Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3db1e41e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3db1e41e
编写于
9月 14, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into refine/op/lstm
上级
bc9971dd
bdbf1bc8
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
1186 addition
and
594 deletion
+1186
-594
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
paddle/fluid/inference/analysis/subgraph_splitter.cc
paddle/fluid/inference/analysis/subgraph_splitter.cc
+8
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+3
-0
paddle/fluid/inference/api/api.cc
paddle/fluid/inference/api/api.cc
+9
-7
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+3
-0
paddle/fluid/inference/api/paddle_inference_api.h
paddle/fluid/inference/api/paddle_inference_api.h
+3
-1
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+17
-1
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
+3
-4
paddle/fluid/inference/tests/api/analyzer_vis_tester.cc
paddle/fluid/inference/tests/api/analyzer_vis_tester.cc
+133
-0
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+27
-12
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+31
-25
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+5
-0
paddle/fluid/operators/detection/bbox_util.h
paddle/fluid/operators/detection/bbox_util.h
+32
-1
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
.../fluid/operators/detection/generate_proposal_labels_op.cc
+63
-76
paddle/fluid/operators/detection/generate_proposals_op.cc
paddle/fluid/operators/detection/generate_proposals_op.cc
+28
-18
paddle/fluid/operators/detection/rpn_target_assign_op.cc
paddle/fluid/operators/detection/rpn_target_assign_op.cc
+401
-201
paddle/fluid/operators/distributed/proto_encoder_helper.h
paddle/fluid/operators/distributed/proto_encoder_helper.h
+3
-1
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+10
-11
paddle/fluid/operators/prelu_op.cc
paddle/fluid/operators/prelu_op.cc
+6
-3
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+50
-35
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+83
-60
python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py
...fluid/tests/unittests/test_generate_proposal_labels_op.py
+56
-37
python/paddle/fluid/tests/unittests/test_generate_proposals_op.py
...addle/fluid/tests/unittests/test_generate_proposals_op.py
+25
-16
python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
...paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
+134
-80
python/paddle/fluid/transpiler/inference_transpiler.py
python/paddle/fluid/transpiler/inference_transpiler.py
+51
-2
未找到文件。
paddle/fluid/API.spec
浏览文件 @
3db1e41e
...
...
@@ -305,9 +305,9 @@ paddle.fluid.layers.target_assign ArgSpec(args=['input', 'matched_indices', 'neg
paddle.fluid.layers.detection_output ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0))
paddle.fluid.layers.ssd_loss ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None))
paddle.fluid.layers.detection_map ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral'))
paddle.fluid.layers.rpn_target_assign ArgSpec(args=['
loc', 'scores', 'anchor_box', 'anchor_var', 'gt_box', 'rpn_batch_size_per_im', 'fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap'], varargs=None, keywords=None, defaults=(256, 0.25, 0.7, 0.3
))
paddle.fluid.layers.rpn_target_assign ArgSpec(args=['
bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True
))
paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None))
paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', '
gt_boxes', 'im_scales', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], Non
e))
paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', '
is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, Tru
e))
paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None))
paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
...
...
paddle/fluid/inference/analysis/subgraph_splitter.cc
浏览文件 @
3db1e41e
...
...
@@ -120,13 +120,20 @@ void UnionContractedNodes(const std::unordered_map<int, BriefNode *> &node_map,
outputs
.
insert
(
node
);
}
// update the dst and src node's inlinks and outlinks.
// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
src_node
->
inlinks
=
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
());
src_node
->
outlinks
=
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
());
dst_node
->
inlinks
.
clear
();
dst_node
->
outlinks
.
clear
();
#else
src_node
->
inlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
()));
src_node
->
outlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
()));
dst_node
->
inlinks
.
clear
();
dst_node
->
outlinks
.
clear
();
#endif
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
BriefNode
*>
&
nodes
)
{
for
(
auto
*&
n
:
nodes
)
{
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
3db1e41e
...
...
@@ -77,6 +77,9 @@ bool AnalysisPredictor::Init(
OptimizeInferenceProgram
();
ctx_
=
executor_
->
Prepare
(
*
inference_program_
,
0
);
if
(
config_
.
_use_mkldnn
)
{
executor_
->
EnableMKLDNN
(
*
inference_program_
);
}
VLOG
(
5
)
<<
"to create variables"
;
PADDLE_ENFORCE
(
scope_
.
get
());
...
...
paddle/fluid/inference/api/api.cc
浏览文件 @
3db1e41e
...
...
@@ -9,8 +9,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
...
...
@@ -64,13 +64,15 @@ PaddleBuf& PaddleBuf::operator=(PaddleBuf&& other) {
void
PaddleBuf
::
Resize
(
size_t
length
)
{
// Only the owned memory can be reset, the external memory can't be changed.
if
(
length_
=
=
length
)
return
;
if
(
length_
>
=
length
)
return
;
if
(
memory_owned_
)
{
Free
();
data_
=
malloc
(
length
);
length_
=
length
;
memory_owned_
=
true
;
}
else
{
PADDLE_THROW
(
"The memory is allocated externally, can not Resized"
);
}
data_
=
new
char
[
length
];
length_
=
length
;
memory_owned_
=
true
;
}
void
PaddleBuf
::
Reset
(
void
*
data
,
size_t
length
)
{
...
...
@@ -82,8 +84,8 @@ void PaddleBuf::Reset(void* data, size_t length) {
void
PaddleBuf
::
Free
()
{
if
(
memory_owned_
&&
data_
)
{
assert
(
length_
>
0
);
delete
[]
static_cast
<
char
*>
(
data_
);
PADDLE_ENFORCE_GT
(
length_
,
0
);
free
(
static_cast
<
char
*>
(
data_
)
);
data_
=
nullptr
;
length_
=
0
;
}
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
3db1e41e
...
...
@@ -106,6 +106,9 @@ bool NativePaddlePredictor::Init(
}
ctx_
=
executor_
->
Prepare
(
*
inference_program_
,
0
);
if
(
config_
.
_use_mkldnn
)
{
executor_
->
EnableMKLDNN
(
*
inference_program_
);
}
executor_
->
CreateVariables
(
*
inference_program_
,
sub_scope_
?
sub_scope_
:
scope_
.
get
(),
0
);
...
...
paddle/fluid/inference/api/paddle_inference_api.h
浏览文件 @
3db1e41e
...
...
@@ -45,7 +45,7 @@ class PaddleBuf {
PaddleBuf
(
void
*
data
,
size_t
length
)
:
data_
(
data
),
length_
(
length
),
memory_owned_
{
false
}
{}
// Own memory.
PaddleBuf
(
size_t
length
)
explicit
PaddleBuf
(
size_t
length
)
:
data_
(
new
char
[
length
]),
length_
(
length
),
memory_owned_
(
true
)
{}
// Resize to `length` bytes.
void
Resize
(
size_t
length
);
...
...
@@ -121,6 +121,8 @@ struct NativeConfig : public PaddlePredictor::Config {
bool
use_gpu
{
false
};
int
device
{
0
};
float
fraction_of_gpu_memory
{
-
1.
f
};
// Negative to notify initialization.
// NOTE: NOT use it, just for the internal test, will discard later
bool
_use_mkldnn
{
false
};
// Specify the variable's name of each input.
bool
specify_input_name
{
false
};
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
3db1e41e
...
...
@@ -53,5 +53,21 @@ set(TEXT_CLASSIFICATION_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/text_classifi
download_model_and_data
(
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
"text-classification-Senta.tar.gz"
"text_classification_data.txt.tar.gz"
)
inference_analysis_test
(
test_analyzer_text_classification SRCS analyzer_text_classification_tester.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/
text-classification-Senta
ARGS --infer_model=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/
model
--infer_data=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/data.txt
)
# ocr
set
(
OCR_MODEL_URL
"http://paddlemodels.cdn.bcebos.com/inference-vis-demos%2Focr.tar.gz"
)
set
(
OCR_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/ocr"
)
if
(
NOT EXISTS
${
OCR_INSTALL_DIR
}
AND WITH_INFERENCE
)
get_filename_component
(
filename
${
OCR_MODEL_URL
}
NAME
)
message
(
STATUS
"Download inference test stuff
${
filename
}
from
${
OCR_MODEL_URL
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
OCR_INSTALL_DIR
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
OCR_INSTALL_DIR
}
&& wget -q
${
OCR_MODEL_URL
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
OCR_INSTALL_DIR
}
&& tar xzf
${
filename
}
"
)
message
(
STATUS
"finish downloading
${
filename
}
"
)
endif
()
inference_analysis_test
(
test_analyzer_ocr SRCS analyzer_vis_tester.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
OCR_INSTALL_DIR
}
/model
--infer_data=
${
OCR_INSTALL_DIR
}
/data.txt
)
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
浏览文件 @
3db1e41e
...
...
@@ -110,8 +110,7 @@ const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
void
TestLACPrediction
(
const
std
::
string
&
model_path
,
const
std
::
string
&
data_file
,
const
int
batch_size
,
const
int
repeat
,
bool
test_all_data
,
bool
use_analysis
=
false
)
{
const
int
repeat
,
bool
use_analysis
=
false
)
{
AnalysisConfig
cfg
;
cfg
.
model_dir
=
model_path
;
cfg
.
use_gpu
=
false
;
...
...
@@ -199,13 +198,13 @@ void TestLACPrediction(const std::string &model_path,
TEST
(
Analyzer_LAC
,
native
)
{
LOG
(
INFO
)
<<
"LAC with native"
;
TestLACPrediction
(
FLAGS_infer_model
,
FLAGS_infer_data
,
FLAGS_batch_size
,
FLAGS_repeat
,
FLAGS_test_all_data
);
FLAGS_repeat
);
}
TEST
(
Analyzer_LAC
,
analysis
)
{
LOG
(
INFO
)
<<
"LAC with analysis"
;
TestLACPrediction
(
FLAGS_infer_model
,
FLAGS_infer_data
,
FLAGS_batch_size
,
FLAGS_repeat
,
FLAGS_test_all_data
,
true
);
FLAGS_repeat
,
true
);
}
}
// namespace analysis
...
...
paddle/fluid/inference/tests/api/analyzer_vis_tester.cc
0 → 100644
浏览文件 @
3db1e41e
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
struct
Record
{
std
::
vector
<
float
>
data
;
std
::
vector
<
int32_t
>
shape
;
};
Record
ProcessALine
(
const
std
::
string
&
line
)
{
VLOG
(
3
)
<<
"process a line"
;
std
::
vector
<
std
::
string
>
columns
;
split
(
line
,
'\t'
,
&
columns
);
CHECK_EQ
(
columns
.
size
(),
2UL
)
<<
"data format error, should be <data>
\t
<shape>"
;
Record
record
;
std
::
vector
<
std
::
string
>
data_strs
;
split
(
columns
[
0
],
' '
,
&
data_strs
);
for
(
auto
&
d
:
data_strs
)
{
record
.
data
.
push_back
(
std
::
stof
(
d
));
}
std
::
vector
<
std
::
string
>
shape_strs
;
split
(
columns
[
1
],
' '
,
&
shape_strs
);
for
(
auto
&
s
:
shape_strs
)
{
record
.
shape
.
push_back
(
std
::
stoi
(
s
));
}
VLOG
(
3
)
<<
"data size "
<<
record
.
data
.
size
();
VLOG
(
3
)
<<
"data shape size "
<<
record
.
shape
.
size
();
return
record
;
}
/*
* Use the native and analysis fluid engine to inference the demo.
* ocr, mobilenet and se_resnext50
*/
void
TestVisualPrediction
(
bool
use_mkldnn
)
{
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
AnalysisConfig
cfg
;
cfg
.
param_file
=
FLAGS_infer_model
+
"/__params__"
;
cfg
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
cfg
.
use_gpu
=
false
;
cfg
.
_use_mkldnn
=
use_mkldnn
;
cfg
.
device
=
0
;
cfg
.
enable_ir_optim
=
true
;
// TODO(TJ): fix fusion gru
cfg
.
ir_passes
.
push_back
(
"fc_gru_fuse_pass"
);
#ifdef PADDLE_WITH_MKLDNN
// disable mkldnn fuse since it should have some bugs
cfg
.
ir_passes
.
push_back
(
"conv_relu_mkldnn_fuse_pass"
);
#endif
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
cfg
);
// Only have single batch of data.
std
::
string
line
;
std
::
ifstream
file
(
FLAGS_infer_data
);
std
::
getline
(
file
,
line
);
auto
record
=
ProcessALine
(
line
);
file
.
close
();
// Inference.
PaddleTensor
input
;
input
.
shape
=
record
.
shape
;
input
.
data
=
PaddleBuf
(
record
.
data
.
data
(),
record
.
data
.
size
()
*
sizeof
(
float
));
input
.
dtype
=
PaddleDType
::
FLOAT32
;
std
::
vector
<
PaddleTensor
>
outputs_slots
;
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
FLAGS_repeat
;
i
++
)
{
predictor
->
Run
({
input
},
&
outputs_slots
);
}
PrintTime
(
/*batch size*/
1
,
FLAGS_repeat
,
/*num threads*/
1
,
/*thread id*/
0
,
timer
.
toc
()
/
FLAGS_repeat
);
VLOG
(
3
)
<<
"output.size "
<<
outputs_slots
.
size
();
// run native as reference
auto
ref_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
cfg
);
std
::
vector
<
PaddleTensor
>
ref_outputs_slots
;
ref_predictor
->
Run
({
input
},
&
ref_outputs_slots
);
CompareResult
(
outputs_slots
,
ref_outputs_slots
);
// print what are fused
AnalysisPredictor
*
analysis_predictor
=
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
auto
&
fuse_statis
=
analysis_predictor
->
analysis_argument
()
.
Get
<
std
::
unordered_map
<
std
::
string
,
int
>>
(
framework
::
ir
::
kFuseStatisAttr
);
for
(
auto
&
item
:
fuse_statis
)
{
LOG
(
INFO
)
<<
"fused "
<<
item
.
first
<<
" "
<<
item
.
second
;
}
int
num_ops
=
0
;
for
(
auto
&
node
:
analysis_predictor
->
analysis_argument
().
main_dfg
->
nodes
.
nodes
())
{
if
(
node
->
IsFunction
())
{
++
num_ops
;
}
}
LOG
(
INFO
)
<<
"has num ops: "
<<
num_ops
;
}
TEST
(
Analyzer_vis
,
analysis
)
{
TestVisualPrediction
(
/*use_mkldnn*/
false
);
}
#ifdef PADDLE_WITH_MKLDNN
TEST
(
Analyzer_vis
,
analysis_mkldnn
)
{
TestVisualPrediction
(
/*use_mkldnn*/
true
);
}
#endif
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
3db1e41e
...
...
@@ -37,22 +37,37 @@ namespace paddle {
namespace
inference
{
void
CompareResult
(
const
std
::
vector
<
PaddleTensor
>
&
outputs
,
const
std
::
vector
<
PaddleTensor
>
&
base
_outputs
)
{
PADDLE_ENFORCE
_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
base
_outputs
.
size
());
const
std
::
vector
<
PaddleTensor
>
&
ref
_outputs
)
{
EXPECT
_GT
(
outputs
.
size
(),
0
);
EXPECT_EQ
(
outputs
.
size
(),
ref
_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
auto
&
out
=
outputs
[
i
];
auto
&
base_out
=
base
_outputs
[
i
];
auto
&
ref_out
=
ref
_outputs
[
i
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_EQ
(
size
,
size1
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
base_data
=
static_cast
<
float
*>
(
base_out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
data
[
i
],
base_data
[
i
],
1e-3
);
size_t
ref_size
=
std
::
accumulate
(
ref_out
.
shape
.
begin
(),
ref_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
EXPECT_GT
(
size
,
0
);
EXPECT_EQ
(
size
,
ref_size
);
EXPECT_EQ
(
out
.
dtype
,
ref_out
.
dtype
);
switch
(
out
.
dtype
)
{
case
PaddleDType
::
INT64
:
{
int64_t
*
pdata
=
static_cast
<
int64_t
*>
(
out
.
data
.
data
());
int64_t
*
pdata_ref
=
static_cast
<
int64_t
*>
(
ref_out
.
data
.
data
());
for
(
size_t
j
=
0
;
j
<
size
;
++
j
)
{
EXPECT_EQ
(
pdata_ref
[
j
],
pdata
[
j
]);
}
break
;
}
case
PaddleDType
::
FLOAT32
:
{
float
*
pdata
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
pdata_ref
=
static_cast
<
float
*>
(
ref_out
.
data
.
data
());
for
(
size_t
j
=
0
;
j
<
size
;
++
j
)
{
EXPECT_NEAR
(
pdata_ref
[
j
],
pdata
[
j
],
1e-3
);
}
break
;
}
}
}
}
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
3db1e41e
...
...
@@ -300,6 +300,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
bool
fuse_relu
=
ctx
.
Attr
<
bool
>
(
"fuse_relu"
);
bool
fuse_eltwise
=
ctx
.
Attr
<
bool
>
(
"fuse_eltwise"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// TODO: add support for dilation
...
...
@@ -366,12 +367,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_eltwise
);
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_eltwise
);
}
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
...
...
@@ -421,16 +423,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
private:
mkldnn
::
primitive_attr
AddRelu
()
const
{
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
mkldnn
::
primitive_attr
CreatePostOps
(
bool
fuse_relu
,
bool
fuse_eltwise
)
const
{
mkldnn
::
primitive_attr
conv_attr
;
constexpr
float
scale
=
1.0
f
;
constexpr
float
negative_slope
=
0.0
f
;
constexpr
float
placeholder
=
0.0
f
;
mkldnn
::
post_ops
post_operations
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
negative_slope
,
placeholder
);
// Fusion with Elementwise layer relies on adding a sum post-operation with
// the scale parameter. It is assumed that when fuse_eltwise is true, the
// Output tensor contains the data coming from residual connection. The
// result of this post_op is: Output = scale * Output + Conv_Out.
if
(
fuse_eltwise
)
{
post_operations
.
append_sum
(
1.0
f
);
}
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
if
(
fuse_relu
)
{
constexpr
float
scale
=
1.0
f
;
constexpr
float
negative_slope
=
0.0
f
;
constexpr
float
placeholder
=
0.0
f
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
negative_slope
,
placeholder
);
}
conv_attr
.
set_post_ops
(
post_operations
);
return
conv_attr
;
}
...
