Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3da3462f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3da3462f
编写于
10月 11, 2022
作者:
N
niuliling123
提交者:
GitHub
10月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update layout autotune for module with no modified (#46541)
上级
20eb6e00
变更
9
展开全部
显示空白变更内容
内联
并排
Showing
9 changed file
with
285 addition
and
386 deletion
+285
-386
paddle/fluid/eager/auto_code_generator/generator/eager_gen.py
...le/fluid/eager/auto_code_generator/generator/eager_gen.py
+1
-1
paddle/fluid/eager/eager_layout_auto_tune.h
paddle/fluid/eager/eager_layout_auto_tune.h
+69
-125
paddle/fluid/eager/eager_layout_transformer.h
paddle/fluid/eager/eager_layout_transformer.h
+118
-185
paddle/fluid/imperative/layout_autotune.cc
paddle/fluid/imperative/layout_autotune.cc
+2
-0
paddle/fluid/pybind/eager_properties.cc
paddle/fluid/pybind/eager_properties.cc
+36
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+42
-1
paddle/phi/api/lib/data_transform.cc
paddle/phi/api/lib/data_transform.cc
+2
-1
python/paddle/fluid/tests/unittests/test_layout_autotune.py
python/paddle/fluid/tests/unittests/test_layout_autotune.py
+13
-71
python/paddle/nn/functional/conv.py
python/paddle/nn/functional/conv.py
+2
-2
未找到文件。
paddle/fluid/eager/auto_code_generator/generator/eager_gen.py
浏览文件 @
3da3462f
...
@@ -1093,7 +1093,7 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase):
...
@@ -1093,7 +1093,7 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase):
tensors_vector_list_str
=
"{ "
+
","
.
join
(
tensors_vector_list_str
=
"{ "
+
","
.
join
(
amp_tensors_vector_list
)
+
" }"
amp_tensors_vector_list
)
+
" }"
if
len
(
amp_tensors_vector_list
)
==
0
:
if
len
(
amp_tensors_vector_list
)
==
0
:
# or forward_api_name == "shape":
layout_logic_str
=
""
layout_logic_str
=
""
else
:
else
:
after_call_str
=
f
"
{
returns_type_str
}
{
result_name
}
=
{
forward_function_name
}
(
{
layout_inputs_call_args_str
}
);
\n
"
after_call_str
=
f
"
{
returns_type_str
}
{
result_name
}
=
{
forward_function_name
}
(
{
layout_inputs_call_args_str
}
);
\n
"
...
...
paddle/fluid/eager/eager_layout_auto_tune.h
浏览文件 @
3da3462f
...
@@ -32,70 +32,50 @@ inline bool NeedTransLayout(
...
@@ -32,70 +32,50 @@ inline bool NeedTransLayout(
}
}
return
false
;
return
false
;
}
}
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
BaseTransformer
(
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
)
{
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
bool
unstart
=
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
);
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
VLOG
(
3
)
<<
"Layout autotune was is start ? "
<<
(
!
unstart
)
<<
op_name
<<
"'s layout is "
<<
first_layout
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
}
// For agnostic op like add, relu, exp
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
)
{
kSlotSmallVectorSize
>&
tensors_vector
)
{
auto
desired_layout
=
// For agnostic op like add, relu, exp
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
if
(
NeedTransLayout
(
tensors_vector
,
first_layout
))
{
auto
desired_layout
=
DesiredLayout
();
bool
is_started
=
!
