From 3e34c9798a201df38c335d201442554f2c405a2d Mon Sep 17 00:00:00 2001 From: zhanghaichao Date: Wed, 16 May 2018 16:58:37 -0700 Subject: [PATCH] improved the documentation for the sequence_pool function --- python/paddle/fluid/layers/nn.py | 22 +++++++++++++--------- 1 file changed, 13 insertions(+), 9 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 1786be22fdc..914434ab1b1 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1329,6 +1329,8 @@ def sequence_pool(input, pool_type): sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2), 6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2) max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1) + last : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1) + first : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1) Args: input(variable): The input variable which is a LoDTensor. @@ -1348,6 +1350,8 @@ def sequence_pool(input, pool_type): sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum') sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt') max_x = fluid.layers.sequence_pool(input=x, pool_type='max') + last_x = fluid.layers.sequence_pool(input=x, pool_type='last') + first_x = fluid.layers.sequence_pool(input=x, pool_type='first') """ helper = LayerHelper('sequence_pool', **locals()) dtype = helper.input_dtype() @@ -3769,13 +3773,13 @@ def label_smooth(label, def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0): """ - Region of interest pooling (also known as RoI pooling) is to perform + Region of interest pooling (also known as RoI pooling) is to perform is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7). - The operator has three steps: - 1. Dividing each region proposal into equal-sized sections with - the pooled_width and pooled_height - 2. Finding the largest value in each section + The operator has three steps: + 1. Dividing each region proposal into equal-sized sections with + the pooled_width and pooled_height + 2. Finding the largest value in each section 3. Copying these max values to the output buffer Args: @@ -3783,8 +3787,8 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0): rois (Variable): ROIs (Regions of Interest) to pool over. It should be a 2-D one level LoTensor of shape [num_rois, 4]. The layout is [x1, y1, x2, y2], where (x1, y1) - is the top left coordinates, and (x2, y2) is the - bottom right coordinates. The num_rois is the + is the top left coordinates, and (x2, y2) is the + bottom right coordinates. The num_rois is the total number of ROIs in this batch data. pooled_height (integer): The pooled output height. Default: 1 pooled_width (integer): The pooled output width. Default: 1 @@ -3793,11 +3797,11 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0): to the scale used when pooling. Default: 1.0 Returns: - pool_out (Variable): The output is a 4-D tensor of the shape + pool_out (Variable): The output is a 4-D tensor of the shape (num_rois, channels, pooled_h, pooled_w). Examples: - pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0) + pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0) """ helper = LayerHelper('roi_pool', **locals()) dtype = helper.input_dtype() -- GitLab