...
@@ -439,8 +451,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
ConvFwdPrimitiveDesc
(
const
memory
::
desc
&
src
,
const
memory
::
desc
&
weights
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_
relu
)
const
{
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_
eltwise
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
@@ -449,10 +461,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
primitive_attr
conv_attr
;
if
(
fuse_relu
)
{
conv_attr
=
AddRelu
();
}
mkldnn
::
primitive_attr
conv_attr
=
CreatePostOps
(
fuse_relu
,
fuse_eltwise
);
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
conv_attr
,
engine
);
...
...
@@ -466,8 +475,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
memory
::
desc
&
bias
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_
relu
)
const
{
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_
eltwise
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
@@ -476,10 +485,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
primitive_attr
conv_attr
;
if
(
fuse_relu
)
{
conv_attr
=
AddRelu
();
}
mkldnn
::
primitive_attr
conv_attr
=
CreatePostOps
(
fuse_relu
,
fuse_eltwise
);
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
conv_attr
,
engine
);
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
3db1e41e
...
...
@@ -164,6 +164,11 @@ void Conv2DOpMaker::Make() {
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_relu"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_eltwise"
,
"(bool, default false) Only used in mkldnn kernel. Used "
"whenever convolution output is connected via skip connection "
"to a previous layer."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
paddle/fluid/operators/detection/bbox_util.h
浏览文件 @
3db1e41e
...
...
@@ -9,6 +9,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
...
...
@@ -21,7 +22,7 @@ namespace operators {
*/
template
<
typename
T
>
inline
void
BoxToDelta
(
const
int
box_num
,
const
framework
::
Tensor
&
ex_boxes
,
const
framework
::
Tensor
&
gt_boxes
,
const
T
*
weights
,
const
framework
::
Tensor
&
gt_boxes
,
const
float
*
weights
,
const
bool
normalized
,
framework
::
Tensor
*
box_delta
)
{
auto
ex_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
ex_boxes
);
auto
gt_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
gt_boxes
);
...
...
@@ -62,5 +63,35 @@ void Gather(const T* in, const int in_stride, const int* index, const int num,
}
}
template
<
typename
T
>
void
BboxOverlaps
(
const
framework
::
Tensor
&
r_boxes
,
const
framework
::
Tensor
&
c_boxes
,
framework
::
Tensor
*
overlaps
)
{
auto
r_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
r_boxes
);
auto
c_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
c_boxes
);
auto
overlaps_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
*
overlaps
);
int
r_num
=
r_boxes
.
dims
()[
0
];
int
c_num
=
c_boxes
.
dims
()[
0
];
auto
zero
=
static_cast
<
T
>
(
0.0
);
T
r_box_area
,
c_box_area
,
x_min
,
y_min
,
x_max
,
y_max
,
inter_w
,
inter_h
,
inter_area
;
for
(
int
i
=
0
;
i
<
r_num
;
++
i
)
{
r_box_area
=
(
r_boxes_et
(
i
,
2
)
-
r_boxes_et
(
i
,
0
)
+
1
)
*
(
r_boxes_et
(
i
,
3
)
-
r_boxes_et
(
i
,
1
)
+
1
);
for
(
int
j
=
0
;
j
<
c_num
;
++
j
)
{
c_box_area
=
(
c_boxes_et
(
j
,
2
)
-
c_boxes_et
(
j
,
0
)
+
1
)
*
(
c_boxes_et
(
j
,
3
)
-
c_boxes_et
(
j
,
1
)
+
1
);
x_min
=
std
::
max
(
r_boxes_et
(
i
,
0
),
c_boxes_et
(
j
,
0
));
y_min
=
std
::
max
(
r_boxes_et
(
i
,
1
),
c_boxes_et
(
j
,
1
));
x_max
=
std
::
min
(
r_boxes_et
(
i
,
2
),
c_boxes_et
(
j
,
2
));
y_max
=
std
::
min
(
r_boxes_et
(
i
,
3
),
c_boxes_et
(
j
,
3
));
inter_w
=
std
::
max
(
x_max
-
x_min
+
1
,
zero
);
inter_h
=
std
::
max
(
y_max
-
y_min
+
1
,
zero
);
inter_area
=
inter_w
*
inter_h
;
overlaps_et
(
i
,
j
)
=
inter_area
/
(
r_box_area
+
c_box_area
-
inter_area
);
}
}
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
浏览文件 @
3db1e41e
...
...
@@ -42,10 +42,11 @@ class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
"Input(RpnRois) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GtClasses"
),
"Input(GtClasses) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"IsCrowd"
),
"Input(IsCrowd) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GtBoxes"
),
"Input(GtBoxes) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ImScales"
),
"Input(ImScales) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ImInfo"
),
"Input(ImInfo) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Rois"
),
"Output(Rois) of RpnTargetAssignOp should not be null"
);
...
...
@@ -64,22 +65,21 @@ class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
auto
rpn_rois_dims
=
ctx
->
GetInputDim
(
"RpnRois"
);
auto
gt_classes_dims
=
ctx
->
GetInputDim
(
"GtClasses"
);
auto
is_crowd_dims
=
ctx
->
GetInputDim
(
"IsCrowd"
);
auto
gt_boxes_dims
=
ctx
->
GetInputDim
(
"GtBoxes"
);
auto
im_
scales_dims
=
ctx
->
GetInputDim
(
"ImScales
"
);
auto
im_
info_dims
=
ctx
->
GetInputDim
(
"ImInfo
"
);
PADDLE_ENFORCE_EQ
(
rpn_rois_dims
.
size
(),
2
,
"The rank of Input(RpnRois) must be 2."
);
PADDLE_ENFORCE_EQ
(
gt_classes_dims
.
size
(),
1
,
"The rank of Input(GtClasses) must be 1."
);
PADDLE_ENFORCE_EQ
(
gt_boxes_dims
.
size
(),
2
,
"The rank of Input(GtBoxes) must be 2."
);
PADDLE_ENFORCE_EQ
(
im_
scales_dims
.
size
(),
1
,
"The rank of Input(Im
Scales) must be 1
."
);
PADDLE_ENFORCE_EQ
(
im_
info_dims
.
size
(),
2
,
"The rank of Input(Im
Info) must be 2
."
);
int
class_nums
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_nums"
);
ctx
->
SetOutputDim
(
"Rois"
,
{
-
1
,
4
});
ctx
->
SetOutputDim
(
"LabelsInt32"
,
{
-
1
});
ctx
->
SetOutputDim
(
"LabelsInt32"
,
{
-
1
,
1
});
ctx
->
SetOutputDim
(
"BboxTargets"
,
{
-
1
,
4
*
class_nums
});
ctx
->
SetOutputDim
(
"BboxInsideWeights"
,
{
-
1
,
4
*
class_nums
});
ctx
->
SetOutputDim
(
"BboxOutsideWeights"
,
{
-
1
,
4
*
class_nums
});
...
...
@@ -105,45 +105,18 @@ void Concat(const platform::CPUDeviceContext& context,
concat_functor
(
context
,
inputs
,
axis
,
out_tensor
);
}
template
<
typename
T
>
void
BboxOverlaps
(
const
Tensor
&
r_boxes
,
const
Tensor
&
c_boxes
,
Tensor
*
overlaps
)
{
auto
r_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
r_boxes
);
auto
c_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
c_boxes
);
auto
overlaps_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
*
overlaps
);
int
r_num
=
r_boxes
.
dims
()[
0
];
int
c_num
=
c_boxes
.
dims
()[
0
];
auto
zero
=
static_cast
<
T
>
(
0.0
);
T
r_box_area
,
c_box_area
,
x_min
,
y_min
,
x_max
,
y_max
,
inter_w
,
inter_h
,
inter_area
;
for
(
int
i
=
0
;
i
<
r_num
;
++
i
)
{
r_box_area
=
(
r_boxes_et
(
i
,
2
)
-
r_boxes_et
(
i
,
0
)
+
1
)
*
(
r_boxes_et
(
i
,
3
)
-
r_boxes_et
(
i
,
1
)
+
1
);
for
(
int
j
=
0
;
j
<
c_num
;
++
j
)
{
c_box_area
=
(
c_boxes_et
(
j
,
2
)
-
c_boxes_et
(
j
,
0
)
+
1
)
*
(
c_boxes_et
(
j
,
3
)
-
c_boxes_et
(
j
,
1
)
+
1
);
x_min
=
std
::
max
(
r_boxes_et
(
i
,
0
),
c_boxes_et
(
j
,
0
));
y_min
=
std
::
max
(
r_boxes_et
(
i
,
1
),
c_boxes_et
(
j
,
1
));
x_max
=
std
::
min
(
r_boxes_et
(
i
,
2
),
c_boxes_et
(
j
,
2
));
y_max
=
std
::
min
(
r_boxes_et
(
i
,
3
),
c_boxes_et
(
j
,
3
));
inter_w
=
std
::
max
(
x_max
-
x_min
+
1
,
zero
);
inter_h
=
std
::
max
(
y_max
-
y_min
+
1
,
zero
);
inter_area
=
inter_w
*
inter_h
;
overlaps_et
(
i
,
j
)
=
inter_area
/
(
r_box_area
+
c_box_area
-
inter_area
);
}
}
}
template
<
typename
T
>
std
::
vector
<
std
::
vector
<
int
>>
SampleFgBgGt
(
const
platform
::
CPUDeviceContext
&
context
,
Tensor
*
iou
,
const
int
batch_size_per_im
,
const
float
fg_fraction
,
const
float
fg_thresh
,
const
float
bg_thresh_hi
,
const
float
bg_thresh_lo
,
std
::
minstd_rand
engine
)
{
const
Tensor
&
is_crowd
,
const
int
batch_size_per_im
,
const
float
fg_fraction
,
const
float
fg_thresh
,
const
float
bg_thresh_hi
,
const
float
bg_thresh_lo
,
std
::
minstd_rand
engine
,
const
bool
use_random
)
{
std
::
vector
<
int
>
fg_inds
;
std
::
vector
<
int
>
bg_inds
;
std
::
vector
<
int
>
gt_inds
;
T
*
proposal_to_gt_overlaps
=
iou
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int64_t
gt_num
=
is_crowd
.
numel
();
const
int
*
crowd_data
=
is_crowd
.
data
<
int
>
();
T
*
proposal_to_gt_overlaps
=
iou
->
data
<
T
>
();
int64_t
row
=
iou
->
dims
()[
0
];
int64_t
col
=
iou
->
dims
()[
1
];
float
epsilon
=
0.00001
;
...
...
@@ -152,6 +125,9 @@ std::vector<std::vector<int>> SampleFgBgGt(
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
const
T
*
v
=
proposal_to_gt_overlaps
+
i
*
col
;
T
max_overlap
=
*
std
::
max_element
(
v
,
v
+
col
);
if
((
i
<
gt_num
)
&&
(
crowd_data
[
i
]))
{
max_overlap
=
-
1.0
;
}
if
(
max_overlap
>
fg_thresh
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
T
val
=
proposal_to_gt_overlaps
[
i
*
col
+
j
];
...
...
@@ -170,17 +146,19 @@ std::vector<std::vector<int>> SampleFgBgGt(
}
// Reservoir Sampling
std
::
uniform_real_distribution
<
float
>
uniform
(
0
,
1
);
int
fg_rois_per_im
=
std
::
floor
(
batch_size_per_im
*
fg_fraction
);
int
fg_rois_this_image
=
fg_inds
.
size
();
int
fg_rois_per_this_image
=
std
::
min
(
fg_rois_per_im
,
fg_rois_this_image
);
std
::
uniform_real_distribution
<
float
>
uniform
(
0
,
1
);
const
int64_t
fg_size
=
static_cast
<
int64_t
>
(
fg_inds
.
size
());
if
(
fg_size
>
fg_rois_per_this_image
)
{
for
(
int64_t
i
=
fg_rois_per_this_image
;
i
<
fg_size
;
++
i
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
if
(
rng_ind
<
fg_rois_per_this_image
)
{
std
::
iter_swap
(
fg_inds
.
begin
()
+
rng_ind
,
fg_inds
.
begin
()
+
i
);
std
::
iter_swap
(
gt_inds
.
begin
()
+
rng_ind
,
gt_inds
.
begin
()
+
i
);
if
(
use_random
)
{
const
int64_t
fg_size
=
static_cast
<
int64_t
>
(
fg_inds
.
size
());
if
(
fg_size
>
fg_rois_per_this_image
)
{
for
(
int64_t
i
=
fg_rois_per_this_image
;
i
<
fg_size
;
++
i
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
if
(
rng_ind
<
fg_rois_per_this_image
)
{
std
::
iter_swap
(
fg_inds
.
begin
()
+
rng_ind
,
fg_inds
.
begin
()
+
i
);
std
::
iter_swap
(
gt_inds
.
begin
()
+
rng_ind
,
gt_inds
.
begin
()
+
i
);
}
}
}
}
...
...
@@ -192,12 +170,14 @@ std::vector<std::vector<int>> SampleFgBgGt(
int
bg_rois_per_image
=
batch_size_per_im
-
fg_rois_per_this_image
;
int
bg_rois_this_image
=
bg_inds
.
size
();
int
bg_rois_per_this_image
=
std
::
min
(
bg_rois_per_image
,
bg_rois_this_image
);
const
int64_t
bg_size
=
static_cast
<
int64_t
>
(
bg_inds
.
size
());
if
(
bg_size
>
bg_rois_per_this_image
)
{
for
(
int64_t
i
=
bg_rois_per_this_image
;
i
<
bg_size
;
++
i
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
if
(
rng_ind
<
fg_rois_per_this_image
)
std
::
iter_swap
(
bg_inds
.
begin
()
+
rng_ind
,
bg_inds
.
begin
()
+
i
);
if
(
use_random
)
{
const
int64_t
bg_size
=
static_cast
<
int64_t
>
(
bg_inds
.
size
());
if
(
bg_size
>
bg_rois_per_this_image
)
{
for
(
int64_t
i
=
bg_rois_per_this_image
;
i
<
bg_size
;
++
i
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
if
(
rng_ind
<
fg_rois_per_this_image
)
std
::
iter_swap
(
bg_inds
.
begin
()
+
rng_ind
,
bg_inds
.
begin
()
+
i
);
}
}
}
std
::
vector
<
int
>
new_bg_inds
(
bg_inds
.
begin
(),
...
...
@@ -248,14 +228,14 @@ void GatherBoxesLabels(const platform::CPUDeviceContext& context,
template
<
typename
T
>
std
::
vector
<
Tensor
>
SampleRoisForOneImage
(
const
platform
::
CPUDeviceContext
&
context
,
Tensor
*
rpn_rois
,
Tensor
*
gt_classes
,
Tensor
*
gt_boxes
,
Tensor
*
im_scale
,
Tensor
*
gt_classes
,
Tensor
*
is_crowd
,
Tensor
*
gt_boxes
,
Tensor
*
im_info
,
const
int
batch_size_per_im
,
const
float
fg_fraction
,
const
float
fg_thresh
,
const
float
bg_thresh_hi
,
const
float
bg_thresh_lo
,
const
std
::
vector
<
float
>&
bbox_reg_weights
,
const
int
class_nums
,
std
::
minstd_rand
engine
)
{
std
::
minstd_rand
engine
,
bool
use_random
)
{
auto
rpn_rois_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
*
rpn_rois
);
auto
im_scale
_data
=
im_scale
->
data
<
T
>
()[
0
];
rpn_rois_et
=
rpn_rois_et
/
im_scale
_data
;
auto
im_scale
=
im_info
->
data
<
T
>
()[
2
];
rpn_rois_et
=
rpn_rois_et
/
im_scale
;
Tensor
boxes
;
int
proposals_num
=
gt_boxes
->
dims
()[
0
]
+
rpn_rois
->
dims
()[
0
];
...
...
@@ -270,8 +250,8 @@ std::vector<Tensor> SampleRoisForOneImage(
// Generate proposal index
std
::
vector
<
std
::
vector
<
int
>>
fg_bg_gt
=
SampleFgBgGt
<
T
>
(
context
,
&
proposal_to_gt_overlaps
,
batch_size_per_im
,
fg_fraction
,
fg_
thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
engine
);
context
,
&
proposal_to_gt_overlaps
,
*
is_crowd
,
batch_size_per_im
,
fg_
fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
engine
,
use_random
);
std
::
vector
<
int
>
fg_inds
=
fg_bg_gt
[
0
];
std
::
vector
<
int
>
bg_inds
=
fg_bg_gt
[
1
];
std
::
vector
<
int
>
gt_inds
=
fg_bg_gt
[
2
];
...
...
@@ -291,15 +271,15 @@ std::vector<Tensor> SampleRoisForOneImage(
// Compute targets
Tensor
bbox_targets_single
;
bbox_targets_single
.
mutable_data
<
T
>
(
bbox_dim
,
context
.
GetPlace
());
BoxToDelta
<
T
>
(
fg_num
,
sampled_boxes
,
sampled_gts
,
nullptr
,
false
,
&
bbox_targets_single
);
BoxToDelta
<
T
>
(
fg_num
,
sampled_boxes
,
sampled_gts
,
bbox_reg_weights
.
data
()
,
false
,
&
bbox_targets_single
);
// Scale rois
Tensor
sampled_rois
;
sampled_rois
.
mutable_data
<
T
>
(
sampled_boxes
.
dims
(),
context
.