(
desired_layout
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
);
if
(
is_started
&&
NeedTransLayout
(
tensors_vector
,
first_layout
))
{
bool
need_trans_back
=
false
;
bool
need_trans_back
=
false
;
for
(
size_t
i
=
0
;
i
<
tensors_vector
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
tensors_vector
.
size
();
i
++
)
{
for
(
size_t
idx
=
0
;
idx
<
tensors_vector
[
0
].
size
();
idx
++
)
{
for
(
size_t
idx
=
0
;
idx
<
tensors_vector
[
0
].
size
();
idx
++
)
{
if
(
4
!=
tensors_vector
[
i
][
idx
].
shape
().
size
())
{
if
(
4
!=
tensors_vector
[
i
][
idx
].
shape
().
size
())
{
need_trans_back
=
true
;
need_trans_back
=
true
;
VLOG
(
3
)
<<
"Agnostic op "
<<
op_name
<<
" shape is "
<<
tensors_vector
[
i
][
idx
].
shape
().
size
()
<<
" and layout is "
<<
tensors_vector
[
i
][
idx
].
layout
();
}
}
}
}
}
}
auto
final_layout
=
need_trans_back
?
default_layout
:
desired_layout
;
auto
final_layout
=
need_trans_back
?
DefaultLayout
()
:
desired_layout
;
VLOG
(
4
)
<<
op_name
<<
"'s has different layout, need trans to "
<<
final_layout
;
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
final_layout
);
op_name
,
tensors_vector
,
final_layout
);
}
}
return
BaseTransformer
(
op_name
,
tensors_vector
);
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
}
}
// For lightly op like reduce
template
<
typename
T
>
template
<
typename
T
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
kSlotSmallVectorSize
>&
tensors_vector
,
T
*
attr
)
{
T
*
attr
)
{
VLOG
(
3
)
<<
"Lightly op "
<<
op_name
<<
"'s shape is "
// For lightly op like reduce
<<
tensors_vector
[
0
][
0
].
shape
().
size
()
<<
" and layout is "
if
(
!
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
))
{
<<
tensors_vector
[
0
][
0
].
layout
();
VLOG
(
4
)
<<
"LayoutAutotune was unstarted. Current op :"
<<
op_name
;
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
transposer
=
}
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
}
}
// For lightly op like argmax
template
<
typename
T1
,
typename
T2
>
template
<
typename
T1
,
typename
T2
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
std
::
string
&
op_name
,
...
@@ -103,28 +83,23 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
...
@@ -103,28 +83,23 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
kSlotSmallVectorSize
>&
tensors_vector
,
kSlotSmallVectorSize
>&
tensors_vector
,
T1
*
axis
,
T1
*
axis
,
T2
*
keep_dim
)
{
T2
*
keep_dim
)
{
VLOG
(
3
)
<<
"Lightly op "
<<
op_name
<<
"'s shape is "
// For lightly op like argmax
<<
tensors_vector
[
0
][
0
].
shape
().
size
()
<<
" and layout is "
<<
tensors_vector
[
0
][
0
].
layout
();
return
EagerLayoutAutotune
<
T1
>
(
op_name
,
tensors_vector
,
axis
);
return
EagerLayoutAutotune
<
T1
>
(
op_name
,
tensors_vector
,
axis
);
}
}
// heavily string data_format, data_layout
template
<
>
template
<
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
kSlotSmallVectorSize
>&
tensors_vector
,
std
::
string
*
attr
)
{
std
::
string
*
attr
)
{
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
// Heavily op with (string) data_format, data_layout
auto
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
auto
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()
==
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
// Layout autotune only supports model with convolutional layers
// Layout autotune only supports model with convolutional layers
VLOG
(
3
)
<<
"Optimze Layout was not started "
<<
op_name
;
if
(
op_name
!=
"conv2d"
)
{
if
(
op_name
!=
"conv2d"
)
{
VLOG
(
4
)
<<
"LayoutAutotune was unstarted. Current op :"
<<
op_name
;
return
transposer
;
return
transposer
;
}
else
{
}
else
{
auto
data_type
=
tensors_vector
[
0
][
0
].
dtype
();
auto
data_type
=
tensors_vector
[
0
][
0
].
dtype
();
...
@@ -134,7 +109,8 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
...
