::Sprintf("%-3d %*0p %s + %zd\n", i, + 2 + sizeof(void*) * 2, call_stack[i], + demangled, addr_offset); + } else { + sout << string::Sprintf("%-3d %*0p %s\n", i, 2 + sizeof(void*) * 2, + call_stack[i]); + } } - free(line); + free(symbols); err_str_ = sout.str(); } } @@ -170,7 +204,7 @@ inline void throw_on_error(T e) { * PADDLE_ENFORCE_EQ(a, b); * * will raise an expression described as follows: - * "enforce a == b failed, 1 != 2" with detailed stack infomation. + * "enforce a == b failed, 1 != 2" with detailed stack information. * * extra messages is also supported, for example: * PADDLE_ENFORCE(a, b, "some simple enforce failed between %d numbers", 2) diff --git a/python/paddle/trainer_config_helpers/evaluators.py b/python/paddle/trainer_config_helpers/evaluators.py index 44d52edfa7bae49bea196eba9387391b171840d8..57979db4de08989ab583b0ab41589c09789a0921 100644 --- a/python/paddle/trainer_config_helpers/evaluators.py +++ b/python/paddle/trainer_config_helpers/evaluators.py @@ -298,8 +298,8 @@ def pnpair_evaluator( input, label, info, - name=None, - weight=None, ): + weight=None, + name=None, ): """ Positive-negative pair rate Evaluator which adapts to rank task like learning to rank. This evaluator must contain at least three layers. @@ -308,27 +308,31 @@ def pnpair_evaluator( .. code-block:: python - eval = pnpair_evaluator(input, info, label) + eval = pnpair_evaluator(input, label, info) - :param name: Evaluator name. - :type name: None|basestring :param input: Input Layer name. The output prediction of network. :type input: LayerOutput :param label: Label layer name. :type label: LayerOutput - :param info: Label layer name. (TODO, explaination) + :param info: Info layer name. (TODO, explaination) :type info: LayerOutput :param weight: Weight Layer name. It should be a matrix with size [sample_num, 1]. (TODO, explaination) :type weight: LayerOutput + :param name: Evaluator name. + :type name: None|basestring """ + if not isinstance(input, list): + input = [input] + if label: + input.append(label) + if info: + input.append(info) evaluator_base( - name=name, - type="pnpair", input=input, - label=label, - info=info, - weight=weight) + type="pnpair", + weight=weight, + name=name, ) @evaluator(EvaluatorAttribute.FOR_CLASSIFICATION) @@ -429,12 +433,12 @@ def chunk_evaluator( .. code-block:: text - Scheme Description + Scheme Description plain Use the same label for the whole chunk. - IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside. + IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside. IOE Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside. - IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk. - + IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk. + To make it clear, let's illustrate by an NER example. Assuming that there are three named entity types including ORG, PER and LOC which are called 'chunk type' here, if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O, @@ -451,7 +455,7 @@ def chunk_evaluator( tagType = label % numTagType chunkType = label / numTagType otherChunkType = numChunkTypes - + The following table shows the mapping rule between tagType and tag type in each scheme. .. code-block:: text @@ -475,7 +479,7 @@ def chunk_evaluator( O 6 In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is - "IOB" so tagType has two values: 0 for B and 1 for I. + "IOB" so tagType has two values: 0 for B and 1 for I. Here we will use I-LOC to explain the above mapping rules in detail. For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC and the tag is I. @@ -486,7 +490,7 @@ def