GetPlace
());
auto
sampled_rois_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
sampled_rois
);
auto
sampled_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
sampled_boxes
);
sampled_rois_et
=
sampled_boxes_et
*
im_scale
_data
;
sampled_rois_et
=
sampled_boxes_et
*
im_scale
;
// Expand box targets
Tensor
bbox_targets
,
bbox_inside_weights
,
bbox_outside_weights
;
...
...
@@ -351,8 +331,9 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
rpn_rois
=
context
.
Input
<
LoDTensor
>
(
"RpnRois"
);
auto
*
gt_classes
=
context
.
Input
<
LoDTensor
>
(
"GtClasses"
);
auto
*
is_crowd
=
context
.
Input
<
LoDTensor
>
(
"IsCrowd"
);
auto
*
gt_boxes
=
context
.
Input
<
LoDTensor
>
(
"GtBoxes"
);
auto
*
im_
scales
=
context
.
Input
<
LoDTensor
>
(
"ImScales
"
);
auto
*
im_
info
=
context
.
Input
<
LoDTensor
>
(
"ImInfo
"
);
auto
*
rois
=
context
.
Output
<
LoDTensor
>
(
"Rois"
);
auto
*
labels_int32
=
context
.
Output
<
LoDTensor
>
(
"LabelsInt32"
);
...
...
@@ -369,18 +350,21 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
std
::
vector
<
float
>
bbox_reg_weights
=
context
.
Attr
<
std
::
vector
<
float
>>
(
"bbox_reg_weights"
);
int
class_nums
=
context
.
Attr
<
int
>
(
"class_nums"
);
bool
use_random
=
context
.
Attr
<
bool
>
(
"use_random"
);
PADDLE_ENFORCE_EQ
(
rpn_rois
->
lod
().
size
(),
1UL
,
"GenerateProposalLabelsOp rpn_rois needs 1 level of LoD"
);
PADDLE_ENFORCE_EQ
(
gt_classes
->
lod
().
size
(),
1UL
,
"GenerateProposalLabelsOp gt_classes needs 1 level of LoD"
);
PADDLE_ENFORCE_EQ
(
is_crowd
->
lod
().
size
(),
1UL
,
"GenerateProposalLabelsOp is_crowd needs 1 level of LoD"
);
PADDLE_ENFORCE_EQ
(
gt_boxes
->
lod
().
size
(),
1UL
,
"GenerateProposalLabelsOp gt_boxes needs 1 level of LoD"
);
int64_t
n
=
static_cast
<
int64_t
>
(
rpn_rois
->
lod
().
back
().
size
()
-
1
);
rois
->
mutable_data
<
T
>
({
n
*
batch_size_per_im
,
kBoxDim
},
context
.
GetPlace
());
labels_int32
->
mutable_data
<
int
>
({
n
*
batch_size_per_im
},
labels_int32
->
mutable_data
<
int
>
({
n
*
batch_size_per_im
,
1
},
context
.
GetPlace
());
bbox_targets
->
mutable_data
<
T
>
({
n
*
batch_size_per_im
,
kBoxDim
*
class_nums
},
context
.
GetPlace
());
...
...
@@ -391,8 +375,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
std
::
random_device
rnd
;
std
::
minstd_rand
engine
;
int
seed
=
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
rnd
();
int
seed
=
rnd
();
engine
.
seed
(
seed
);
framework
::
LoD
lod
;
...
...
@@ -403,19 +386,23 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
auto
rpn_rois_lod
=
rpn_rois
->
lod
().
back
();
auto
gt_classes_lod
=
gt_classes
->
lod
().
back
();
auto
is_crowd_lod
=
is_crowd
->
lod
().
back
();
auto
gt_boxes_lod
=
gt_boxes
->
lod
().
back
();
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
Tensor
rpn_rois_slice
=
rpn_rois
->
Slice
(
rpn_rois_lod
[
i
],
rpn_rois_lod
[
i
+
1
]);
Tensor
gt_classes_slice
=
gt_classes
->
Slice
(
gt_classes_lod
[
i
],
gt_classes_lod
[
i
+
1
]);
Tensor
is_crowd_slice
=
is_crowd
->
Slice
(
is_crowd_lod
[
i
],
is_crowd_lod
[
i
+
1
]);
Tensor
gt_boxes_slice
=
gt_boxes
->
Slice
(
gt_boxes_lod
[
i
],
gt_boxes_lod
[
i
+
1
]);
Tensor
im_
scales_slice
=
im_scales
->
Slice
(
i
,
i
+
1
);
Tensor
im_
info_slice
=
im_info
->
Slice
(
i
,
i
+
1
);
std
::
vector
<
Tensor
>
tensor_output
=
SampleRoisForOneImage
<
T
>
(
dev_ctx
,
&
rpn_rois_slice
,
&
gt_classes_slice
,
&
gt_boxes_slice
,
&
im_scales_slice
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
engine
);
dev_ctx
,
&
rpn_rois_slice
,
&
gt_classes_slice
,
&
is_crowd_slice
,
&
gt_boxes_slice
,
&
im_info_slice
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
engine
,
use_random
);
Tensor
sampled_rois
=
tensor_output
[
0
];
Tensor
sampled_labels_int32
=
tensor_output
[
1
];
Tensor
sampled_bbox_targets
=
tensor_output
[
2
];
...
...
@@ -442,7 +429,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
bbox_inside_weights
->
set_lod
(
lod
);
bbox_outside_weights
->
set_lod
(
lod
);
rois
->
Resize
({
num_rois
,
kBoxDim
});
labels_int32
->
Resize
({
num_rois
});
labels_int32
->
Resize
({
num_rois
,
1
});
bbox_targets
->
Resize
({
num_rois
,
kBoxDim
*
class_nums
});
bbox_inside_weights
->
Resize
({
num_rois
,
kBoxDim
*
class_nums
});
bbox_outside_weights
->
Resize
({
num_rois
,
kBoxDim
*
class_nums
});
...
...
@@ -455,8 +442,9 @@ class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
// TODO(buxingyuan): Add Document
AddInput
(
"RpnRois"
,
"RpnRois."
);
AddInput
(
"GtClasses"
,
"GtClasses."
);
AddInput
(
"IsCrowd"
,
"IsCrowd."
);
AddInput
(
"GtBoxes"
,
"GtBoxes."
);
AddInput
(
"Im
Scales"
,
"ImScales
."
);
AddInput
(
"Im
Info"
,
"ImInfo
."
);
AddOutput
(
"Rois"
,
"Rois."
);
AddOutput
(
"LabelsInt32"
,
"LabelsInt32."
);
...
...
@@ -471,8 +459,7 @@ class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
float
>
(
"bg_thresh_lo"
,
"bg_thresh_lo"
);
AddAttr
<
std
::
vector
<
float
>>
(
"bbox_reg_weights"
,
"bbox_reg_weights"
);
AddAttr
<
int
>
(
"class_nums"
,
"class_nums"
);
AddAttr
<
bool
>
(
"fix_seed"
,
"fix_seed"
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"seed"
,
"seed"
).
SetDefault
(
0
);
AddAttr
<
bool
>
(
"use_random"
,
"use_random"
).
SetDefault
(
true
);
AddComment
(
R"DOC(
Generate Proposals Labels Operator.
...
...
paddle/fluid/operators/detection/generate_proposals_op.cc
浏览文件 @
3db1e41e
...
...
@@ -89,12 +89,11 @@ void BoxCoder(const platform::DeviceContext &ctx, Tensor *all_anchors,
}
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
T
anchor_width
=
anchor_data
[
i
*
len
+
2
]
-
anchor_data
[
i
*
len
];
T
anchor_height
=
anchor_data
[
i
*
len
+
3
]
-
anchor_data
[
i
*
len
+
1
];
T
anchor_width
=
anchor_data
[
i
*
len
+
2
]
-
anchor_data
[
i
*
len
]
+
1.0
;
T
anchor_height
=
anchor_data
[
i
*
len
+
3
]
-
anchor_data
[
i
*
len
+
1
]
+
1.0
;
T
anchor_center_x
=
(
anchor_data
[
i
*
len
+
2
]
+
anchor_data
[
i
*
len
])
/
2
;
T
anchor_center_y
=
(
anchor_data
[
i
*
len
+
3
]
+
anchor_data
[
i
*
len
+
1
])
/
2
;
T
anchor_center_x
=
anchor_data
[
i
*
len
]
+
0.5
*
anchor_width
;
T
anchor_center_y
=
anchor_data
[
i
*
len
+
1
]
+
0.5
*
anchor_height
;
T
bbox_center_x
=
0
,
bbox_center_y
=
0
;
T
bbox_width
=
0
,
bbox_height
=
0
;
...
...
@@ -106,25 +105,31 @@ void BoxCoder(const platform::DeviceContext &ctx, Tensor *all_anchors,
bbox_center_y
=
variances_data
[
i
*
len
+
1
]
*
bbox_deltas_data
[
i
*
len
+
1
]
*
anchor_height
+
anchor_center_y
;
bbox_width
=
std
::
exp
(
variances_data
[
i
*
len
+
2
]
*
bbox_deltas_data
[
i
*
len
+
2
])
*
bbox_width
=
std
::
exp
(
std
::
min
<
T
>
(
variances_data
[
i
*
len
+
2
]
*
bbox_deltas_data
[
i
*
len
+
2
],
std
::
log
(
1000.0
/
16.0
)))
*
anchor_width
;
bbox_height
=
std
::
exp
(
variances_data
[
i
*
len
+
3
]
*
bbox_deltas_data
[
i
*
len
+
3
])
*
bbox_height
=
std
::
exp
(
std
::
min
<
T
>
(
variances_data
[
i
*
len
+
3
]
*
bbox_deltas_data
[
i
*
len
+
3
],
std
::
log
(
1000.0
/
16.0
)))
*
anchor_height
;
}
else
{
bbox_center_x
=
bbox_deltas_data
[
i
*
len
]
*
anchor_width
+
anchor_center_x
;
bbox_center_y
=
bbox_deltas_data
[
i
*
len
+
1
]
*
anchor_height
+
anchor_center_y
;
bbox_width
=
std
::
exp
(
bbox_deltas_data
[
i
*
len
+
2
])
*
anchor_width
;
bbox_height
=
std
::
exp
(
bbox_deltas_data
[
i
*
len
+
3
])
*
anchor_height
;
bbox_width
=
std
::
exp
(
std
::
min
<
T
>
(
bbox_deltas_data
[
i
*
len
+
2
],
std
::
log
(
1000.0
/
16.0
)))
*
anchor_width
;
bbox_height
=
std
::
exp
(
std
::
min
<
T
>
(
bbox_deltas_data
[
i
*
len
+
3
],
std
::
log
(
1000.0
/
16.0
)))
*
anchor_height
;
}
proposals_data
[
i
*
len
]
=
bbox_center_x
-
bbox_width
/
2
;
proposals_data
[
i
*
len
+
1
]
=
bbox_center_y
-
bbox_height
/
2
;
proposals_data
[
i
*
len
+
2
]
=
bbox_center_x
+
bbox_width
/
2
;
proposals_data
[
i
*
len
+
3
]
=
bbox_center_y
+
bbox_height
/
2
;
proposals_data
[
i
*
len
+
2
]
=
bbox_center_x
+
bbox_width
/
2
-
1
;
proposals_data
[
i
*
len
+
3
]
=
bbox_center_y
+
bbox_height
/
2
-
1
;
}
// return proposals;
}
...
...
@@ -156,18 +161,23 @@ void FilterBoxes(const platform::DeviceContext &ctx, Tensor *boxes,
float
min_size
,
const
Tensor
&
im_info
,
Tensor
*
keep
)
{
const
T
*
im_info_data
=
im_info
.
data
<
T
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
min_size
*
=
im_info_data
[
2
];
T
im_scale
=
im_info_data
[
2
];
keep
->
Resize
({
boxes
->
dims
()[
0
],
1
});
min_size
=
std
::
max
(
min_size
,
1.0
f
);
int
*
keep_data
=
keep
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
int
keep_len
=
0
;
for
(
int
i
=
0
;
i
<
boxes
->
dims
()[
0
];
++
i
)
{
T
ws
=
boxes_data
[
4
*
i
+
2
]
-
boxes_data
[
4
*
i
]
+
1
;
T
hs
=
boxes_data
[
4
*
i
+
3
]
-
boxes_data
[
4
*
i
+
1
]
+
1
;
T
ws_origin_scale
=
(
boxes_data
[
4
*
i
+
2
]
-
boxes_data
[
4
*
i
])
/
im_scale
+
1
;
T
hs_origin_scale
=
(
boxes_data
[
4
*
i
+
3
]
-
boxes_data
[
4
*
i
+
1
])
/
im_scale
+
1
;
T
x_ctr
=
boxes_data
[
4
*
i
]
+
ws
/
2
;
T
y_ctr
=
boxes_data
[
4
*
i
+
1
]
+
hs
/
2
;
if
(
ws
>=
min_size
&&
hs
>=
min_size
&&
x_ctr
<=
im_info_data
[
1
]
&&
y_ctr
<=
im_info_data
[
0
])
{
if
(
ws
_origin_scale
>=
min_size
&&
hs_origin_scale
>=
min_size
&&
x_ctr
<=
im_info_data
[
1
]
&&
y_ctr
<=
im_info_data
[
0
])
{
keep_data
[
keep_len
++
]
=
i
;
}
}
...
...
@@ -218,8 +228,8 @@ T JaccardOverlap(const T *box1, const T *box2, const bool normalized) {
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
const
T
inter_w
=
inter_xmax
-
inter_xmin
;
const
T
inter_h
=
inter_ymax
-
inter_ymin
;
const
T
inter_w
=
std
::
max
(
0.0
f
,
inter_xmax
-
inter_xmin
+
1
)
;
const
T
inter_h
=
std
::
max
(
0.0
f
,
inter_ymax
-
inter_ymin
+
1
)
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
...
...
paddle/fluid/operators/detection/rpn_target_assign_op.cc
浏览文件 @
3db1e41e
...
...
@@ -31,8 +31,14 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"DistMat"
),
"Input(DistMat) of RpnTargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Anchor"
),
"Input(Anchor) of RpnTargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GtBoxes"
),
"Input(GtBoxes) of RpnTargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"IsCrowd"
),
"Input(Anchor) of RpnTargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ImInfo"
),
"Input(ImInfo) of RpnTargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LocationIndex"
),
...
...
@@ -43,10 +49,20 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"TargetLabel"
),
"Output(TargetLabel) of RpnTargetAssignOp should not be null"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"DistMat"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2
,
"The rank of Input(DistMat) must be 2."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"TargetBBox"
),
"Output(TargetBBox) of RpnTargetAssignOp should not be null"
);
auto
anchor_dims
=
ctx
->
GetInputDim
(
"Anchor"
);
auto
gt_boxes_dims
=
ctx
->
GetInputDim
(
"GtBoxes"
);
auto
is_crowd_dims
=
ctx
->
GetInputDim
(
"IsCrowd"
);
auto
im_info_dims
=
ctx
->
GetInputDim
(
"ImInfo"
);
PADDLE_ENFORCE_EQ
(
anchor_dims
.
size
(),
2
,
"The rank of Input(Anchor) must be 2."
);
PADDLE_ENFORCE_EQ
(
gt_boxes_dims
.
size
(),
2
,
"The rank of Input(GtBoxes) must be 2."
);
PADDLE_ENFORCE_EQ
(
im_info_dims
.
size
(),
2
,
"The rank of Input(ImInfo) must be 2."
);
ctx
->
SetOutputDim
(
"LocationIndex"
,
{
-
1
});
ctx
->
SetOutputDim
(
"ScoreIndex"
,
{
-
1
});
...
...
@@ -59,198 +75,383 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"
DistMat
"
)
->
type
()),
ctx
.
Input
<
framework
::
LoDTensor
>
(
"
Anchor
"
)
->
type
()),
platform
::
CPUPlace
());
}
};
template
<
typename
T
>
class
RpnTargetAssignKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
anchor_t
=
context
.
Input
<
Tensor
>
(
"Anchor"
);
// (H*W*A) * 4
auto
*
gt_bbox_t
=
context
.
Input
<
Tensor
>
(
"GtBox"
);
auto
*
dist_t
=
context
.
Input
<
LoDTensor
>
(
"DistMat"
);
void
AppendRpns
(
LoDTensor
*
out
,
int64_t
offset
,
Tensor
*
to_add
)
{
auto
*
out_data
=
out
->
data
<
T
>
();
auto
*
to_add_data
=
to_add
->
data
<
T
>
();
memcpy
(
out_data
+
offset
,
to_add_data
,
to_add
->
numel
()
*
sizeof
(
T
));
}
template
<
typename
T
>
std
::
vector
<
Tensor
>
FilterStraddleAnchor
(
const
platform
::
CPUDeviceContext
&
context
,
const
Tensor
*
anchor
,
const
float
rpn_straddle_thresh
,
T
im_height
,
T
im_width
)
{
std
::
vector
<
int
>
inds_inside
;
int
anchor_num
=
anchor
->
dims
()[
0
];
auto
*
anchor_data
=
anchor
->
data
<
T
>
();
if
(
rpn_straddle_thresh
>=
0
)
{
int
index
;
for
(
int
i
=
0
;
i
<
anchor_num
;
++
i
)
{
index
=
i
*
4
;
if
((
anchor_data
[
index
+
0
]
>=
-
rpn_straddle_thresh
)
&&
(
anchor_data
[
index
+
1
]
>=
-
rpn_straddle_thresh
)
&&
(
anchor_data
[
index
+
2
]
<
im_width
+
rpn_straddle_thresh
)
&&
(
anchor_data
[
index
+
3
]
<
im_height
+
rpn_straddle_thresh
))
{
inds_inside
.
emplace_back
(
i
);
}
}
}
else
{
for
(
int
i
=
0
;
i
<
anchor_num
;
++
i
)
{
inds_inside
.
emplace_back
(
i
);
}
}
int
inside_num
=
inds_inside
.
size
();
Tensor
inds_inside_t
;
int
*
inds_inside_data
=
inds_inside_t
.
mutable_data
<
int
>
({
inside_num
},
context
.