@@ -134,7 +109,8 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
bool
is_tune_fp16
=
bool
is_tune_fp16
=
(
data_type
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
&&
(
data_type
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
&&
(
*
attr
==
"NCHW"
);
(
*
attr
==
"NCHW"
);
VLOG
(
3
)
<<
"Conv2d_dy's dtype "
<<
data_type
<<
" format"
<<
(
*
attr
);
VLOG
(
4
)
<<
"LayoutAutoTune assert with dtype and layout, Current op : "
<<
op_name
;
if
(
is_tune_fp32
)
{
if
(
is_tune_fp32
)
{
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
paddle
::
experimental
::
DataLayout
::
NCHW
);
paddle
::
experimental
::
DataLayout
::
NCHW
);
...
@@ -147,58 +123,45 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
...
@@ -147,58 +123,45 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
SetDefaultLayout
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
SetDefaultLayout
(
paddle
::
experimental
::
DataLayout
::
NCHW
);
paddle
::
experimental
::
DataLayout
::
NCHW
);
}
else
{
}
else
{
VLOG
(
4
)
<<
"DisableLayoutAutoTune accoding to Conv op"
<<
" dtype : "
<<
data_type
<<
" format : "
<<
(
*
attr
);
egr
::
Controller
::
Instance
().
DisableLayoutAutoTune
();
egr
::
Controller
::
Instance
().
DisableLayoutAutoTune
();
return
transposer
;
return
transposer
;
}
}
VLOG
(
3
)
VLOG
(
4
)
<<
"LayoutAutoTune from "
<<
*
attr
<<
" to "
<<
DesiredLayout
();
<<
"Tune the layout from "
<<
*
attr
<<
" to "
<<
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
}
}
}
}
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
IsHeavilyLayoutSensitive
(
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
IsHeavilyLayoutSensitive
(
op_name
))
{
op_name
))
{
VLOG
(
3
)
return
std
::
make_shared
<
EagerHeavilyLayoutSensitiveOpTransformer
>
(
op_name
,
<<
op_name
<<
"'s LayoutTransformer is EagerHeavilyLayoutSensitiveOpTransformer"
;
auto
heavily_transposer
=
std
::
make_shared
<
EagerHeavilyLayoutSensitiveOpTransformer
>
(
op_name
,
attr
);
attr
);
return
heavily_transposer
;
}
}
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
VLOG
(
3
)
<<
op_name
<<
"'s LayoutTransformer is unimplemented. Use default."
;
return
transposer
;
}
}
// lightly transpose
template
<
>
template
<
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
kSlotSmallVectorSize
>&
tensors_vector
,
std
::
vector
<
int
>*
attr
)
{
std
::
vector
<
int
>*
attr
)
{
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
// lightly transpose
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()
==
VLOG
(
4
)
<<
"LayoutAutotune was unstarted. Current op :"
<<
op_name
;
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
VLOG
(
3
)
<<
"Optimze Layout was not started"
<<
op_name
;
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
}
}
if
(
op_name
==
"transpose2"
&&
if
(
op_name
==
"transpose2"
&&
(
tensors_vector
[
0
][
0
].
layout
()
==
(
tensors_vector
[
0
][
0
].
layout
()
==
DesiredLayout
()))
{
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()))
{
auto
trans
=
std
::
make_shared
<
EagerTransposeOpTransformer
>
(
op_name
);
auto
trans
=
std
::
make_shared
<
EagerTransposeOpTransformer
>
(
op_name
);
trans
->
SetAttr
(
attr
,
trans
->
SetAttr
(
attr
,
tensors_vector
[
0
][
0
].
layout
()
==
tensors_vector
[
0
][
0
].
layout
()
==
paddle
::
experimental
::
DataLayout
::
NHWC
);
paddle
::
experimental
::
DataLayout
::
NHWC
);
return
trans
;
return
trans
;
}
}
transposer
=
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
}
}
// lightly int argmax
// lightly int argmax
...