chunk_evaluator( eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types) - + :param input: The input layers. :type input: LayerOutput :param label: An input layer containing the ground truth label. diff --git a/python/paddle/v2/framework/op.py b/python/paddle/v2/framework/op.py index 7fd8b55a5d167294d3270c79f7b64da03443afd3..904de08da4efa4df49cdc1e391e2674608a4e84b 100644 --- a/python/paddle/v2/framework/op.py +++ b/python/paddle/v2/framework/op.py @@ -1,7 +1,5 @@ import paddle.v2.framework.core as core -import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2 -import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2 -import paddle.v2.framework.proto.attribute_pb2 as attribute_pb2 +import paddle.v2.framework.proto.framework_pb2 as framework_pb2 def get_all_op_protos(): @@ -12,11 +10,15 @@ def get_all_op_protos(): protostrs = core.get_all_op_protos() ret_values = [] for pbstr in protostrs: - op_proto = op_proto_pb2.OpProto.FromString(str(pbstr)) + op_proto = framework_pb2.OpProto.FromString(str(pbstr)) ret_values.append(op_proto) return ret_values +def is_str(s): + return isinstance(s, str) or isinstance(s, unicode) + + class OpDescCreationMethod(object): """ A Functor object to convert user input(use key word args) to OpDesc based on @@ -27,7 +29,7 @@ class OpDescCreationMethod(object): """ def __init__(self, op_proto): - if not isinstance(op_proto, op_proto_pb2.OpProto): + if not isinstance(op_proto, framework_pb2.OpProto): raise TypeError("Argument should be OpProto") self.__op_proto__ = op_proto @@ -39,26 +41,34 @@ class OpDescCreationMethod(object): """ if len(args) != 0: raise ValueError("Only keyword arguments is supported by Paddle") - op_desc = op_desc_pb2.OpDesc() - - # Inputs - ipts, ipt_format, _ = OpDescCreationMethod.extract_input_or_output( - "input", kwargs, self.__op_proto__.inputs) - op_desc.inputs.extend(ipts) - if ipt_format is not None: - op_desc.attrs.extend([ipt_format]) - - # Outputs - outs, out_format, tmp_index = OpDescCreationMethod.extract_input_or_output( - "output", kwargs, self.__op_proto__.outputs) - op_desc.outputs.extend(outs) - if out_format is not None: - op_desc.attrs.extend([out_format]) - if len(tmp_index) != 0: - tmp_index_attr = op_desc.attrs.add() - tmp_index_attr.type = attribute_pb2.INTS - tmp_index_attr.name = "temporary_index" - tmp_index_attr.ints.extend(tmp_index) + op_desc = framework_pb2.OpDesc() + + for input_parameter in self.__op_proto__.inputs: + input_arguments = kwargs.get(input_parameter.name, []) + if is_str(input_arguments): + input_arguments = [input_arguments] + + if not input_parameter.duplicable and len(input_arguments) > 1: + raise ValueError("Input %s only accepts one input, but give %d" + % (input_parameter.name, len(input_arguments))) + + ipt = op_desc.inputs.add() + ipt.parameter = input_parameter.name + ipt.arguments.extend(input_arguments) + + for output_parameter in self.__op_proto__.outputs: + output_arguments = kwargs.get(output_parameter.name, []) + if is_str(output_arguments): + output_arguments = [output_arguments] + + if not output_parameter.duplicable and len(output_arguments) > 1: + raise ValueError( + "Output %s only accepts one output, but give %d" % + (output_parameter.name, len(output_arguments))) + + out = op_desc.outputs.add() + out.parameter = output_parameter.name + out.arguments.extend(output_arguments) # Types op_desc.type = self.