GetPlace
());
std
::
copy
(
inds_inside
.
begin
(),
inds_inside
.
end
(),
inds_inside_data
);
Tensor
inside_anchor_t
;
T
*
inside_anchor_data
=
inside_anchor_t
.
mutable_data
<
T
>
({
inside_num
,
4
},
context
.
GetPlace
());
Gather
<
T
>
(
anchor
->
data
<
T
>
(),
4
,
inds_inside_data
,
inside_num
,
inside_anchor_data
);
std
::
vector
<
Tensor
>
res
;
res
.
emplace_back
(
inds_inside_t
);
res
.
emplace_back
(
inside_anchor_t
);
return
res
;
}
template
<
typename
T
>
Tensor
FilterCrowdGt
(
const
platform
::
CPUDeviceContext
&
context
,
Tensor
*
gt_boxes
,
Tensor
*
is_crowd
)
{
int
gt_num
=
gt_boxes
->
dims
()[
0
];
std
::
vector
<
int
>
not_crowd_inds
;
auto
*
is_crowd_data
=
is_crowd
->
data
<
int
>
();
for
(
int
i
=
0
;
i
<
gt_num
;
++
i
)
{
if
(
is_crowd_data
[
i
]
==
0
)
{
not_crowd_inds
.
emplace_back
(
i
);
}
}
int
ncrowd_num
=
not_crowd_inds
.
size
();
Tensor
ncrowd_gt_boxes
;
T
*
ncrowd_gt_boxes_data
=
ncrowd_gt_boxes
.
mutable_data
<
T
>
({
ncrowd_num
,
4
},
context
.
GetPlace
());
Gather
<
T
>
(
gt_boxes
->
data
<
T
>
(),
4
,
not_crowd_inds
.
data
(),
ncrowd_num
,
ncrowd_gt_boxes_data
);
return
ncrowd_gt_boxes
;
}
void
ReservoirSampling
(
const
int
num
,
std
::
vector
<
int
>*
inds
,
std
::
minstd_rand
engine
,
bool
use_random
)
{
std
::
uniform_real_distribution
<
float
>
uniform
(
0
,
1
);
size_t
len
=
inds
->
size
();
if
(
len
>
static_cast
<
size_t
>
(
num
))
{
if
(
use_random
)
{
for
(
size_t
i
=
num
;
i
<
len
;
++
i
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
if
(
rng_ind
<
num
)
std
::
iter_swap
(
inds
->
begin
()
+
rng_ind
,
inds
->
begin
()
+
i
);
}
}
inds
->
resize
(
num
);
}
}
template
<
typename
T
>
void
ScoreAssign
(
const
T
*
anchor_by_gt_overlap_data
,
const
Tensor
&
anchor_to_gt_max
,
const
Tensor
&
gt_to_anchor_max
,
const
int
rpn_batch_size_per_im
,
const
float
rpn_fg_fraction
,
const
float
rpn_positive_overlap
,
const
float
rpn_negative_overlap
,
std
::
vector
<
int
>*
fg_inds
,
std
::
vector
<
int
>*
bg_inds
,
std
::
vector
<
int
>*
tgt_lbl
,
std
::
minstd_rand
engine
,
bool
use_random
)
{
float
epsilon
=
0.00001
;
int
anchor_num
=
anchor_to_gt_max
.
dims
()[
0
];
int
gt_num
=
gt_to_anchor_max
.
dims
()[
0
];
std
::
vector
<
int
>
target_label
(
anchor_num
,
-
1
);
std
::
vector
<
int
>
fg_inds_fake
;
std
::
vector
<
int
>
bg_inds_fake
;
const
T
*
anchor_to_gt_max_data
=
anchor_to_gt_max
.
data
<
T
>
();
const
T
*
gt_to_anchor_max_data
=
gt_to_anchor_max
.
data
<
T
>
();
// TODO(buxingyuan): Match with Detectron now
// but it seems here is a bug in two directions assignment
// in which the later one may overwrites the former one.
for
(
int64_t
i
=
0
;
i
<
anchor_num
;
++
i
)
{
bool
is_anchors_with_max_overlap
=
false
;
for
(
int64_t
j
=
0
;
j
<
gt_num
;
++
j
)
{
T
value
=
anchor_by_gt_overlap_data
[
i
*
gt_num
+
j
];
T
diff
=
std
::
abs
(
value
-
gt_to_anchor_max_data
[
j
]);
if
(
diff
<
epsilon
)
{
is_anchors_with_max_overlap
=
true
;
break
;
}
}
bool
is_anchor_great_than_thresh
=
(
anchor_to_gt_max_data
[
i
]
>=
rpn_positive_overlap
);
if
(
is_anchors_with_max_overlap
||
is_anchor_great_than_thresh
)
{
fg_inds_fake
.
push_back
(
i
);
}
}
auto
*
loc_index_t
=
context
.
Output
<
Tensor
>
(
"LocationIndex"
);
auto
*
score_index_t
=
context
.
Output
<
Tensor
>
(
"ScoreIndex"
);
auto
*
tgt_bbox_t
=
context
.
Output
<
Tensor
>
(
"TargetBBox"
);
auto
*
tgt_lbl_t
=
context
.
Output
<
Tensor
>
(
"TargetLabel"
);
// Reservoir Sampling
int
fg_num
=
static_cast
<
int
>
(
rpn_fg_fraction
*
rpn_batch_size_per_im
);
ReservoirSampling
(
fg_num
,
&
fg_inds_fake
,
engine
,
use_random
);
fg_num
=
static_cast
<
int
>
(
fg_inds_fake
.
size
());
for
(
int64_t
i
=
0
;
i
<
fg_num
;
++
i
)
{
target_label
[
fg_inds_fake
[
i
]]
=
1
;
}
auto
lod
=
dist_t
->
lod
().
back
();
int64_t
batch_num
=
static_cast
<
int64_t
>
(
lod
.
size
()
-
1
);
int64_t
anchor_num
=
dist_t
->
dims
()[
1
];
PADDLE_ENFORCE_EQ
(
anchor_num
,
anchor_t
->
dims
()[
0
]);
int
bg_num
=
rpn_batch_size_per_im
-
fg_num
;
for
(
int64_t
i
=
0
;
i
<
anchor_num
;
++
i
)
{
if
(
anchor_to_gt_max_data
[
i
]
<
rpn_negative_overlap
)
{
bg_inds_fake
.
push_back
(
i
);
}
}
ReservoirSampling
(
bg_num
,
&
bg_inds_fake
,
engine
,
use_random
);
bg_num
=
static_cast
<
int
>
(
bg_inds_fake
.
size
());
for
(
int64_t
i
=
0
;
i
<
bg_num
;
++
i
)
{
target_label
[
bg_inds_fake
[
i
]]
=
0
;
}
int
rpn_batch_size
=
context
.
Attr
<
int
>
(
"rpn_batch_size_per_im"
);
float
pos_threshold
=
context
.
Attr
<
float
>
(
"rpn_positive_overlap"
);
float
neg_threshold
=
context
.
Attr
<
float
>
(
"rpn_negative_overlap"
);
float
fg_fraction
=
context
.
Attr
<
float
>
(
"fg_fraction"
);
for
(
int64_t
i
=
0
;
i
<
anchor_num
;
++
i
)
{
if
(
target_label
[
i
]
==
1
)
fg_inds
->
emplace_back
(
i
);
if
(
target_label
[
i
]
==
0
)
bg_inds
->
emplace_back
(
i
);
}
fg_num
=
fg_inds
->
size
();
bg_num
=
bg_inds
->
size
();
tgt_lbl
->
resize
(
fg_num
+
bg_num
,
0
);
std
::
vector
<
int
>
fg_lbl
(
fg_num
,
1
);
std
::
vector
<
int
>
bg_lbl
(
bg_num
,
0
);
std
::
copy
(
fg_lbl
.
begin
(),
fg_lbl
.
end
(),
tgt_lbl
->
data
());
std
::
copy
(
bg_lbl
.
begin
(),
bg_lbl
.
end
(),
tgt_lbl
->
data
()
+
fg_num
);
}
template
<
typename
T
>
std
::
vector
<
Tensor
>
SampleRpnFgBgGt
(
const
platform
::
CPUDeviceContext
&
ctx
,
const
Tensor
&
anchor_by_gt_overlap
,
const
int
rpn_batch_size_per_im
,
const
float
rpn_positive_overlap
,
const
float
rpn_negative_overlap
,
const
float
rpn_fg_fraction
,
std
::
minstd_rand
engine
,
bool
use_random
)
{
auto
*
anchor_by_gt_overlap_data
=
anchor_by_gt_overlap
.
data
<
T
>
();
int
anchor_num
=
anchor_by_gt_overlap
.
dims
()[
0
];
int
gt_num
=
anchor_by_gt_overlap
.
dims
()[
1
];
std
::
vector
<
int
>
fg_inds
;
std
::
vector
<
int
>
bg_inds
;
std
::
vector
<
int
>
gt_inds
;
std
::
vector
<
int
>
tgt_lbl
;
// Calculate the max IoU between anchors and gt boxes
// Map from anchor to gt box that has highest overlap
auto
place
=
ctx
.
GetPlace
();
Tensor
anchor_to_gt_max
,
anchor_to_gt_argmax
,
gt_to_anchor_max
;
anchor_to_gt_max
.
mutable_data
<
T
>
({
anchor_num
},
place
);
int
*
argmax
=
anchor_to_gt_argmax
.
mutable_data
<
int
>
({
anchor_num
},
place
);
gt_to_anchor_max
.
mutable_data
<
T
>
({
gt_num
},
place
);
auto
anchor_by_gt_overlap_et
=
framework
::
EigenMatrix
<
T
>::
From
(
anchor_by_gt_overlap
);
auto
anchor_to_gt_max_et
=
framework
::
EigenVector
<
T
>::
Flatten
(
anchor_to_gt_max
);
auto
gt_to_anchor_max_et
=
framework
::
EigenVector
<
T
>::
Flatten
(
gt_to_anchor_max
);
auto
anchor_to_gt_argmax_et
=
framework
::
EigenVector
<
int
>::
Flatten
(
anchor_to_gt_argmax
);
anchor_to_gt_max_et
=
anchor_by_gt_overlap_et
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
anchor_to_gt_argmax_et
=
anchor_by_gt_overlap_et
.
argmax
(
1
).
template
cast
<
int
>();
gt_to_anchor_max_et
=
anchor_by_gt_overlap_et
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
0
));
// Follow the Faster RCNN's implementation
ScoreAssign
(
anchor_by_gt_overlap_data
,
anchor_to_gt_max
,
gt_to_anchor_max
,
rpn_batch_size_per_im
,
rpn_fg_fraction
,
rpn_positive_overlap
,
rpn_negative_overlap
,
&
fg_inds
,
&
bg_inds
,
&
tgt_lbl
,
engine
,
use_random
);
int
fg_num
=
fg_inds
.
size
();
int
bg_num
=
bg_inds
.
size
();
gt_inds
.
reserve
(
fg_num
);
for
(
int
i
=
0
;
i
<
fg_num
;
++
i
)
{
gt_inds
.
emplace_back
(
argmax
[
fg_inds
[
i
]]);
}
int
fg_num_per_batch
=
static_cast
<
int
>
(
rpn_batch_size
*
fg_fraction
);
Tensor
loc_index_t
,
score_index_t
,
tgt_lbl_t
,
gt_inds_t
;
int
*
loc_index_data
=
loc_index_t
.
mutable_data
<
int
>
({
fg_num
},
place
);
int
*
score_index_data
=
score_index_t
.
mutable_data
<
int
>
({
fg_num
+
bg_num
},
place
);
int
*
tgt_lbl_data
=
tgt_lbl_t
.
mutable_data
<
int
>
({
fg_num
+
bg_num
},
place
);
int
*
gt_inds_data
=
gt_inds_t
.
mutable_data
<
int
>
({
fg_num
},
place
);
std
::
copy
(
fg_inds
.
begin
(),
fg_inds
.
end
(),
loc_index_data
);
std
::
copy
(
fg_inds
.
begin
(),
fg_inds
.
end
(),
score_index_data
);
std
::
copy
(
bg_inds
.
begin
(),
bg_inds
.
end
(),
score_index_data
+
fg_num
);
std
::
copy
(
tgt_lbl
.
begin
(),
tgt_lbl
.
end
(),
tgt_lbl_data
);
std
::
copy
(
gt_inds
.
begin
(),
gt_inds
.
end
(),
gt_inds_data
);
std
::
vector
<
Tensor
>
loc_score_tgtlbl_gt
;
loc_score_tgtlbl_gt
.
emplace_back
(
loc_index_t
);
loc_score_tgtlbl_gt
.
emplace_back
(
score_index_t
);
loc_score_tgtlbl_gt
.
emplace_back
(
tgt_lbl_t
);
loc_score_tgtlbl_gt
.
emplace_back
(
gt_inds_t
);
return
loc_score_tgtlbl_gt
;
}
int64_t
max_num
=
batch_num
*
anchor_num
;
template
<
typename
T
>
class
RpnTargetAssignKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
anchor
=
context
.
Input
<
Tensor
>
(
"Anchor"
);
// (H*W*A) * 4
auto
*
gt_boxes
=
context
.
Input
<
LoDTensor
>
(
"GtBoxes"
);
auto
*
is_crowd
=
context
.
Input
<
LoDTensor
>
(
"IsCrowd"
);
auto
*
im_info
=
context
.
Input
<
LoDTensor
>
(
"ImInfo"
);
auto
*
loc_index
=
context
.
Output
<
LoDTensor
>
(
"LocationIndex"
);
auto
*
score_index
=
context
.
Output
<
LoDTensor
>
(
"ScoreIndex"
);
auto
*
tgt_bbox
=
context
.
Output
<
LoDTensor
>
(
"TargetBBox"
);
auto
*
tgt_lbl
=
context
.
Output
<
LoDTensor
>
(
"TargetLabel"
);
PADDLE_ENFORCE_EQ
(
gt_boxes
->
lod
().
size
(),
1UL
,
"RpnTargetAssignOp gt_boxes needs 1 level of LoD"
);
PADDLE_ENFORCE_EQ
(
is_crowd
->
lod
().
size
(),
1UL
,
"RpnTargetAssignOp is_crowd needs 1 level of LoD"
);
int64_t
anchor_num
=
static_cast
<
int64_t
>
(
anchor
->
dims
()[
0
]);
int64_t
batch_num
=
static_cast
<
int64_t
>
(
gt_boxes
->
lod
().
back
().
size
()
-
1
);
int
rpn_batch_size_per_im
=
context
.
Attr
<
int
>
(
"rpn_batch_size_per_im"
);
float
rpn_straddle_thresh
=
context
.
Attr
<
float
>
(
"rpn_straddle_thresh"
);
float
rpn_positive_overlap
=
context
.
Attr
<
float
>
(
"rpn_positive_overlap"
);
float
rpn_negative_overlap
=
context
.
Attr
<
float
>
(
"rpn_negative_overlap"
);
float
rpn_fg_fraction
=
context
.
Attr
<
float
>
(
"rpn_fg_fraction"
);
bool
use_random
=
context
.
Attr
<
bool
>
(
"use_random"
);
int64_t
max_num
=
batch_num
*
rpn_batch_size_per_im
;
auto
place
=
context
.