@@ -210,19 +173,14 @@ EagerLayoutAutotune<paddle::experimental::Scalar, bool>(
...
@@ -210,19 +173,14 @@ EagerLayoutAutotune<paddle::experimental::Scalar, bool>(
kSlotSmallVectorSize
>&
tensors_vector
,
kSlotSmallVectorSize
>&
tensors_vector
,
paddle
::
experimental
::
Scalar
*
axis
,
paddle
::
experimental
::
Scalar
*
axis
,
bool
*
keep_dim
)
{
bool
*
keep_dim
)
{
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
VLOG
(
4
)
<<
"LayoutAutotune was unstarted. Current op :"
<<
op_name
;
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()
==
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
VLOG
(
3
)
<<
"Optimze Layout was not started"
<<
op_name
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
}
}
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
if
(
op_name
==
"argmax"
&&
if
(
op_name
==
"argmax"
&&
(
tensors_vector
[
0
][
0
].
layout
()
==
desired_layout
)
&&
(
*
keep_dim
))
{
(
tensors_vector
[
0
][
0
].
layout
()
==
DesiredLayout
()
)
&&
(
*
keep_dim
))
{
std
::
shared_ptr
<
EagerArgmaxOpTransformer
>
argmax_transform
=
nullptr
;
std
::
shared_ptr
<
EagerArgmaxOpTransformer
>
argmax_transform
=
nullptr
;
argmax_transform
=
std
::
make_shared
<
EagerArgmaxOpTransformer
>
(
op_name
);
argmax_transform
=
std
::
make_shared
<
EagerArgmaxOpTransformer
>
(
op_name
);
argmax_transform
->
SetAttr
(
axis
,
argmax_transform
->
SetAttr
(
axis
,
...
@@ -230,12 +188,9 @@ EagerLayoutAutotune<paddle::experimental::Scalar, bool>(
...
@@ -230,12 +188,9 @@ EagerLayoutAutotune<paddle::experimental::Scalar, bool>(
paddle
::
experimental
::
DataLayout
::
NHWC
);
paddle
::
experimental
::
DataLayout
::
NHWC
);
return
argmax_transform
;
return
argmax_transform
;
}
}
transposer
=
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
}
}
// lightly for flatten
template
<
>
template
<
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
<
int
,
int
>
(
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
<
int
,
int
>
(
const
std
::
string
&
op_name
,
const
std
::
string
&
op_name
,
...
@@ -243,32 +198,22 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune<int, int>(
...
@@ -243,32 +198,22 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune<int, int>(
kSlotSmallVectorSize
>&
tensors_vector
,
kSlotSmallVectorSize
>&
tensors_vector
,
int
*
start_axis
,
int
*
start_axis
,
int
*
stop_axis
)
{
int
*
stop_axis
)
{
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
VLOG
(
4
)
<<
"Optimze Layout was not started"
<<
op_name
;
auto
desired_layout
=
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
if
(
desired_layout
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
3
)
<<
"Optimze Layout was not started"
<<
op_name
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
}
}
bool
no_tranpose
=
tensors_vector
[
0
][
0
].
layout
()
==
desired_layout
;
bool
no_tranpose
=
tensors_vector
[
0
][
0
].
layout
()
==
DesiredLayout
();
bool
is_valid
=
((
*
start_axis
)
==
1
&&
(
*
stop_axis
)
==
3
);
bool
is_valid
=
((
*
start_axis
)
==
1
&&
(
*
stop_axis
)
==
3
);
if
(
op_name
==
"flatten"
||
op_name
==
"flatten_contiguous_range"
)
{
if
(
op_name
==
"flatten"
||
op_name
==
"flatten_contiguous_range"
)
{
if
(
no_tranpose
&&
is_valid
)
{
if
(
no_tranpose
&&
is_valid
)
{
std
::
shared_ptr
<
EagerFlattenOpTransformer
>
flatten_transform
=
nullptr
;
return
std
::
make_shared
<
EagerFlattenOpTransformer
>
(
op_name
);
flatten_transform
=
std
::
make_shared
<
EagerFlattenOpTransformer
>
(
op_name
);
return
flatten_transform
;
}
}
}
}
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
transposer
=
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
}
}
// lightly int Concat
template
<
>
template
<
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
<
paddle
::
experimental
::
Scalar
>
(
EagerLayoutAutotune
<
paddle
::
experimental
::
Scalar
>
(
...