__op_proto__.type @@ -72,17 +82,17 @@ class OpDescCreationMethod(object): new_attr = op_desc.attrs.add() new_attr.name = attr.name new_attr.type = attr.type - if attr.type == attribute_pb2.INT: + if attr.type == framework_pb2.INT: new_attr.i = user_defined_attr - elif attr.type == attribute_pb2.FLOAT: + elif attr.type == framework_pb2.FLOAT: new_attr.f = user_defined_attr - elif attr.type == attribute_pb2.STRING: + elif attr.type == framework_pb2.STRING: new_attr.s = user_defined_attr - elif attr.type == attribute_pb2.INTS: + elif attr.type == framework_pb2.INTS: new_attr.ints.extend(user_defined_attr) - elif attr.type == attribute_pb2.FLOATS: + elif attr.type == framework_pb2.FLOATS: new_attr.floats.extend(user_defined_attr) - elif attr.type == attribute_pb2.STRINGS: + elif attr.type == framework_pb2.STRINGS: new_attr.strings.extend(user_defined_attr) else: raise NotImplementedError("Not support attribute type " + @@ -90,50 +100,6 @@ class OpDescCreationMethod(object): return op_desc - @staticmethod - def extract_input_or_output(in_out, kwargs, meta): - """ - Extract input variable names or output variable names from key-word - arguments, which base on VarProtos. - - :param in_out: "input" or "output" - :param kwargs: key-word arguments that user inputted. - :param meta: a list of VarProto - :return: The three object will be return. The variable names. The - input_format or output_format attribute(None if the input or output is - not multiple). The temporary variable index list. - """ - multiple = OpDescCreationMethod.any_is_true((m.multiple for m in meta)) - tmp_index = [] - retv = [] - if multiple: - var_format = op_desc_pb2.AttrDesc() - var_format.type = attribute_pb2.INTS - var_format.name = "%s_format" % in_out - var_format.ints.append(0) - - for var in meta: - var_name = var.name - - if var.temporary: - var_name = [core.var_names.temp()] - tmp_index.append(len(retv)) - else: - var_name = kwargs.get(var_name, []) - if not isinstance(var_name, list): - var_name = [var_name] - retv.extend(var_name) - var_format.ints.append(len(var_name) + var_format.ints[-1]) - return retv, var_format, tmp_index - else: - for var in meta: - if var.temporary: - retv.append(kwargs.get(var.name, core.var_names.temp())) - tmp_index.append(len(retv)) - else: - retv.append(kwargs.get(var.name, core.var_names.empty())) - return retv, None, tmp_index - @staticmethod def any_is_true(generator): """ @@ -146,13 +112,12 @@ class OpDescCreationMethod(object): class OpInfo(object): - def __init__(self, name, method, inputs, outputs, attrs, no_temp_outputs): + def __init__(self, name, method, inputs, outputs, attrs): self.name = name self.method = method self.inputs = inputs self.outputs = outputs self.attrs = attrs - self.no_temp_outputs = no_temp_outputs def create_op_creation_method(op_proto): @@ -170,10 +135,7 @@ def create_op_creation_method(op_proto): name=op_proto.type, inputs=[var.name for var in op_proto.inputs], outputs=[var.name for var in op_proto.outputs], - attrs=[attr.name for attr in op_proto.attrs], - no_temp_outputs=[ - var.name for var in op_proto.outputs if not var.temporary - ]) + attrs=[attr.name for attr in op_proto.attrs]) class OperatorFactory(object): @@ -214,8 +176,5 @@ class OperatorFactory(object): def get_op_attr_names(self, type): return self.get_op_info(type).attrs - def get_op_no_temp_output_names(self, type): - return self.get_op_info(type).no_temp_outputs - Operator = OperatorFactory() # Default global factory diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index b76c05dc8142af40d9872b42cc51b3c317e095be..96fad9b42e04a88fdcbda093683b57451b2a3e41 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -24,3 +24,4 @@ py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py) py_test(test_operator SRCS test_operator.py) # py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py) py_test(test_uniform_random_op