GetPlace
();
tgt_bbox_t
->
mutable_data
<
T
>
({
max_num
,
4
},
place
);
auto
*
loc_index
=
loc_index_t
->
mutable_data
<
int
>
({
max_num
},
place
);
auto
*
score_index
=
score_index_t
->
mutable_data
<
int
>
({
max_num
},
place
);
loc_index
->
mutable_data
<
int
>
({
max_num
},
place
);
score_index
->
mutable_data
<
int
>
({
max_num
},
place
);
tgt_bbox
->
mutable_data
<
T
>
({
max_num
,
4
},
place
);
tgt_lbl
->
mutable_data
<
int
>
({
max_num
,
1
},
place
);
Tensor
tmp_tgt_lbl
;
auto
*
tmp_lbl_data
=
tmp_tgt_lbl
.
mutable_data
<
int64_t
>
({
max_num
},
place
);
auto
&
dev_ctx
=
context
.
device_context
<
platform
::
CPUDeviceContext
>
();
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
int64_t
>
iset
;
iset
(
dev_ctx
,
&
tmp_tgt_lbl
,
static_cast
<
int64_t
>
(
-
1
));
std
::
random_device
rnd
;
std
::
minstd_rand
engine
;
int
seed
=
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
rnd
();
int
seed
=
rnd
();
engine
.
seed
(
seed
);
int
fg_num
=
0
;
int
bg_num
=
0
;
framework
::
LoD
lod_loc
,
loc_score
;
std
::
vector
<
size_t
>
lod0_loc
(
1
,
0
);
std
::
vector
<
size_t
>
lod0_score
(
1
,
0
);
int
total_loc_num
=
0
;
int
total_score_num
=
0
;
auto
gt_boxes_lod
=
gt_boxes
->
lod
().
back
();
auto
is_crowd_lod
=
is_crowd
->
lod
().
back
();
for
(
int
i
=
0
;
i
<
batch_num
;
++
i
)
{
Tensor
dist
=
dist_t
->
Slice
(
lod
[
i
],
lod
[
i
+
1
]);
Tensor
gt_bbox
=
gt_bbox_t
->
Slice
(
lod
[
i
],
lod
[
i
+
1
]);
auto
fg_bg_gt
=
SampleFgBgGt
(
dev_ctx
,
dist
,
pos_threshold
,
neg_threshold
,
rpn_batch_size
,
fg_num_per_batch
,
engine
,
tmp_lbl_data
+
i
*
anchor_num
);
int
cur_fg_num
=
fg_bg_gt
[
0
].
size
();
int
cur_bg_num
=
fg_bg_gt
[
1
].
size
();
std
::
transform
(
fg_bg_gt
[
0
].
begin
(),
fg_bg_gt
[
0
].
end
(),
loc_index
,
[
i
,
anchor_num
](
int
d
)
{
return
d
+
i
*
anchor_num
;
});
memcpy
(
score_index
,
loc_index
,
cur_fg_num
*
sizeof
(
int
));
std
::
transform
(
fg_bg_gt
[
1
].
begin
(),
fg_bg_gt
[
1
].
end
(),
score_index
+
cur_fg_num
,
[
i
,
anchor_num
](
int
d
)
{
return
d
+
i
*
anchor_num
;
});
Tensor
gt_boxes_slice
=
gt_boxes
->
Slice
(
gt_boxes_lod
[
i
],
gt_boxes_lod
[
i
+
1
]);
Tensor
is_crowd_slice
=
is_crowd
->
Slice
(
is_crowd_lod
[
i
],
is_crowd_lod
[
i
+
1
]);
Tensor
im_info_slice
=
im_info
->
Slice
(
i
,
i
+
1
);
auto
*
im_info_data
=
im_info_slice
.
data
<
T
>
();
auto
im_height
=
im_info_data
[
0
];
auto
im_width
=
im_info_data
[
1
];
auto
im_scale
=
im_info_data
[
2
];
// Filter straddle anchor
std
::
vector
<
Tensor
>
filter_output
=
FilterStraddleAnchor
<
T
>
(
dev_ctx
,
anchor
,
rpn_straddle_thresh
,
im_height
,
im_width
);
Tensor
inds_inside
=
filter_output
[
0
];
Tensor
inside_anchor
=
filter_output
[
1
];
// Filter crowd gt
Tensor
ncrowd_gt_boxes
=
FilterCrowdGt
<
T
>
(
dev_ctx
,
&
gt_boxes_slice
,
&
is_crowd_slice
);
auto
ncrowd_gt_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
ncrowd_gt_boxes
);
ncrowd_gt_boxes_et
=
ncrowd_gt_boxes_et
*
im_scale
;
Tensor
anchor_by_gt_overlap
;
anchor_by_gt_overlap
.
mutable_data
<
T
>
(
{
inside_anchor
.
dims
()[
0
],
ncrowd_gt_boxes
.
dims
()[
0
]},
place
);
BboxOverlaps
<
T
>
(
inside_anchor
,
ncrowd_gt_boxes
,
&
anchor_by_gt_overlap
);
auto
loc_score_tgtlbl_gt
=
SampleRpnFgBgGt
<
T
>
(
dev_ctx
,
anchor_by_gt_overlap
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
engine
,
use_random
);
Tensor
sampled_loc_index
=
loc_score_tgtlbl_gt
[
0
];
Tensor
sampled_score_index
=
loc_score_tgtlbl_gt
[
1
];
Tensor
sampled_tgtlbl
=
loc_score_tgtlbl_gt
[
2
];
Tensor
sampled_gt_index
=
loc_score_tgtlbl_gt
[
3
];
int
loc_num
=
sampled_loc_index
.
dims
()[
0
];
int
score_num
=
sampled_score_index
.
dims
()[
0
];
// unmap to all anchor
Tensor
sampled_loc_index_unmap
,
sampled_score_index_unmap
;
sampled_loc_index_unmap
.
mutable_data
<
int
>
({
loc_num
},
place
);
sampled_score_index_unmap
.
mutable_data
<
int
>
({
score_num
},
place
);
Gather
<
int
>
(
inds_inside
.
data
<
int
>
(),
1
,
sampled_loc_index
.
data
<
int
>
(),
loc_num
,
sampled_loc_index_unmap
.
data
<
int
>
());
Gather
<
int
>
(
inds_inside
.
data
<
int
>
(),
1
,
sampled_score_index
.
data
<
int
>
(),
score_num
,
sampled_score_index_unmap
.
data
<
int
>
());
// get target bbox deltas
if
(
cur_fg_num
)
{
Tensor
fg_gt
;
T
*
gt_data
=
fg_gt
.
mutable_data
<
T
>
({
cur_fg_num
,
4
},
place
);
Tensor
tgt_bbox
=
tgt_bbox_t
->
Slice
(
fg_num
,
fg_num
+
cur_fg_num
);
T
*
tgt_data
=
tgt_bbox
.
data
<
T
>
();
Gather
<
T
>
(
anchor_t
->
data
<
T
>
(),
4
,
reinterpret_cast
<
int
*>
(
&
fg_bg_gt
[
0
][
0
]),
cur_fg_num
,
tgt_data
);
Gather
<
T
>
(
gt_bbox
.
data
<
T
>
(),
4
,
reinterpret_cast
<
int
*>
(
&
fg_bg_gt
[
2
][
0
]),
cur_fg_num
,
gt_data
);
BoxToDelta
<
T
>
(
cur_fg_num
,
tgt_bbox
,
fg_gt
,
nullptr
,
false
,
&
tgt_bbox
);
}
loc_index
+=
cur_fg_num
;
score_index
+=
cur_fg_num
+
cur_bg_num
;
fg_num
+=
cur_fg_num
;
bg_num
+=
cur_bg_num
;
}
int
lbl_num
=
fg_num
+
bg_num
;
PADDLE_ENFORCE_LE
(
fg_num
,
max_num
);
PADDLE_ENFORCE_LE
(
lbl_num
,
max_num
);
tgt_bbox_t
->
Resize
({
fg_num
,
4
});
loc_index_t
->
Resize
({
fg_num
});
score_index_t
->
Resize
({
lbl_num
});
auto
*
lbl_data
=
tgt_lbl_t
->
mutable_data
<
int64_t
>
({
lbl_num
,
1
},
place
);
Gather
<
int64_t
>
(
tmp_lbl_data
,
1
,
score_index_t
->
data
<
int
>
(),
lbl_num
,
lbl_data
);
}
private:
void
ScoreAssign
(
const
T
*
dist_data
,
const
Tensor
&
anchor_to_gt_max
,
const
int
row
,
const
int
col
,
const
float
pos_threshold
,
const
float
neg_threshold
,
int64_t
*
target_label
,
std
::
vector
<
int
>*
fg_inds
,
std
::
vector
<
int
>*
bg_inds
)
const
{
float
epsilon
=
0.0001
;
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
const
T
*
v
=
dist_data
+
i
*
col
;
T
max
=
*
std
::
max_element
(
v
,
v
+
col
);
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
if
(
std
::
abs
(
max
-
v
[
j
])
<
epsilon
)
{
target_label
[
j
]
=
1
;
}
}
}
// Pick the fg/bg
const
T
*
anchor_to_gt_max_data
=
anchor_to_gt_max
.
data
<
T
>
();
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
if
(
anchor_to_gt_max_data
[
j
]
>=
pos_threshold
)
{
target_label
[
j
]
=
1
;
}
else
if
(
anchor_to_gt_max_data
[
j
]
<
neg_threshold
)
{
target_label
[
j
]
=
0
;
}
if
(
target_label
[
j
]
==
1
)
{
fg_inds
->
push_back
(
j
);
}
else
if
(
target_label
[
j
]
==
0
)
{
bg_inds
->
push_back
(
j
);
}
Tensor
sampled_anchor
,
sampled_gt
,
sampled_tgt_bbox
;
auto
*
sampled_anchor_data
=
sampled_anchor
.
mutable_data
<
T
>
({
loc_num
,
4
},
place
);
auto
*
sampled_gt_data
=
sampled_gt
.
mutable_data
<
T
>
({
loc_num
,
4
},
place
);
Gather
<
T
>
(
anchor
->
data
<
T
>
(),
4
,
sampled_loc_index_unmap
.
data
<
int
>
(),
loc_num
,
sampled_anchor_data
);
Gather
<
T
>
(
ncrowd_gt_boxes
.
data
<
T
>
(),
4
,
sampled_gt_index
.
data
<
int
>
(),
loc_num
,
sampled_gt_data
);
sampled_tgt_bbox
.
mutable_data
<
T
>
({
loc_num
,
4
},
place
);
BoxToDelta
<
T
>
(
loc_num
,
sampled_anchor
,
sampled_gt
,
nullptr
,
false
,
&
sampled_tgt_bbox
);
// Add anchor offset
int
anchor_offset
=
i
*
anchor_num
;
auto
sampled_loc_index_unmap_et
=
framework
::
EigenTensor
<
int
,
1
>::
From
(
sampled_loc_index_unmap
);
sampled_loc_index_unmap_et
=
sampled_loc_index_unmap_et
+
anchor_offset
;
auto
sampled_score_index_unmap_et
=
framework
::
EigenTensor
<
int
,
1
>::
From
(
sampled_score_index_unmap
);
sampled_score_index_unmap_et
=
sampled_score_index_unmap_et
+
anchor_offset
;
AppendRpns
<
int
>
(
loc_index
,
total_loc_num
,
&
sampled_loc_index_unmap
);
AppendRpns
<
int
>
(
score_index
,
total_score_num
,
&
sampled_score_index_unmap
);
AppendRpns
<
T
>
(
tgt_bbox
,
total_loc_num
*
4
,
&
sampled_tgt_bbox
);
AppendRpns
<
int
>
(
tgt_lbl
,
total_score_num
,
&
sampled_tgtlbl
);
total_loc_num
+=
loc_num
;
total_score_num
+=
score_num
;
lod0_loc
.
emplace_back
(
total_loc_num
);
lod0_score
.
emplace_back
(
total_score_num
);
}
}
void
ReservoirSampling
(
const
int
num
,
std
::
minstd_rand
engine
,
std
::
vector
<
int
>*
inds
)
const
{
std
::
uniform_real_distribution
<
float
>
uniform
(
0
,
1
);
size_t
len
=
inds
->
size
();
if
(
len
>
static_cast
<
size_t
>
(
num
))
{
for
(
size_t
i
=
num
;
i
<
len
;
++
i
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
if
(
rng_ind
<
num
)
std
::
iter_swap
(
inds
->
begin
()
+
rng_ind
,
inds
->
begin
()
+
i
);
}
inds
->
resize
(
num
);
}
}
// std::vector<std::vector<int>> RpnTargetAssign(
std
::
vector
<
std
::
vector
<
int
>>
SampleFgBgGt
(
const
platform
::
CPUDeviceContext
&
ctx
,
const
Tensor
&
dist
,
const
float
pos_threshold
,
const
float
neg_threshold
,
const
int
rpn_batch_size
,
const
int
fg_num
,
std
::
minstd_rand
engine
,
int64_t
*
target_label
)
const
{
auto
*
dist_data
=
dist
.
data
<
T
>
();
int
row
=
dist
.
dims
()[
0
];
int
col
=
dist
.
dims
()[
1
];
std
::
vector
<
int
>
fg_inds
;
std
::
vector
<
int
>
bg_inds
;
std
::
vector
<
int
>
gt_inds
;
// Calculate the max IoU between anchors and gt boxes
// Map from anchor to gt box that has highest overlap
auto
place
=
ctx
.
GetPlace
();
Tensor
anchor_to_gt_max
,
anchor_to_gt_argmax
;
anchor_to_gt_max
.
mutable_data
<
T
>
({
col
},
place
);
int
*
argmax
=
anchor_to_gt_argmax
.
mutable_data
<
int
>
({
col
},
place
);
auto
x
=
framework
::
EigenMatrix
<
T
>::
From
(
dist
);
auto
x_col_max
=
framework
::
EigenVector
<
T
>::
Flatten
(
anchor_to_gt_max
);
auto
x_col_argmax
=
framework
::
EigenVector
<
int
>::
Flatten
(
anchor_to_gt_argmax
);
x_col_max
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
0
));
x_col_argmax
=
x
.
argmax
(
0
).
template
cast
<
int
>();
// Follow the Faster RCNN's implementation
ScoreAssign
(
dist_data
,
anchor_to_gt_max
,
row
,
col
,
pos_threshold
,
neg_threshold
,
target_label
,
&
fg_inds
,
&
bg_inds
);
// Reservoir Sampling
ReservoirSampling
(
fg_num
,
engine
,
&
fg_inds
);
int
fg_num2
=
static_cast
<
int
>
(
fg_inds
.
size
());
int
bg_num
=
rpn_batch_size
-
fg_num2
;
ReservoirSampling
(
bg_num
,
engine
,
&
bg_inds
);
gt_inds
.
reserve
(
fg_num2
);
for
(
int
i
=
0
;
i
<
fg_num2
;
++
i
)
{
gt_inds
.
emplace_back
(
argmax
[
fg_inds
[
i
]]);
}
std
::
vector
<
std
::
vector
<
int
>>
fg_bg_gt
;
fg_bg_gt
.
emplace_back
(
fg_inds
);
fg_bg_gt
.
emplace_back
(
bg_inds
);
fg_bg_gt
.
emplace_back
(
gt_inds
);
return
fg_bg_gt
;
PADDLE_ENFORCE_LE
(
total_loc_num
,
max_num
);
PADDLE_ENFORCE_LE
(
total_score_num
,
max_num
);
lod_loc
.
emplace_back
(
lod0_loc
);
loc_score
.
emplace_back
(
lod0_score
);
loc_index
->
set_lod
(
lod_loc
);
score_index
->
set_lod
(
loc_score
);
tgt_bbox
->
set_lod
(
lod_loc
);
tgt_lbl
->
set_lod
(
loc_score
);
loc_index
->
Resize
({
total_loc_num
});
score_index
->
Resize
({
total_score_num
});
tgt_bbox
->
Resize
({
total_loc_num
,
4
});
tgt_lbl
->
Resize
({
total_score_num
,
1
});
}
};
...
...
@@ -259,18 +460,22 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddInput
(
"Anchor"
,
"(Tensor) input anchor is a 2-D Tensor with shape [H*W*A, 4]."
);
AddInput
(
"GtBox"
,
"(LoDTensor) input groud-truth bbox with shape [K, 4]."
);
AddInput
(
"DistMat"
,
"(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
"[K, M]. It is pair-wise distance matrix between the entities "
"represented by each row and each column. For example, assumed one "
"entity is A with shape [K], another entity is B with shape [M]. The "
"DistMat[i][j] is the distance between A[i] and B[j]. The bigger "
"the distance is, the better macthing the pairs are. Please note, "
"This tensor can contain LoD information to represent a batch of "
"inputs. One instance of this batch can contain different numbers of "
"entities."
);
AddInput
(
"GtBoxes"
,
"(LoDTensor) input groud-truth bbox with shape [K, 4]."
);
AddInput
(
"IsCrowd"
,
"(LoDTensor) input which indicates groud-truth is crowd."
);
AddInput
(
"ImInfo"
,
"(LoDTensor) input image information with shape [N, 3]. "
"N is the batch size, each image information includes height, "
"width and scale."
);
AddAttr
<
int
>
(
"rpn_batch_size_per_im"
,
"Total number of RPN examples per image."
)
.
SetDefault
(
256
);
AddAttr
<
float
>
(
"rpn_straddle_thresh"
,
"Remove RPN anchors that go outside the image by straddle_thresh "
"pixels, "
"Set to -1 or a large value, e.g. 100000, to disable pruning anchors."
);
AddAttr
<
float
>
(
"rpn_positive_overlap"
,
"Minimum overlap required between an anchor and ground-truth "
...
...
@@ -282,20 +487,15 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
"box for the (anchor, gt box) pair to be a negative examples."
)
.
SetDefault
(
0.3
);
AddAttr
<
float
>
(
"fg_fraction"
,
"
rpn_
fg_fraction"
,
"Target fraction of RoI minibatch that "
"is labeled foreground (i.e. class > 0), 0-th class is background."
)
.
SetDefault
(
0.25
);
AddAttr
<
int
>
(
"rpn_batch_size_per_im"
,
"Total number of RPN examples per image."
)
.
SetDefault
(
256
);
AddAttr
<
bool
>
(
"fix_seed"
,
"A flag indicating whether to use a fixed seed to generate "
"random mask. NOTE: DO NOT set this flag to true in "
"training. Setting this flag to true is only useful in "
"unittest."
)
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"seed"
,
"RpnTargetAssign random seed."
).
SetDefault
(
0
);
AddAttr
<
bool
>
(
"use_random"
,
"A flag indicating whether to use a ReservoirSampling. "
"NOTE: DO NOT set this flag to false in training. "
"Setting this flag to false is only useful in unittest."
)
.
SetDefault
(
true
);
AddOutput
(
"LocationIndex"
,
"(Tensor), The indexes of foreground anchors in all RPN anchors, the "
...
...
@@ -308,16 +508,16 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
"ScoreIndex is [F + B], F and B are sampled foreground and backgroud "
" number."
);
AddOutput
(
"TargetBBox"
,
"(Tensor
<int64_t>
), The target bbox deltas with shape "
"(Tensor), The target bbox deltas with shape "
"[F, 4], F is the sampled foreground number."
);
AddOutput
(
"TargetLabel"
,
"(Tensor<int
64_t
>), The target labels of each anchor with shape "
"(Tensor<int>), The target labels of each anchor with shape "
"[F + B, 1], F and B are sampled foreground and backgroud number."
);
AddComment
(
R"DOC(
This operator can be, for
given the IoU between the
ground truth bboxes and the
This operator can be, for
a given set of
ground truth bboxes and the
anchors, to assign classification and regression targets to each prediction.
The Score
index and LocationIndex will be generated according to the DistMat
.
The Score
Index and LocationIndex will be generated according to the anchor-groundtruth IOU
.
The rest anchors would not contibute to the RPN training loss
ScoreIndex is composed of foreground anchor indexes(positive labels) and
...
...
paddle/fluid/operators/distributed/proto_encoder_helper.h
浏览文件 @
3db1e41e
...
...
@@ -82,8 +82,10 @@ class ProtoEncodeHelper {
:
base_
(
buf
),
p_
(
buf
),
limit_
(
base_
+
max_size
)
{}
~
ProtoEncodeHelper
()
{
#define REPLACE_ENFORCE_GLOG 1
// Make sure callers didn't do operations that went over max_size promised
PADDLE_ENFORCE_LE
(
p_
,
limit_
);
paddle
::
platform
::
throw_on_error
(
p_
<=
limit_
);
#undef REPLACE_ENFORCE_GLOG
}
const
char
*
data
()
const
{
return
base_
;
}
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
3db1e41e
...
...
@@ -59,17 +59,16 @@ static void ParallelExecuteBlocks(
framework
::
ProgramDesc
*
program
,
framework
::
Scope
*
scope
)
{
std
::
vector
<
std
::
future
<
void
>>
fs
;
for
(
size_t
idx
:
parallel_blkids
)
{
fs
.
push_back
(
framework
::
Async
([
&
executor
,
&
prepared
,
&
program
,
&
scope
,
idx
]()
{
int
run_block
=
idx
;
// thread local
try
{
VLOG
(
3
)
<<
"running server block: "
<<
run_block
<<
"pointer: "
<<
prepared
[
run_block
].
get
();
executor
->
RunPreparedContext
(
prepared
[
run_block
].
get
(),
scope
);
}
catch
(
const
std
::
exception
&
e
)
{
LOG
(
ERROR
)
<<
"run sub program error "
<<
e
.
what
();
}
}));
fs
.
push_back
(
framework
::
Async
([
&
executor
,
&
prepared
,
&
scope
,
idx
]()
{
int
run_block
=
idx
;
// thread local
try
{
VLOG
(
3
)
<<
"running server block: "
<<
run_block
<<
"pointer: "
<<
prepared
[
run_block
].
get
();
executor
->
RunPreparedContext
(
prepared
[
run_block
].
get
(),
scope
);
}
catch
(
const
std
::
exception
&
e
)
{
LOG
(
ERROR
)
<<
"run sub program error "
<<
e
.
what
();
}
}));
}
for
(
size_t
i
=
0
;
i
<
fs
.
size
();
++
i
)
fs
[
i
].
wait
();
}
...
...
paddle/fluid/operators/prelu_op.cc
浏览文件 @
3db1e41e
...
...
@@ -26,10 +26,13 @@ class PReluOp : public framework::OperatorWithKernel {
std
::
string
mode
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"mode"
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Alpha"
),
"Input(Alpha) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of PreluOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Alpha"
),
"Input(Alpha) of PreluOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of PreluOp should not be null"
);
if
(
mode
==
"all"
)
{
PADDLE_ENFORCE
(
product
(
ctx
->
GetInputDim
(
"Alpha"
))
==
1
,
"For mode 'all', size of weight Alpha must be one."
);
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
3db1e41e
...
...
@@ -55,15 +55,19 @@ for _OP in set(__auto__):
globals
()[
_OP
]
=
generate_layer_fn
(
_OP
)
def
rpn_target_assign
(
loc
,
score
s
,
def
rpn_target_assign
(
bbox_pred
,
cls_logit
s
,
anchor_box
,
anchor_var
,
gt_box
,
gt_boxes
,
is_crowd
,
im_info
,
rpn_batch_size_per_im
=
256
,
fg_fraction
=
0.25
,
rpn_straddle_thresh
=
0.0
,
rpn_fg_fraction
=
0.5
,
rpn_positive_overlap
=
0.7
,
rpn_negative_overlap
=
0.3
):
rpn_negative_overlap
=
0.3
,
use_random
=
True
):
"""
** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **
...
...
@@ -83,14 +87,13 @@ def rpn_target_assign(loc,
the positive anchors.
Args:
loc
(Variable): A 3-D Tensor with shape [N, M, 4] represents the
bbox_pred
(Variable): A 3-D Tensor with shape [N, M, 4] represents the
predicted locations of M bounding bboxes. N is the batch size,
and each bounding box has four coordinate values and the layout
is [xmin, ymin, xmax, ymax].
scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
predicted confidence predictions. N is the batch size, C is the
class number, M is number of bounding boxes. For each category
there are total M scores which corresponding M bounding boxes.
cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
predicted confidence predictions. N is the batch size, 1 is the
frontground and background sigmoid, M is number of bounding boxes.
anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
each box is represented as [xmin, ymin, xmax, ymax],
[xmin, ymin] is the left top coordinate of the anchor box,
...
...
@@ -99,11 +102,16 @@ def rpn_target_assign(loc,
coordinate of the anchor box.
anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded
variances of anchors.
gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
gt_box
es
(Variable): The ground-truth boudding boxes (bboxes) are a 2D
LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
bboxes of mini-batch input.
is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
3 is the height, width and scale.
rpn_batch_size_per_im(int): Total number of RPN examples per image.
fg_fraction(float): Target fraction of RoI minibatch that is labeled
rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
by straddle_thresh pixels.
rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
foreground (i.e. class > 0), 0-th class is background.
rpn_positive_overlap(float): Minimum overlap required between an anchor
and ground-truth box for the (anchor, gt box) pair to be a positive
...
...
@@ -129,45 +137,48 @@ def rpn_target_assign(loc,
Examples:
.. code-block:: python
loc = layers.data(name='location', shape=[2, 80
],
bbox_pred = layers.data(name='bbox_pred', shape=[100, 4
],
append_batch_size=False, dtype='float32')
scores = layers.data(name='scores', shape=[2, 40
],
cls_logits = layers.data(name='cls_logits', shape=[100, 1
],
append_batch_size=False, dtype='float32')
anchor_box = layers.data(name='anchor_box', shape=[20, 4],
append_batch_size=False, dtype='float32')
gt_box
= layers.data(name='gt_box
', shape=[10, 4],
gt_box
es = layers.data(name='gt_boxes
', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc_pred, score_pred, loc_target, score_target =
fluid.layers.
detection_output(loc=location
,
scores=score
s,
fluid.layers.
rpn_target_assign(bbox_pred=bbox_pred
,
cls_logits=cls_logit
s,
anchor_box=anchor_box,
gt_box
=gt_box
)
gt_box
es=gt_boxes
)
"""
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
# Compute overlaps between the prior boxes and the gt boxes overlaps
iou
=
iou_similarity
(
x
=
gt_box
,
y
=
anchor_box
)
# Assign target label to anchors
loc_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
score_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
target_label
=
helper
.
create_tmp_variable
(
dtype
=
'int
64
'
)
target_label
=
helper
.
create_tmp_variable
(
dtype
=
'int
32
'
)
target_bbox
=
helper
.
create_tmp_variable
(
dtype
=
anchor_box
.
dtype
)
helper
.
append_op
(
type
=
"rpn_target_assign"
,
inputs
=
{
'Anchor'
:
anchor_box
,
'GtBox'
:
gt_box
,
'DistMat'
:
iou
},
inputs
=
{
'Anchor'
:
anchor_box
,
'GtBoxes'
:
gt_boxes
,
'IsCrowd'
:
is_crowd
,
'ImInfo'
:
im_info
},
outputs
=
{
'LocationIndex'
:
loc_index
,
'ScoreIndex'
:
score_index
,
'TargetLabel'
:
target_label
,
'TargetBBox'
:
target_bbox
,
'TargetBBox'
:
target_bbox
},
attrs
=
{
'rpn_batch_size_per_im'
:
rpn_batch_size_per_im
,
'rpn_straddle_thresh'
:
rpn_straddle_thresh
,
'rpn_positive_overlap'
:
rpn_positive_overlap
,
'rpn_negative_overlap'
:
rpn_negative_overlap
,
'fg_fraction'
:
fg_fraction
'rpn_fg_fraction'
:
rpn_fg_fraction
,
'use_random'
:
use_random
})
loc_index
.
stop_gradient
=
True
...
...
@@ -175,12 +186,12 @@ def rpn_target_assign(loc,
target_label
.
stop_gradient
=
True
target_bbox
.
stop_gradient
=
True
scores
=
nn
.
reshape
(
x
=
score
s
,
shape
=
(
-
1
,
1
))
loc
=
nn
.
reshape
(
x
=
loc
,
shape
=
(
-
1
,
4
))
predicted_
scores
=
nn
.
gather
(
score
s
,
score_index
)
predicted_
location
=
nn
.
gather
(
loc
,
loc_index
)
cls_logits
=
nn
.
reshape
(
x
=
cls_logit
s
,
shape
=
(
-
1
,
1
))
bbox_pred
=
nn
.
reshape
(
x
=
bbox_pred
,
shape
=
(
-
1
,
4
))
predicted_
cls_logits
=
nn
.
gather
(
cls_logit
s
,
score_index
)
predicted_
bbox_pred
=
nn
.
gather
(
bbox_pred
,
loc_index
)
return
predicted_
scores
,
predicted_location
,
target_label
,
target_bbox
return
predicted_
cls_logits
,
predicted_bbox_pred
,
target_label
,
target_bbox
def
detection_output
(
loc
,
...
...
@@ -1258,15 +1269,17 @@ def anchor_generator(input,
def
generate_proposal_labels
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_
scales
,
im_
info
,
batch_size_per_im
=
256
,
fg_fraction
=
0.25
,
fg_thresh
=
0.25
,
bg_thresh_hi
=
0.5
,
bg_thresh_lo
=
0.0
,
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
],
class_nums
=
None
):
class_nums
=
None
,
use_random
=
True
):
"""
** Generate proposal labels Faster-RCNN **
TODO(buxingyuan): Add Document
...
...
@@ -1285,8 +1298,9 @@ def generate_proposal_labels(rpn_rois,
inputs
=
{
'RpnRois'
:
rpn_rois
,
'GtClasses'
:
gt_classes
,
'IsCrowd'
:
is_crowd
,
'GtBoxes'
:
gt_boxes
,
'Im
Scales'
:
im_scales
'Im
Info'
:
im_info
},
outputs
=
{
'Rois'
:
rois
,
...
...
@@ -1302,7 +1316,8 @@ def generate_proposal_labels(rpn_rois,
'bg_thresh_hi'
:
bg_thresh_hi
,
'bg_thresh_lo'
:
bg_thresh_lo
,
'bbox_reg_weights'
:
bbox_reg_weights
,
'class_nums'
:
class_nums
'class_nums'
:
class_nums
,
'use_random'
:
use_random
})
rois
.
stop_gradient
=
True
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
3db1e41e
...
...
@@ -148,51 +148,60 @@ class TestAnchorGenerator(unittest.TestCase):
class
TestGenerateProposalLabels
(
unittest
.
TestCase
):
def
test_generate_proposal_labels
(
self
):
rpn_rois
=
layers
.
data
(
name
=
'rpn_rois'
,
shape
=
[
4
,
4
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
gt_classes
=
layers
.
data
(
name
=
'gt_classes'
,
shape
=
[
6
],
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
gt_boxes
=
layers
.
data
(
name
=
'gt_boxes'
,
shape
=
[
6
,
4
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
im_scales
=
layers
.
data
(
name
=
'im_scales'
,
shape
=
[
1
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
class_nums
=
5
rois
,
labels_int32
,
bbox_targets
,
bbox_inside_weights
,
bbox_outside_weights
=
fluid
.
layers
.
generate_proposal_labels
(
rpn_rois
=
rpn_rois
,
gt_classes
=
gt_classes
,
gt_boxes
=
gt_boxes
,
im_scales
=
im_scales
,
batch_size_per_im
=
2
,
fg_fraction
=
0.5
,
fg_thresh
=
0.5
,
bg_thresh_hi
=
0.5
,
bg_thresh_lo
=
0.0
,
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
],
class_nums
=
class_nums
)
assert
rois
.
shape
[
1
]
==
4
assert
rois
.
shape
[
0
]
==
labels_int32
.
shape
[
0
]
assert
rois
.
shape
[
0
]
==
bbox_targets
.
shape
[
0
]
assert
rois
.
shape
[
0
]
==
bbox_inside_weights
.
shape
[
0
]
assert
rois
.
shape
[
0
]
==
bbox_outside_weights
.
shape
[
0
]
assert
bbox_targets
.
shape
[
1
]
==
4
*
class_nums
assert
bbox_inside_weights
.
shape
[
1
]
==
4
*
class_nums
assert
bbox_outside_weights
.
shape
[
1
]
==
4
*
class_nums
program
=
Program
()
with
program_guard
(
program
):
rpn_rois
=
layers
.
data
(
name
=
'rpn_rois'
,
shape
=
[
4
,
4
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
gt_classes
=
layers
.
data
(
name
=
'gt_classes'
,
shape
=
[
6
],
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
is_crowd
=
layers
.
data
(
name
=
'is_crowd'
,
shape
=
[
6
],
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
gt_boxes
=
layers
.
data
(
name
=
'gt_boxes'
,
shape
=
[
6
,
4
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
im_info
=
layers
.
data
(
name
=
'im_info'
,
shape
=
[
1
,
3
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
class_nums
=
5
rois
,
labels_int32
,
bbox_targets
,
bbox_inside_weights
,
bbox_outside_weights
=
fluid
.
layers
.
generate_proposal_labels
(
rpn_rois
=
rpn_rois
,
gt_classes
=
gt_classes
,
is_crowd
=
is_crowd
,
gt_boxes
=
gt_boxes
,
im_info
=
im_info
,
batch_size_per_im
=
2
,
fg_fraction
=
0.5
,
fg_thresh
=
0.5
,
bg_thresh_hi
=
0.5
,
bg_thresh_lo
=
0.0
,
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
],
class_nums
=
class_nums
)
assert
rois
.
shape
[
1
]
==
4
assert
rois
.
shape
[
0
]
==
labels_int32
.
shape
[
0
]
assert
rois
.
shape
[
0
]
==
bbox_targets
.
shape
[
0
]
assert
rois
.
shape
[
0
]
==
bbox_inside_weights
.
shape
[
0
]
assert
rois
.
shape
[
0
]
==
bbox_outside_weights
.
shape
[
0
]
assert
bbox_targets
.
shape
[
1
]
==
4
*
class_nums
assert
bbox_inside_weights
.
shape
[
1
]
==
4
*
class_nums
assert
bbox_outside_weights
.
shape
[
1
]
==
4
*
class_nums
class
TestMultiBoxHead
(
unittest
.
TestCase
):
...
...
@@ -254,18 +263,18 @@ class TestRpnTargetAssign(unittest.TestCase):
def
test_rpn_target_assign
(
self
):
program
=
Program
()
with
program_guard
(
program
):
loc
_shape
=
[
10
,
50
,
4
]
score
_shape
=
[
10
,
50
,
2
]
bbox_pred
_shape
=
[
10
,
50
,
4
]
cls_logits
_shape
=
[
10
,
50
,
2
]
anchor_shape
=
[
50
,
4
]
loc
=
layers
.
data
(
name
=
'
loc
'
,
shape
=
loc
_shape
,
bbox_pred
=
layers
.
data
(
name
=
'
bbox_pred
'
,
shape
=
bbox_pred
_shape
,
append_batch_size
=
False
,
dtype
=
'float32'
)
score
s
=
layers
.
data
(
name
=
'
score
s'
,
shape
=
score
_shape
,
cls_logit
s
=
layers
.
data
(
name
=
'
cls_logit
s'
,
shape
=
cls_logits
_shape
,
append_batch_size
=
False
,
dtype
=
'float32'
)
anchor_box
=
layers
.
data
(
...
...
@@ -278,17 +287,31 @@ class TestRpnTargetAssign(unittest.TestCase):
shape
=
anchor_shape
,
append_batch_size
=
False
,
dtype
=
'float32'
)
gt_box
=
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
lod_level
=
1
,
dtype
=
'float32'
)
gt_boxes
=
layers
.
data
(
name
=
'gt_boxes'
,
shape
=
[
4
],
lod_level
=
1
,
dtype
=
'float32'
)
is_crowd
=
layers
.
data
(
name
=
'is_crowd'
,
shape
=
[
10
],
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
im_info
=
layers
.
data
(
name
=
'im_info'
,
shape
=
[
1
,
3
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
pred_scores
,
pred_loc
,
tgt_lbl
,
tgt_bbox
=
layers
.
rpn_target_assign
(
loc
=
loc
,
scores
=
score
s
,
bbox_pred
=
bbox_pred
,
cls_logits
=
cls_logit
s
,
anchor_box
=
anchor_box
,
anchor_var
=
anchor_var
,
gt_box
=
gt_box
,
gt_boxes
=
gt_boxes
,
is_crowd
=
is_crowd
,
im_info
=
im_info
,
rpn_batch_size_per_im
=
256
,
fg_fraction
=
0.25
,
rpn_straddle_thresh
=
0.0
,
rpn_fg_fraction
=
0.5
,
rpn_positive_overlap
=
0.7
,
rpn_negative_overlap
=
0.3
)
...
...
python/paddle/fluid/tests/unittests/test_generate_proposal_labels.py
→
python/paddle/fluid/tests/unittests/test_generate_proposal_labels
_op
.py
浏览文件 @
3db1e41e
...
...
@@ -20,10 +20,10 @@ import paddle.fluid as fluid
from
op_test
import
OpTest
def
generate_proposal_labels_in_python
(
rpn_rois
,
gt_classes
,
gt_boxes
,
im_scales
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
):
def
generate_proposal_labels_in_python
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
):
rois
=
[]
labels_int32
=
[]
bbox_targets
=
[]
...