SRCS test_uniform_random_op.py) +py_test(test_recurrent_op SRCS test_recurrent_op.py) diff --git a/python/paddle/v2/framework/tests/gradient_checker.py b/python/paddle/v2/framework/tests/gradient_checker.py index 015e832e82560bb8b3518cbdf605c705d77cdd99..501cf6110ff745b8a6022b463bc9cc3a70145c60 100644 --- a/python/paddle/v2/framework/tests/gradient_checker.py +++ b/python/paddle/v2/framework/tests/gradient_checker.py @@ -53,15 +53,18 @@ def get_numeric_gradient(op, tensor.set(input_values[var_name], core.CPUPlace()) # Create all output variable in local_scope - for output in op.outputs(): - if local_scope.find_var(output) is None: - local_scope.new_var(output).get_tensor() - + opts = op.outputs() + for key in opts: + for output in opts[key]: + if local_scope.find_var(output) is None: + local_scope.new_var(output).get_tensor() op.infer_shape(local_scope) # allocate output memory - for output in op.outputs(): - local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace()) + for key in opts: + for output in opts[key]: + local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace( + )) # TODO(yuyang18): Only CPU is support now. cpu_ctx = core.DeviceContext.create(core.CPUPlace()) @@ -150,19 +153,24 @@ class GradientChecker(unittest.TestCase): if no_grad_set is None: no_grad_set = set() - tmp_outs = forward_op.temp_outputs() - no_tmp_out = filter(lambda name: name not in tmp_outs, - forward_op.outputs()) + no_tmp_out = forward_op.no_intermediate_outputs() if len(no_tmp_out) != 1: raise ValueError("non temp out_names should be 1") - in_names = forward_op.inputs() + inputs = forward_op.inputs() + in_names = [item for k in inputs for item in inputs[k]] + outputs = forward_op.outputs() + out_names = [item for k in outputs for item in outputs[k]] + for no_grad in no_grad_set: if no_grad not in in_names: raise ValueError("no_grad should be in in_names") backward_op = core.Operator.backward(forward_op, no_grad_set) + bwd_outputs = backward_op.outputs() + bwd_out_names = [item for k in bwd_outputs for item in bwd_outputs[k]] + places = [core.CPUPlace()] if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu(): places.append(core.GPUPlace(0)) @@ -188,7 +196,7 @@ class GradientChecker(unittest.TestCase): var.set(value, place) # create output var - for out_name in forward_op.outputs(): + for out_name in out_names: scope.new_var(out_name).get_tensor() # infer the shape of output var and compute/set value of output var @@ -198,7 +206,7 @@ class GradientChecker(unittest.TestCase): # create output grad var # set shape as the output var # set value of this grad to ones - for name in forward_op.outputs(): + for name in out_names: out_tensor = scope.find_var(name).get_tensor() grad_tensor = scope.new_var(grad_var_name(name)).get_tensor() grad_tensor.set_dims(out_tensor.shape()) @@ -206,7 +214,7 @@ class GradientChecker(unittest.TestCase): grad_tensor.set(data, place) # create input grad var - for name in backward_op.outputs(): + for name in bwd_out_names: scope.new_var(name).get_tensor() # infer the shape of input gradient var and compute/set it's value diff --git a/python/paddle/v2/framework/tests/test_add_two_op.py b/python/paddle/v2/framework/tests/test_add_two_op.py index c0237830647371e14b755953345965a3eac7bfd2..0def484eddb88604398ee10390d3f28058714a57 100644 --- a/python/paddle/v2/framework/tests/test_add_two_op.py +++ b/python/paddle/v2/framework/tests/test_add_two_op.py @@ -19,14 +19,5 @@ class TestAddOp(unittest.TestCase): self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']} -class TestAddGradOp(unittest.TestCase): - def