...
@@ -31,13 +31,13 @@ def generate_proposal_labels_in_python(
bbox_outside_weights
=
[]
lod
=
[]
assert
len
(
rpn_rois
)
==
len
(
im_
scales
),
'batch size of rpn_rois and ground_truth is not matched'
im_
info
),
'batch size of rpn_rois and ground_truth is not matched'
for
im_i
in
range
(
len
(
im_
scales
)):
for
im_i
in
range
(
len
(
im_
info
)):
frcn_blobs
=
_sample_rois
(
rpn_rois
[
im_i
],
gt_classes
[
im_i
],
gt_boxes
[
im_i
],
im_scal
es
[
im_i
],
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
)
rpn_rois
[
im_i
],
gt_classes
[
im_i
],
is_crowd
[
im_i
],
gt_box
es
[
im_i
],
im_info
[
im_i
],
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_
hi
,
bg_thresh_
lo
,
bbox_reg_weights
,
class_nums
)
lod
.
append
(
frcn_blobs
[
'rois'
].
shape
[
0
])
...
...
@@ -50,13 +50,14 @@ def generate_proposal_labels_in_python(
return
rois
,
labels_int32
,
bbox_targets
,
bbox_inside_weights
,
bbox_outside_weights
,
lod
def
_sample_rois
(
rpn_rois
,
gt_classes
,
gt_boxes
,
im_scale
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
):
def
_sample_rois
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
b
g_thresh_lo
,
b
box_reg_weights
,
class_nums
):
rois_per_image
=
int
(
batch_size_per_im
)
fg_rois_per_im
=
int
(
np
.
round
(
fg_fraction
*
rois_per_image
))
# Roidb
im_scale
=
im_info
[
2
]
inv_im_scale
=
1.
/
im_scale
rpn_rois
=
rpn_rois
*
inv_im_scale
...
...
@@ -78,6 +79,9 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im,
box_to_gt_ind_map
[
overlapped_boxes_ind
]
=
overlaps_argmax
[
overlapped_boxes_ind
]
crowd_ind
=
np
.
where
(
is_crowd
)[
0
]
gt_overlaps
[
crowd_ind
]
=
-
1
max_overlaps
=
gt_overlaps
.
max
(
axis
=
1
)
max_classes
=
gt_overlaps
.
argmax
(
axis
=
1
)
...
...
@@ -85,9 +89,10 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im,
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
fg_rois_per_this_image
=
np
.
minimum
(
fg_rois_per_im
,
fg_inds
.
shape
[
0
])
# Sample foreground if there are too many
if
fg_inds
.
shape
[
0
]
>
fg_rois_per_this_image
:
fg_inds
=
np
.
random
.
choice
(
fg_inds
,
size
=
fg_rois_per_this_image
,
replace
=
False
)
# if fg_inds.shape[0] > fg_rois_per_this_image:
# fg_inds = np.random.choice(
# fg_inds, size=fg_rois_per_this_image, replace=False)
fg_inds
=
fg_inds
[:
fg_rois_per_this_image
]
# Background
bg_inds
=
np
.
where
((
max_overlaps
<
bg_thresh_hi
)
&
(
max_overlaps
>=
...
...
@@ -96,9 +101,10 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im,
bg_rois_per_this_image
=
np
.
minimum
(
bg_rois_per_this_image
,
bg_inds
.
shape
[
0
])
# Sample background if there are too many
if
bg_inds
.
shape
[
0
]
>
bg_rois_per_this_image
:
bg_inds
=
np
.
random
.
choice
(
bg_inds
,
size
=
bg_rois_per_this_image
,
replace
=
False
)
# if bg_inds.shape[0] > bg_rois_per_this_image:
# bg_inds = np.random.choice(
# bg_inds, size=bg_rois_per_this_image, replace=False)
bg_inds
=
bg_inds
[:
bg_rois_per_this_image
]
keep_inds
=
np
.
append
(
fg_inds
,
bg_inds
)
sampled_labels
=
max_classes
[
keep_inds
]
...
...
@@ -208,8 +214,9 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
inputs
=
{
'RpnRois'
:
(
self
.
rpn_rois
[
0
],
self
.
rpn_rois_lod
),
'GtClasses'
:
(
self
.
gt_classes
[
0
],
self
.
gts_lod
),
'IsCrowd'
:
(
self
.
is_crowd
[
0
],
self
.
gts_lod
),
'GtBoxes'
:
(
self
.
gt_boxes
[
0
],
self
.
gts_lod
),
'Im
Scales'
:
self
.
im_scales
[
0
]
'Im
Info'
:
self
.
im_info
}
self
.
attrs
=
{
'batch_size_per_im'
:
self
.
batch_size_per_im
,
...
...
@@ -218,14 +225,15 @@ class TestGenerateProposalLabelsOp(OpTest):
'bg_thresh_hi'
:
self
.
bg_thresh_hi
,
'bg_thresh_lo'
:
self
.
bg_thresh_lo
,
'bbox_reg_weights'
:
self
.
bbox_reg_weights
,
'class_nums'
:
self
.
class_nums
'class_nums'
:
self
.
class_nums
,
'use_random'
:
False
}
self
.
outputs
=
{
'Rois'
:
(
self
.
rois
[
0
]
,
[
self
.
lod
]),
'LabelsInt32'
:
(
self
.
labels_int32
[
0
]
,
[
self
.
lod
]),
'BboxTargets'
:
(
self
.
bbox_targets
[
0
]
,
[
self
.
lod
]),
'BboxInsideWeights'
:
(
self
.
bbox_inside_weights
[
0
]
,
[
self
.
lod
]),
'BboxOutsideWeights'
:
(
self
.
bbox_outside_weights
[
0
]
,
[
self
.
lod
]),
'Rois'
:
(
self
.
rois
,
[
self
.
lod
]),
'LabelsInt32'
:
(
self
.
labels_int32
,
[
self
.
lod
]),
'BboxTargets'
:
(
self
.
bbox_targets
,
[
self
.
lod
]),
'BboxInsideWeights'
:
(
self
.
bbox_inside_weights
,
[
self
.
lod
]),
'BboxOutsideWeights'
:
(
self
.
bbox_outside_weights
,
[
self
.
lod
]),
}
def
test_check_output
(
self
):
...
...
@@ -236,8 +244,8 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
set_data
()
def
init_test_params
(
self
):
self
.
batch_size_per_im
=
10
self
.
fg_fraction
=
1.0
self
.
batch_size_per_im
=
512
self
.
fg_fraction
=
0.25
self
.
fg_thresh
=
0.5
self
.
bg_thresh_hi
=
0.5
self
.
bg_thresh_lo
=
0.0
...
...
@@ -246,14 +254,14 @@ class TestGenerateProposalLabelsOp(OpTest):
def
init_test_input
(
self
):
np
.
random
.
seed
(
0
)
image_nums
=
1
gt_nums
=
6
# Keep same with batch_size_per_im for unittest
proposal_nums
=
self
.
batch_size_per_im
-
gt_nums
images_shape
=
[]
self
.
im_scales
=
[]
for
i
in
range
(
image_nums
):
images_shape
.
append
(
np
.
random
.
randint
(
200
,
size
=
2
))
self
.
im_scales
.
append
(
np
.
ones
((
1
)).
astype
(
np
.
float32
))
proposal_nums
=
2000
#self.batch_size_per_im - gt_nums
images_shape
=
[[
64
,
64
]]
self
.
im_info
=
np
.
ones
((
len
(
images_shape
),
3
)).
astype
(
np
.
float32
)
for
i
in
range
(
len
(
images_shape
)):
self
.
im_info
[
i
,
0
]
=
images_shape
[
i
][
0
]
self
.
im_info
[
i
,
1
]
=
images_shape
[
i
][
1
]
self
.
im_info
[
i
,
2
]
=
0.8
#scale
self
.
rpn_rois
,
self
.
rpn_rois_lod
=
_generate_proposals
(
images_shape
,
proposal_nums
)
...
...
@@ -261,16 +269,23 @@ class TestGenerateProposalLabelsOp(OpTest):
images_shape
,
self
.
class_nums
,
gt_nums
)
self
.
gt_classes
=
[
gt
[
'gt_classes'
]
for
gt
in
ground_truth
]
self
.
gt_boxes
=
[
gt
[
'boxes'
]
for
gt
in
ground_truth
]
self
.
is_crowd
=
[
gt
[
'is_crowd'
]
for
gt
in
ground_truth
]
def
init_test_output
(
self
):
self
.
rois
,
self
.
labels_int32
,
self
.
bbox_targets
,
\
self
.
bbox_inside_weights
,
self
.
bbox_outside_weights
,
\
self
.
lod
=
generate_proposal_labels_in_python
(
self
.
rpn_rois
,
self
.
gt_classes
,
self
.
gt_boxes
,
self
.
im_scales
,
self
.
rpn_rois
,
self
.
gt_classes
,
self
.
is_crowd
,
self
.
gt_boxes
,
self
.
im_info
,
self
.
batch_size_per_im
,
self
.
fg_fraction
,
self
.
fg_thresh
,
self
.
bg_thresh_hi
,
self
.
bg_thresh_lo
,
self
.
bbox_reg_weights
,
self
.
class_nums
)
self
.
rois
=
np
.
vstack
(
self
.
rois
)
self
.
labels_int32
=
np
.
hstack
(
self
.
labels_int32
)
self
.
labels_int32
=
self
.
labels_int32
[:,
np
.
newaxis
]
self
.
bbox_targets
=
np
.
vstack
(
self
.
bbox_targets
)
self
.
bbox_inside_weights
=
np
.
vstack
(
self
.
bbox_inside_weights
)
self
.
bbox_outside_weights
=
np
.
vstack
(
self
.
bbox_outside_weights
)
def
_generate_proposals
(
images_shape
,
proposal_nums
):
...
...
@@ -280,7 +295,7 @@ def _generate_proposals(images_shape, proposal_nums):
for
i
,
image_shape
in
enumerate
(
images_shape
):
proposals
=
_generate_boxes
(
image_shape
,
proposal_nums
)
rpn_rois
.
append
(
proposals
)
num_proposals
+
=
len
(
proposals
)
num_proposals
=
len
(
proposals
)
rpn_rois_lod
.
append
(
num_proposals
)
return
rpn_rois
,
[
rpn_rois_lod
]
...
...
@@ -294,7 +309,11 @@ def _generate_groundtruth(images_shape, class_nums, gt_nums):
gt_classes
=
np
.
random
.
randint
(
low
=
1
,
high
=
class_nums
,
size
=
gt_nums
).
astype
(
np
.
int32
)
gt_boxes
=
_generate_boxes
(
image_shape
,
gt_nums
)
ground_truth
.
append
(
dict
(
gt_classes
=
gt_classes
,
boxes
=
gt_boxes
))
is_crowd
=
np
.
zeros
((
gt_nums
),
dtype
=
np
.
int32
)
is_crowd
[
0
]
=
1
ground_truth
.
append
(
dict
(
gt_classes
=
gt_classes
,
boxes
=
gt_boxes
,
is_crowd
=
is_crowd
))
num_gts
+=
len
(
gt_classes
)
gts_lod
.
append
(
num_gts
)
return
ground_truth
,
[
gts_lod
]
...
...
python/paddle/fluid/tests/unittests/test_generate_proposals.py
→
python/paddle/fluid/tests/unittests/test_generate_proposals
_op
.py
浏览文件 @
3db1e41e
...
...
@@ -114,10 +114,10 @@ def box_coder(all_anchors, bbox_deltas, variances):
#anchor_loc: width, height, center_x, center_y
anchor_loc
=
np
.
zeros_like
(
bbox_deltas
,
dtype
=
np
.
float32
)
anchor_loc
[:,
0
]
=
all_anchors
[:,
2
]
-
all_anchors
[:,
0
]
anchor_loc
[:,
1
]
=
all_anchors
[:,
3
]
-
all_anchors
[:,
1
]
anchor_loc
[:,
2
]
=
(
all_anchors
[:,
2
]
+
all_anchors
[:,
0
])
/
2
anchor_loc
[:,
3
]
=
(
all_anchors
[:,
3
]
+
all_anchors
[:,
1
])
/
2
anchor_loc
[:,
0
]
=
all_anchors
[:,
2
]
-
all_anchors
[:,
0
]
+
1
anchor_loc
[:,
1
]
=
all_anchors
[:,
3
]
-
all_anchors
[:,
1
]
+
1
anchor_loc
[:,
2
]
=
all_anchors
[:,
0
]
+
0.5
*
anchor_loc
[:,
0
]
anchor_loc
[:,
3
]
=
all_anchors
[:,
1
]
+
0.5
*
anchor_loc
[:,
1
]
#predicted bbox: bbox_center_x, bbox_center_y, bbox_width, bbox_height
pred_bbox
=
np
.
zeros_like
(
bbox_deltas
,
dtype
=
np
.
float32
)
...
...
@@ -127,23 +127,29 @@ def box_coder(all_anchors, bbox_deltas, variances):
i
,
0
]
+
anchor_loc
[
i
,
2
]
pred_bbox
[
i
,
1
]
=
variances
[
i
,
1
]
*
bbox_deltas
[
i
,
1
]
*
anchor_loc
[
i
,
1
]
+
anchor_loc
[
i
,
3
]
pred_bbox
[
i
,
2
]
=
math
.
exp
(
variances
[
i
,
2
]
*
bbox_deltas
[
i
,
2
])
*
anchor_loc
[
i
,
0
]
pred_bbox
[
i
,
3
]
=
math
.
exp
(
variances
[
i
,
3
]
*
bbox_deltas
[
i
,
3
])
*
anchor_loc
[
i
,
1
]
pred_bbox
[
i
,
2
]
=
math
.
exp
(
min
(
variances
[
i
,
2
]
*
bbox_deltas
[
i
,
2
],
math
.
log
(
1000
/
16.0
)))
*
anchor_loc
[
i
,
0
]
pred_bbox
[
i
,
3
]
=
math
.
exp
(
min
(
variances
[
i
,
3
]
*
bbox_deltas
[
i
,
3
],
math
.
log
(
1000
/
16.0
)))
*
anchor_loc
[
i
,
1
]
else
:
for
i
in
range
(
bbox_deltas
.
shape
[
0
]):
pred_bbox
[
i
,
0
]
=
bbox_deltas
[
i
,
0
]
*
anchor_loc
[
i
,
0
]
+
anchor_loc
[
i
,
2
]
pred_bbox
[
i
,
1
]
=
bbox_deltas
[
i
,
1
]
*
anchor_loc
[
i
,
1
]
+
anchor_loc
[
i
,
3
]
pred_bbox
[
i
,
2
]
=
math
.
exp
(
bbox_deltas
[
i
,
2
])
*
anchor_loc
[
i
,
0
]
pred_bbox
[
i
,
3
]
=
math
.
exp
(
bbox_deltas
[
i
,
3
])
*
anchor_loc
[
i
,
1
]
pred_bbox
[
i
,
2
]
=
math
.
exp
(
min
(
bbox_deltas
[
i
,
2
],
math
.
log
(
1000
/
16.0
)))
*
anchor_loc
[
i
,
0
]
pred_bbox
[
i
,
3
]
=
math
.
exp
(
min
(
bbox_deltas
[
i
,
3
],
math
.
log
(
1000
/
16.0
)))
*
anchor_loc
[
i
,
1
]
proposals
[:,
0
]
=
pred_bbox
[:,
0
]
-
pred_bbox
[:,
2
]
/
2
proposals
[:,
1
]
=
pred_bbox
[:,
1
]
-
pred_bbox
[:,
3
]
/
2
proposals
[:,
2
]
=
pred_bbox
[:,
0
]
+
pred_bbox
[:,
2
]
/
2
proposals
[:,
3
]
=
pred_bbox
[:,
1
]
+
pred_bbox
[:,
3
]
/
2
proposals
[:,
2
]
=
pred_bbox
[:,
0
]
+
pred_bbox
[:,
2
]
/
2
-
1
proposals
[:,
3
]
=
pred_bbox
[:,
1
]
+
pred_bbox
[:,
3
]
/
2
-
1
return
proposals
...
...
@@ -170,13 +176,16 @@ def filter_boxes(boxes, min_size, im_info):
"""Only keep boxes with both sides >= min_size and center within the image.
"""
# Scale min_size to match image scale
min_size
*=
im_info
[
2
]
im_scale
=
im_info
[
2
]
min_size
=
max
(
min_size
,
1.0
)
ws
=
boxes
[:,
2
]
-
boxes
[:,
0
]
+
1
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
ws_orig_scale
=
(
boxes
[:,
2
]
-
boxes
[:,
0
])
/
im_scale
+
1
hs_orig_scale
=
(
boxes
[:,
3
]
-
boxes
[:,
1
])
/
im_scale
+
1
x_ctr
=
boxes
[:,
0
]
+
ws
/
2.
y_ctr
=
boxes
[:,
1
]
+
hs
/
2.
keep
=
np
.
where
((
ws
>=
min_size
)
&
(
hs
>=
min_size
)
&
(
x_ctr
<
im_info
[
1
]
)
&
(
y_ctr
<
im_info
[
0
]))[
0
]
keep
=
np
.
where
((
ws
_orig_scale
>=
min_size
)
&
(
hs_orig_scale
>=
min_size
)
&
(
x_ctr
<
im_info
[
1
])
&
(
y_ctr
<
im_info
[
0
]))[
0
]
return
keep
...
...
@@ -204,7 +213,7 @@ def iou(box_a, box_b):
xb
=
min
(
xmax_a
,
xmax_b
)
yb
=
min
(
ymax_a
,
ymax_b
)
inter_area
=
max
(
xb
-
xa
,
0.0
)
*
max
(
yb
-
ya
,
0.0
)
inter_area
=
max
(
xb
-
xa
+
1
,
0.0
)
*
max
(
yb
-
ya
+
1
,
0.0
)
iou_ratio
=
inter_area
/
(
area_a
+
area_b
-
inter_area
)
...
...
python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
浏览文件 @
3db1e41e
...
...
@@ -19,48 +19,58 @@ import numpy as np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
test_anchor_generator_op
import
anchor_generator_in_python
from
test_generate_proposal_labels
import
_generate_groundtruth
from
test_generate_proposal_labels
import
_bbox_overlaps
,
_box_to_delta
def
rpn_target_assign
(
gt_anchor_iou
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
fg_fraction
):
iou
=
np
.
transpose
(
gt_anchor_iou
)
anchor_to_gt_max
=
iou
.
max
(
axis
=
1
)
anchor_to_gt_argmax
=
iou
.
argmax
(
axis
=
1
)
gt_to_anchor_argmax
=
iou
.
argmax
(
axis
=
0
)
gt_to_anchor_max
=
iou
[
gt_to_anchor_argmax
,
np
.
arange
(
iou
.
shape
[
1
])]
anchors_with_max_overlap
=
np
.
where
(
iou
==
gt_to_anchor_max
)[
0
]
tgt_lbl
=
np
.
ones
((
iou
.
shape
[
0
],
),
dtype
=
np
.
int32
)
*
-
1
tgt_lbl
[
anchors_with_max_overlap
]
=
1
tgt_lbl
[
anchor_to_gt_max
>=
rpn_positive_overlap
]
=
1
num_fg
=
int
(
fg_fraction
*
rpn_batch_size_per_im
)
fg_inds
=
np
.
where
(
tgt_lbl
==
1
)[
0
]
if
len
(
fg_inds
)
>
num_fg
:
from
test_generate_proposal_labels_op
import
_generate_groundtruth
from
test_generate_proposal_labels_op
import
_bbox_overlaps
,
_box_to_delta
def
rpn_target_assign
(
anchor_by_gt_overlap
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
=
True
):
anchor_to_gt_argmax
=
anchor_by_gt_overlap
.
argmax
(
axis
=
1
)
anchor_to_gt_max
=
anchor_by_gt_overlap
[
np
.
arange
(
anchor_by_gt_overlap
.
shape
[
0
]),
anchor_to_gt_argmax
]
gt_to_anchor_argmax
=
anchor_by_gt_overlap
.
argmax
(
axis
=
0
)
gt_to_anchor_max
=
anchor_by_gt_overlap
[
gt_to_anchor_argmax
,
np
.
arange
(
anchor_by_gt_overlap
.
shape
[
1
])]
anchors_with_max_overlap
=
np
.
where
(
anchor_by_gt_overlap
==
gt_to_anchor_max
)[
0
]
labels
=
np
.
ones
((
anchor_by_gt_overlap
.
shape
[
0
],
),
dtype
=
np
.
int32
)
*
-
1
labels
[
anchors_with_max_overlap
]
=
1
labels
[
anchor_to_gt_max
>=
rpn_positive_overlap
]
=
1
num_fg
=
int
(
rpn_fg_fraction
*
rpn_batch_size_per_im
)
fg_inds
=
np
.
where
(
labels
==
1
)[
0
]
if
len
(
fg_inds
)
>
num_fg
and
use_random
:
disable_inds
=
np
.
random
.
choice
(
fg_inds
,
size
=
(
len
(
fg_inds
)
-
num_fg
),
replace
=
False
)
tgt_lbl
[
disable_inds
]
=
-
1
fg_inds
=
np
.
where
(
tgt_lbl
==
1
)[
0
]
else
:
disable_inds
=
fg_inds
[
num_fg
:]
labels
[
disable_inds
]
=
-
1
fg_inds
=
np
.
where
(
labels
==
1
)[
0
]
num_bg
=
rpn_batch_size_per_im
-
np
.
sum
(
tgt_lbl
==
1
)
num_bg
=
rpn_batch_size_per_im
-
np
.
sum
(
labels
==
1
)
bg_inds
=
np
.
where
(
anchor_to_gt_max
<
rpn_negative_overlap
)[
0
]
tgt_lbl
[
bg_inds
]
=
0
if
len
(
bg_inds
)
>
num_bg
:
if
len
(
bg_inds
)
>
num_bg
and
use_random
:
enable_inds
=
bg_inds
[
np
.
random
.
randint
(
len
(
bg_inds
),
size
=
num_bg
)]
tgt_lbl
[
enable_inds
]
=
0
bg_inds
=
np
.
where
(
tgt_lbl
==
0
)[
0
]
tgt_lbl
[
bg_inds
]
=
0
else
:
enable_inds
=
bg_inds
[:
num_bg
]
labels
[
enable_inds
]
=
0
fg_inds
=
np
.
where
(
labels
==
1
)[
0
]
bg_inds
=
np
.
where
(
labels
==
0
)[
0
]
loc_index
=
fg_inds
score_index
=
np
.
hstack
((
fg_inds
,
bg_inds
))
tgt_lbl
=
np
.
expand_dims
(
tgt_lbl
,
axis
=
1
)
labels
=
labels
[
score_index
]
assert
not
np
.
any
(
labels
==
-
1
),
"Wrong labels with -1"
gt_inds
=
anchor_to_gt_argmax
[
fg_inds
]
return
loc_index
,
score_index
,
tgt_lbl
,
gt_inds
return
loc_index
,
score_index
,
labels
,
gt_inds
def
get_anchor
(
n
,
c
,
h
,
w
):
...
...
@@ -75,85 +85,129 @@ def get_anchor(n, c, h, w):
return
anchors
def
rpn_blob
(
anchor
,
gt_boxes
,
iou
,
lod
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
fg_fraction
):
loc_indexes
=
[]
score_indexes
=
[]
tmp_tgt_labels
=
[]
tgt_bboxes
=
[]
anchor_num
=
anchor
.
shape
[
0
]
def
rpn_target_assign_in_python
(
all_anchors
,
gt_boxes
,
is_crowd
,
im_info
,
lod
,
rpn_straddle_thresh
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
=
True
):
anchor_num
=
all_anchors
.
shape
[
0
]
batch_size
=
len
(
lod
)
-
1
for
i
in
range
(
batch_size
):
im_height
=
im_info
[
i
][
0
]
im_width
=
im_info
[
i
][
1
]
im_scale
=
im_info
[
i
][
2
]
if
rpn_straddle_thresh
>=
0
:
# Only keep anchors inside the image by a margin of straddle_thresh
inds_inside
=
np
.
where
(
(
all_anchors
[:,
0
]
>=
-
rpn_straddle_thresh
)
&
(
all_anchors
[:,
1
]
>=
-
rpn_straddle_thresh
)
&
(
all_anchors
[:,
2
]
<
im_width
+
rpn_straddle_thresh
)
&
(
all_anchors
[:,
3
]
<
im_height
+
rpn_straddle_thresh
))[
0
]
# keep only inside anchors
inside_anchors
=
all_anchors
[
inds_inside
,
:]
else
:
inds_inside
=
np
.
arange
(
all_anchors
.
shape
[
0
])
inside_anchors
=
all_anchors
b
,
e
=
lod
[
i
],
lod
[
i
+
1
]
iou_slice
=
iou
[
b
:
e
,
:]
bboxes_slice
=
gt_boxes
[
b
:
e
,
:
]
gt_boxes_slice
=
gt_boxes
[
b
:
e
,
:]
*
im_scale
is_crowd_slice
=
is_crowd
[
b
:
e
]
loc_idx
,
score_idx
,
tgt_lbl
,
gt_inds
=
rpn_target_assign
(
iou_slice
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
fg_fraction
)
not_crowd_inds
=
np
.
where
(
is_crowd_slice
==
0
)[
0
]
gt_boxes_slice
=
gt_boxes_slice
[
not_crowd_inds
]
iou
=
_bbox_overlaps
(
inside_anchors
,
gt_boxes_slice
)
fg_bboxes
=
bboxes_slice
[
gt_inds
]
fg_anchors
=
anchor
[
loc_idx
]
box_deltas
=
_box_to_delta
(
fg_anchors
,
fg_bboxes
,
[
1.
,
1.
,
1.
,
1.
])
loc_inds
,
score_inds
,
labels
,
gt_inds
=
rpn_target_assign
(
iou
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
)
# unmap to all anchor
loc_inds
=
inds_inside
[
loc_inds
]
score_inds
=
inds_inside
[
score_inds
]
sampled_gt
=
gt_boxes_slice
[
gt_inds
]
sampled_anchor
=
all_anchors
[
loc_inds
]
box_deltas
=
_box_to_delta
(
sampled_anchor
,
sampled_gt
,
[
1.
,
1.
,
1.
,
1.
])
if
i
==
0
:
loc_indexes
=
loc_i
dx
score_indexes
=
score_i
dx
t
mp_tgt_labels
=
tgt_lbl
loc_indexes
=
loc_i
nds
score_indexes
=
score_i
nds
t
gt_labels
=
labels
tgt_bboxes
=
box_deltas
else
:
loc_indexes
=
np
.
concatenate
(
[
loc_indexes
,
loc_i
dx
+
i
*
anchor_num
])
[
loc_indexes
,
loc_i
nds
+
i
*
anchor_num
])
score_indexes
=
np
.
concatenate
(
[
score_indexes
,
score_i
dx
+
i
*
anchor_num
])
t
mp_tgt_labels
=
np
.
concatenate
([
tmp_tgt_labels
,
tgt_lbl
])
[
score_indexes
,
score_i
nds
+
i
*
anchor_num
])
t
gt_labels
=
np
.
concatenate
([
tgt_labels
,
labels
])
tgt_bboxes
=
np
.
vstack
([
tgt_bboxes
,
box_deltas
])
tgt_labels
=
tmp_tgt_labels
[
score_indexes
]
return
loc_indexes
,
score_indexes
,
tgt_bboxes
,
tgt_labels
class
TestRpnTargetAssignOp
(
OpTest
):
def
setUp
(
self
):
n
,
c
,
h
,
w
=
2
,
4
,
14
,
14
a
nchor
=
get_anchor
(
n
,
c
,
h
,
w
)
a
ll_anchors
=
get_anchor
(
n
,
c
,
h
,
w
)
gt_num
=
10
anchor
=
anchor
.
reshape
(
-
1
,
4
)
anchor_num
=
anchor
.
shape
[
0
]
im_shapes
=
[[
64
,
64
],
[
64
,
64
]]
gt_box
,
lod
=
_generate_groundtruth
(
im_shapes
,
3
,
4
)
bbox
=
np
.
vstack
([
v
[
'boxes'
]
for
v
in
gt_box
])
iou
=
_bbox_overlaps
(
bbox
,
anchor
)
anchor
=
anchor
.
astype
(
'float32'
)
bbox
=
bbox
.
astype
(
'float32'
)
iou
=
iou
.
astype
(
'float32'
)
loc_index
,
score_index
,
tgt_bbox
,
tgt_lbl
=
rpn_blob
(
anchor
,
bbox
,
iou
,
[
0
,
4
,
8
],
25600
,
0.95
,
0.03
,
0.25
)
all_anchors
=
all_anchors
.
reshape
(
-
1
,
4
)
anchor_num
=
all_anchors
.
shape
[
0
]
images_shape
=
[[
64
,
64
],
[
64
,
64
]]
#images_shape = [[64, 64]]
groundtruth
,
lod
=
_generate_groundtruth
(
images_shape
,
3
,
4
)
lod
=
[
0
,
4
,
8
]
#lod = [0, 4]
im_info
=
np
.
ones
((
len
(
images_shape
),
3
)).
astype
(
np
.
float32
)
for
i
in
range
(
len
(
images_shape
)):
im_info
[
i
,
0
]
=
images_shape
[
i
][
0
]
im_info
[
i
,
1
]
=
images_shape
[
i
][
1
]
im_info
[
i
,
2
]
=
0.8
#scale
gt_boxes
=
np
.
vstack
([
v
[
'boxes'
]
for
v
in
groundtruth
])
is_crowd
=
np
.
hstack
([
v
[
'is_crowd'
]
for
v
in
groundtruth
])
all_anchors
=
all_anchors
.
astype
(
'float32'
)
gt_boxes
=
gt_boxes
.
astype
(
'float32'
)
rpn_straddle_thresh
=
0.0
rpn_batch_size_per_im
=
256
rpn_positive_overlap
=
0.7
rpn_negative_overlap
=
0.3
rpn_fg_fraction
=
0.5
use_random
=
False
loc_index
,
score_index
,
tgt_bbox
,
labels
=
rpn_target_assign_in_python
(
all_anchors
,
gt_boxes
,
is_crowd
,
im_info
,
lod
,
rpn_straddle_thresh
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
)
labels
=
labels
[:,
np
.
newaxis
]
self
.
op_type
=
"rpn_target_assign"
self
.
inputs
=
{
'Anchor'
:
anchor
,
'GtBox'
:
(
bbox
,
[[
4
,
4
]]),
'DistMat'
:
(
iou
,
[[
4
,
4
]]),
'Anchor'
:
all_anchors
,
'GtBoxes'
:
(
gt_boxes
,
[[
4
,
4
]]),
'IsCrowd'
:
(
is_crowd
,
[[
4
,
4
]]),
'ImInfo'
:
(
im_info
,
[[
1
,
1
]])
}
self
.
attrs
=
{
'rpn_batch_size_per_im'
:
25600
,
'rpn_positive_overlap'
:
0.95
,
'rpn_negative_overlap'
:
0.03
,
'fg_fraction'
:
0.25
,
'fix_seed'
:
True
'rpn_batch_size_per_im'
:
rpn_batch_size_per_im
,
'rpn_straddle_thresh'
:
rpn_straddle_thresh
,
'rpn_positive_overlap'
:
rpn_positive_overlap
,
'rpn_negative_overlap'
:
rpn_negative_overlap
,
'rpn_fg_fraction'
:
rpn_fg_fraction
,
'use_random'
:
use_random
}
self
.
outputs
=
{
'LocationIndex'
:
loc_index
.
astype
(
'int32'
),
'ScoreIndex'
:
score_index
.
astype
(
'int32'
),
'TargetBBox'
:
tgt_bbox
.
astype
(
'float32'
),
'TargetLabel'
:
tgt_lbl
.
astype
(
'int64'
),
'TargetLabel'
:
labels
.
astype
(
'int32'
)
}
def
test_check_output
(
self
):
...
...
python/paddle/fluid/transpiler/inference_transpiler.py
浏览文件 @
3db1e41e
...
...
@@ -65,8 +65,43 @@ class InferenceTranspiler(object):
if
use_mkldnn
:
self
.
_fuse_conv_bias_mkldnn
(
program
)
self
.
_fuse_conv_relu_mkldnn
(
program
)
self
.
_fuse_conv_eltwise_mkldnn
(
program
)
self
.
_fuse_conv_relu_mkldnn
(
program
)
# ResNet residual block merging
self
.
_fuse_bn_relu_mkldnn
(
program
)
def
_fuse_conv_eltwise_mkldnn
(
self
,
program
):
'''
Transpile the program fusing elementwise_add into conv for MKLDNN
program. Elementwise add following convolution OP can be fused by adding
'fuse_eltwise' attribute to convolution OP and replacing its output
Tensor with second parameter of elementwise_add.
The result of fuse is:
- before:
- conv->elementwise_add->any_other_op
- after:
- conv->any_other_op
:param program: program to transpile
:type program: Program
'''
self
.
block
=
program
.
block
(
0
)
i
=
0
while
i
<
len
(
self
.
block
.
ops
):
current_op
=
self
.
block
.
ops
[
i
]
if
current_op
.
type
in
[
'conv2d'
]:
next_op
=
self
.
block
.
ops
[
i
+
1
]
if
next_op
.
type
==
'elementwise_add'
:
self
.
_fuse_conv_eltwise
(
current_op
,
next_op
)
self
.
block
.
_remove_op
(
i
+
1
)
# Remove elementwise_add
i
=
i
+
1
self
.
_adjust_input
()
self
.
_remove_unused_var
()
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program
=
program
.
clone
()
def
_fuse_conv_relu_mkldnn
(
self
,
program
):
'''
Transpile the program by fused relu activation for MKLDNN program.
...
...
@@ -88,9 +123,9 @@ class InferenceTranspiler(object):
if
current_op
.
type
in
[
'conv2d'
]:
next_op
=
self
.
block
.
ops
[
i
+
1
]
if
next_op
.
type
==
'relu'
:
# modify
conv
OP to include relu
# modify
bnorm
OP to include relu
current_op
.
set_attr
(
"fuse_relu"
,
True
)
# remove
conv
OP
# remove
relu
OP
self
.
block
.
_remove_op
(
i
+
1
)
i
=
i
+
1
...
...
@@ -409,6 +444,20 @@ class InferenceTranspiler(object):
outputs
=
{
"Output"
:
out_var
},
attrs
=
attrs
)
def
_fuse_conv_eltwise
(
self
,
conv_op
,
eltwise_op
):
'''
fuse the conv op with elementwise_add
:param conv_op: convolution operator
:type conv_op: Operator
:param eltwise_op: operator adding data from skip connection
:type eltwise_op: Operator
'''
conv_op
.
set_attr
(
"fuse_eltwise"
,
True
)
self
.
input_map
[
conv_op
.
output
(
"Output"
)[
0
]]
=
eltwise_op
.
input
(
"Y"
)[
0
]
self
.
input_map
[
eltwise_op
.
output
(
"Out"
)[
0
]]
=
eltwise_op
.
input
(
"Y"
)[
0
]
def
_adjust_input
(
self
):
for
i
in
range
(
len
(
self
.
block
.
ops
)):
current_op
=
self
.
block
.
ops
[
i
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录