test_add_grad(self): - op = Operator('add_two', X="X", Y="Y", Out="Out") - backward_op = core.Operator.backward(op, set()) - self.assertEqual(backward_op.type(), "add_two_grad") - expected = '''Op(add_two_grad), inputs:(X, Y, Out, Out@GRAD), outputs:(X@GRAD, Y@GRAD).''' - self.assertEqual(expected, str(backward_op)) - - if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/framework/tests/test_net.py b/python/paddle/v2/framework/tests/test_net.py index cc7f09e7155f5b1afa47fc4133b71ae3676b7436..b42cadd11ab75abbc35763c8d12e8c27e995f0dc 100644 --- a/python/paddle/v2/framework/tests/test_net.py +++ b/python/paddle/v2/framework/tests/test_net.py @@ -25,12 +25,12 @@ class TestNet(unittest.TestCase): net.complete_add_op(True) expected = ''' -Op(plain_net), inputs:(W, X, Y), outputs:(Out, fc.out, pre_activation). - Op(add_two), inputs:(X, Y), outputs:(Out). - Op(plain_net), inputs:(W, X), outputs:(fc.out, pre_activation). - Op(plain_net), inputs:(W, X), outputs:(fc.out, pre_activation). - Op(mul), inputs:(X, W), outputs:(pre_activation). - Op(sigmoid), inputs:(pre_activation), outputs:(fc.out). +Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}. + Op(add_two), inputs:{X[X], Y[Y]}, outputs:{Out[Out]}. + Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. + Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. + Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}. + Op(sigmoid), inputs:{X[pre_activation]}, outputs:{Y[fc.out]}. ''' self.assertEqual(expected, "\n" + str(net)) diff --git a/python/paddle/v2/framework/tests/test_operator.py b/python/paddle/v2/framework/tests/test_operator.py index 4f164e1a69e3fd0409f9b575a8bd9b4e423b486b..1abc4eeb57bcedc81e34b0e156048ee4f5cfdc2d 100644 --- a/python/paddle/v2/framework/tests/test_operator.py +++ b/python/paddle/v2/framework/tests/test_operator.py @@ -1,9 +1,7 @@ import unittest import paddle.v2.framework.op as op import paddle.v2.framework.core as core -import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2 -import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2 -import paddle.v2.framework.proto.attribute_pb2 as attribute_pb2 +import paddle.v2.framework.proto.framework_pb2 as framework_pb2 class TestGetAllProtos(unittest.TestCase): @@ -17,7 +15,7 @@ class TestGetAllProtos(unittest.TestCase): class TestOpDescCreationMethod(unittest.TestCase): def test_plain_input_output(self): - op_proto = op_proto_pb2.OpProto() + op_proto = framework_pb2.OpProto() op_proto.type = "test" ipt = op_proto.inputs.add() ipt.name = "X" @@ -37,25 +35,32 @@ class TestOpDescCreationMethod(unittest.TestCase): method = op.OpDescCreationMethod(op_proto) output = method(X="a", Y="b", Z="c") - - expected = op_desc_pb2.OpDesc() + expected = framework_pb2.OpDesc() expected.type = "test" - expected.inputs.extend(["a", "b"]) - expected.outputs.append("c") + ipt_0 = expected.inputs.add() + ipt_0.parameter = "X" + ipt_0.arguments.extend(["a"]) + ipt_1 = expected.inputs.add() + ipt_1.parameter = 'Y' + ipt_1.arguments.extend(['b']) + opt = expected.outputs.add() + opt.parameter = "Z" + opt.arguments.extend(["c"]) + self.assertEqual(expected, output) def test_multiple_input_plain_output(self): - op_proto = op_proto_pb2.OpProto() + op_proto = framework_pb2.OpProto() op_proto.type = "fc" ipt = op_proto.inputs.add() ipt.name = "X" ipt.comment = "" - ipt.multiple = True + ipt.duplicable = True ipt = op_proto.inputs.add() ipt.name = "W" ipt.comment = "" - ipt.multiple = True + ipt.duplicable = True ipt = op_proto.inputs.add() ipt.name = "b" @@ -70,30 +75,50 @@ class TestOpDescCreationMethod(unittest.TestCase): method = op.OpDescCreationMethod(op_proto) generated1 = method(X="x", W="w", b="b", Y="y") - expected1 = op_desc_pb2.OpDesc() - expected1.inputs.extend(['x', 'w', 'b']) - expected1.outputs.extend(['y']) + expected1 = framework_pb2.OpDesc() + tmp = expected1.inputs.add() + tmp.parameter = "X" + tmp.arguments.extend(['x']) + + tmp = expected1.inputs.add() + tmp.parameter = 'W' + tmp.arguments.extend(['w']) + + tmp = expected1.inputs.add() + tmp.parameter = 'b' + tmp.arguments.extend(['b']) + + tmp = expected1.outputs.add() + tmp.parameter = 'Y' + tmp.arguments.extend(['y']) expected1.type = 'fc' - attr = expected1.attrs.add() - attr.name = 'input_format' - attr.type = attribute_pb2.INTS - attr.ints.extend([0, 1, 2, 3]) self.assertEqual(expected1, generated1) generated2 = method( X=['x1', 'x2', 'x3'], b='b', W=['w1', 'w2', 'w3'], Y='y') - expected2 = op_desc_pb2.OpDesc() - expected2.inputs.extend(['x1', 'x2', 'x3', 'w1', 'w2', 'w3', 'b']) - expected2.outputs.extend(['y']) + expected2 = framework_pb2.OpDesc() + + tmp = expected2.inputs.add() + tmp.parameter = "X" + tmp.arguments.extend(['x1', 'x2', 'x3']) + + tmp = expected2.inputs.add() + tmp.parameter = 'W' + tmp.arguments.extend(['w1', 'w2', 'w3']) + + tmp = expected2.inputs.add() + tmp.parameter = 'b' + tmp.arguments.extend(['b']) + + tmp = expected2.outputs.add() + tmp.parameter = 'Y' + tmp.arguments.extend(['y']) + expected2.type = 'fc' - attr = expected2.attrs.add() - attr.name = 'input_format' - attr.type = attribute_pb2.INTS - attr.ints.extend([0, 3, 6, 7]) self.assertEqual(expected2, generated2) def test_attrs(self): - op_proto = op_proto_pb2.OpProto() + op_proto = framework_pb2.OpProto() op_proto.type = "test" ipt = op_proto.inputs.add() ipt.name = 'X' @@ -105,12 +130,12 @@ class TestOpDescCreationMethod(unittest.TestCase): attr.comment = "" attr.type = type - __add_attr__("int_attr", attribute_pb2.INT) - __add_attr__("float_attr", attribute_pb2.FLOAT) - __add_attr__("string_attr", attribute_pb2.STRING) - __add_attr__("ints_attr", attribute_pb2.INTS) - __add_attr__("floats_attr", attribute_pb2.FLOATS) - __add_attr__("strings_attr", attribute_pb2.STRINGS) + __add_attr__("int_attr", framework_pb2.INT) + __add_attr__("float_attr", framework_pb2.FLOAT) + __add_attr__("string_attr", framework_pb2.STRING) + __add_attr__("ints_attr", framework_pb2.INTS) + __add_attr__("floats_attr", framework_pb2.FLOATS) + __add_attr__("strings_attr", framework_pb2.STRINGS) op_proto.comment = "" self.assertTrue(op_proto.IsInitialized()) @@ -126,76 +151,52 @@ class TestOpDescCreationMethod(unittest.TestCase): floats_attr=[0.2, 3.2, 4.5], strings_attr=["a", "b", "c"]) - expected = op_desc_pb2.OpDesc() + expected = framework_pb2.OpDesc() expected.type = "test" - expected.inputs.extend(['a']) + + ipt = expected.inputs.add() + ipt.parameter = "X" + ipt.arguments.extend(['a']) + attr = expected.attrs.add() attr.name = "int_attr" - attr.type = attribute_pb2.INT + attr.type = framework_pb2.INT attr.i = 10 attr = expected.attrs.add() attr.name = "float_attr" - attr.type = attribute_pb2.FLOAT + attr.type = framework_pb2.FLOAT attr.f = 3.2 attr = expected.attrs.add() attr.name = "string_attr" - attr.type = attribute_pb2.STRING + attr.type = framework_pb2.STRING attr.s = "test_str" attr = expected.attrs.add() attr.name = "ints_attr" - attr.type = attribute_pb2.INTS + attr.type = framework_pb2.INTS attr.ints.extend([0, 1, 2, 3, 4]) attr = expected.attrs.add() attr.name = 'floats_attr' - attr.type = attribute_pb2.FLOATS + attr.type = framework_pb2.FLOATS attr.floats.extend([0.2, 3.2, 4.5]) attr = expected.attrs.add() attr.name = 'strings_attr' - attr.type = attribute_pb2.STRINGS + attr.type = framework_pb2.STRINGS attr.strings.extend(['a', 'b', 'c']) self.assertEqual(expected, generated) - def test_input_temporary_output(self): - op_proto = op_proto_pb2.OpProto() - op_proto.type = "test" - out = op_proto.outputs.add() - out.name = "OUT" - out.comment = "" - - out = op_proto.outputs.add() - out.name = "TMP" - out.comment = "" - out.temporary = True - - out = op_proto.outputs.add() - out.name = "OUT2" - out.comment = "" - op_proto.comment = "" - - method = op.OpDescCreationMethod(op_proto) - generated = method(OUT="a", OUT2="b") - desc = op_desc_pb2.OpDesc() - desc.outputs.extend(["a", core.var_names.temp(), "b"]) - desc.type = "test" - attr = desc.attrs.add() - attr.name = "temporary_index" - attr.type = attribute_pb2.INTS - attr.ints.append(2) - self.assertEqual(generated, desc) - class TestOpCreations(unittest.TestCase): def test_all(self): add_op = op.Operator("add_two", X="a", Y="b", Out="z") self.assertIsNotNone(add_op) # Invoke C++ DebugString() - self.assertEqual('Op(add_two), inputs:(a, b), outputs:(z).', + self.assertEqual('Op(add_two), inputs:{X[a], Y[b]}, outputs:{Out[z]}.', str(add_op)) diff --git a/python/paddle/v2/framework/tests/test_protobuf.py b/python/paddle/v2/framework/tests/test_protobuf.py index 69e98e2f250a9df23b25e7e2043af29f87c996a0..848a396b3b6eec57d500b464780b64f339b09e94 100644 --- a/python/paddle/v2/framework/tests/test_protobuf.py +++ b/python/paddle/v2/framework/tests/test_protobuf.py @@ -1,11 +1,10 @@ -import paddle.v2.framework.proto.op_proto_pb2 as op_proto_lib -import paddle.v2.framework.proto.attribute_pb2 as attr_type_lib +import paddle.v2.framework.proto.framework_pb2 as framework_pb2 import unittest class TestFrameworkProto(unittest.TestCase): def test_all(self): - op_proto = op_proto_lib.OpProto() + op_proto = framework_pb2.OpProto() ipt0 = op_proto.inputs.add() ipt0.name = "a" ipt0.comment = "the input of cosine op" @@ -19,7 +18,7 @@ class TestFrameworkProto(unittest.TestCase): attr = op_proto.attrs.add() attr.name = "scale" attr.comment = "scale of cosine op" - attr.type = attr_type_lib.FLOAT + attr.type = framework_pb2.FLOAT op_proto.type = "cos" self.assertTrue(op_proto.IsInitialized()) diff --git a/python/paddle/v2/framework/tests/test_recurrent_op.py b/python/paddle/v2/framework/tests/test_recurrent_op.py index 5c77c477b347f4713e4af2a8cb462b243d7a779c..0db66cc4e181fde10f161a323ea749fd84a5f963 100644 --- a/python/paddle/v2/framework/tests/test_recurrent_op.py +++ b/python/paddle/v2/framework/tests/test_recurrent_op.py @@ -2,19 +2,74 @@ import logging import paddle.v2.framework.core as core import unittest import numpy as np -import paddle.v2.framework.create_op_creation_methods as creation +from paddle.v2.framework.op import Operator -ops = creation.op_creations +def py_sigmoid(x): + return 1. / (1. + np.exp(-x)) -def create_tensor(scope, name, shape): + +class PySimpleRNN(object): + ''' + A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm + ''' + + def __init__(self, input_dim=30, batch_size=50, weight_dim=15, sent_len=11): + self.x = np.random.normal(size=(sent_len, batch_size, input_dim)) + self.W = np.random.normal(size=(input_dim, input_dim)) + self.U = np.random.normal(size=(input_dim, input_dim)) + self.h_boot = np.random.normal(size=(batch_size, input_dim)) + + # memories + self.mems = [ + np.zeros(shape=(batch_size, input_dim)) for i in range(sent_len) + ] + + def forward(self): + xs = self.segment_inputs() + for step_id in range(self.x.shape[0]): + self.step(step_id, xs[step_id]) + return self.concat_outputs() + + def segment_inputs(self): + return [self.x[i] for i in range(self.x.shape[0])] + + def concat_outputs(self): + return np.array(self.mems) + + def step(self, step_id, x): + ''' + run a step + ''' + mem = self.mems[step_id] + if step_id > 0: + pre_mem = self.mems[step_id - 1] + else: + pre_mem = self.h_boot + xW = np.matmul(x, self.W) + hU = np.matmul(mem, self.U) + + sum = xW + hU + self.mems[step_id] = py_sigmoid(sum) + + +class PySimpleRNNTest(unittest.TestCase): + def setUp(self): + self.rnn = PySimpleRNN() + + def test_forward(self): + output = self.rnn.forward() + print 'output', output + + +def create_tensor(scope, name, shape, np_data): tensor = scope.new_var(name).get_tensor() tensor.set_dims(shape) - tensor.set(np.random.random(shape), core.CPUPlace()) + tensor.set(np_data, core.CPUPlace()) return tensor -class TestRNN(unittest.TestCase): +class TestRecurrentOp(unittest.TestCase): ''' Test RNNOp @@ -28,7 +83,7 @@ class TestRNN(unittest.TestCase): memories: - h outputs: - - h + - h ''' input_dim = 30 @@ -36,33 +91,45 @@ class TestRNN(unittest.TestCase): weight_dim = 15 sent_len = 11 - def init(self): + def setUp(self): + self.py_rnn = PySimpleRNN(self.input_dim, self.batch_size, + self.weight_dim, self.sent_len) + def forward(self): self.scope = core.Scope() - self.create_global_variables() self.create_step_net() rnn_op = self.create_rnn_op() ctx = core.DeviceContext.create(core.CPUPlace()) - print 'infer_shape' rnn_op.infer_shape(self.scope) - rnn_op.run(self.scope, ctx) + return np.array(self.scope.find_var("h").get_tensor()) def create_global_variables(self): # create inlink + x_np_data = self.py_rnn.x create_tensor(self.scope, "x", - [self.sent_len, self.batch_size, self.input_dim]) - create_tensor(self.scope, "W", [self.input_dim, self.input_dim]) - create_tensor(self.scope, "U", [self.input_dim, self.input_dim]) - create_tensor(self.scope, "h_boot", [self.batch_size, self.input_dim]) + [self.sent_len, self.batch_size, self.input_dim], + x_np_data) + W_np_data = self.py_rnn.W + create_tensor(self.scope, "W", [self.input_dim, self.input_dim], + W_np_data) + + U_np_data = self.py_rnn.U + create_tensor(self.scope, "U", [self.input_dim, self.input_dim], + U_np_data) + + h_boot_np_data = self.py_rnn.h_boot + create_tensor(self.scope, "h_boot", [self.batch_size, self.input_dim], + h_boot_np_data) self.scope.new_var("step_scopes") self.scope.new_var("h@alias") self.scope.new_var("h") def create_rnn_op(self): # create RNNOp - rnnop = ops.recurrent_op( + rnnop = Operator( + "recurrent_op", # inputs inlinks=["x"], boot_memories=["h_boot"], @@ -81,17 +148,25 @@ class TestRNN(unittest.TestCase): var = self.scope.new_var("stepnet") stepnet = var.get_net() - x_fc_op = ops.fc(X="x@alias", W="W", Y="Wx") - h_fc_op = ops.fc(X="h@pre", W="U", Y="Uh") - sum_op = ops.add_two(X="Wx", Y="Uh", Out="sum") - sig_op = ops.sigmoid(X="sum", Y="h@alias") + # x_fc_op = Operator("fc", X="x@alias", W="W", Y="Wx") + # h_fc_op = Operator("fc", X="h@pre", W="U", Y="Uh") + x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx") + h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") + sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum") + sig_op = Operator("sigmoid", X="sum", Y="h@alias") for op in [x_fc_op, h_fc_op, sum_op, sig_op]: stepnet.add_op(op) stepnet.complete_add_op(True) - def test_recurrent(self): - self.init() + def test_forward(self): + print 'test recurrent op forward' + pd_output = self.forward() + py_output = self.py_rnn.forward() + print 'pd_output', pd_output + print + print 'py_output', py_output + self.assertEqual(pd_output.shape, py_output.shape) if __name__ == '__main__':