@@ -276,27 +221,26 @@ EagerLayoutAutotune<paddle::experimental::Scalar>(
...
@@ -276,27 +221,26 @@ EagerLayoutAutotune<paddle::experimental::Scalar>(
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
kSlotSmallVectorSize
>&
tensors_vector
,
paddle
::
experimental
::
Scalar
*
axis
)
{
paddle
::
experimental
::
Scalar
*
axis
)
{
auto
desired_layout
=
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
VLOG
(
4
)
<<
"Optimze Layout was not started"
<<
op_name
;
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
if
(
desired_layout
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
3
)
<<
"Optimze Layout was not started"
<<
op_name
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
}
}
auto
desired_layout
=
DesiredLayout
();
if
(
NeedTransLayout
(
tensors_vector
,
desired_layout
))
{
if
(
NeedTransLayout
(
tensors_vector
,
desired_layout
))
{
VLOG
(
3
)
<<
op_name
<<
" need transpose to default layout"
;
VLOG
(
4
)
<<
op_name
<<
"'s has different layout"
;
transposer
=
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
return
transposer
;
if
(
op_name
==
"Concat"
)
{
}
else
{
if
(
desired_layout
==
tensors_vector
[
0
][
0
].
layout
()
&&
tensors_vector
[
0
][
0
].
shape
().
size
()
==
4
)
{
auto
trans
=
std
::
make_shared
<
EagerConcatOpTransformer
>
(
op_name
);
auto
trans
=
std
::
make_shared
<
EagerConcatOpTransformer
>
(
op_name
);
trans
->
SetAttr
(
axis
,
desired_layout
);
trans
->
SetAttr
(
axis
,
desired_layout
);
return
trans
;
return
trans
;
}
}
}
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
}
}
// namespace egr
}
// namespace egr
paddle/fluid/eager/eager_layout_transformer.h
浏览文件 @
3da3462f
此差异已折叠。
点击以展开。
paddle/fluid/imperative/layout_autotune.cc
浏览文件 @
3da3462f
...
@@ -194,8 +194,10 @@ paddle::imperative::NameVarMap<VarType> AutoTuneLayout(
...
@@ -194,8 +194,10 @@ paddle::imperative::NameVarMap<VarType> AutoTuneLayout(
(
conv_in_type
==
framework
::
proto
::
VarType
::
FP16
);
(
conv_in_type
==
framework
::
proto
::
VarType
::
FP16
);
if
(
is_tune_fp32
)
{
if
(
is_tune_fp32
)
{
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
DataLayout
::
NCHW
);
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
DataLayout
::
NCHW
);
LayoutAutoTune
::
Instance
().
SetDefaultLayout
(
DataLayout
::
NHWC
);
}
else
if
(
is_tune_fp16
)
{
}
else
if
(
is_tune_fp16
)
{
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
DataLayout
::
NHWC
);
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
DataLayout
::
NHWC
);
LayoutAutoTune
::
Instance
().
SetDefaultLayout
(
DataLayout
::
NCHW
);
}
else
{
}
else
{
tracer
->
DisableLayoutAutoTune
();
tracer
->
DisableLayoutAutoTune
();
return
ins
;
return
ins
;
...
...
paddle/fluid/pybind/eager_properties.cc
浏览文件 @
3da3462f
...
@@ -184,6 +184,42 @@ PyObject* tensor_properties_get_shape(TensorObject* self, void* closure) {
...
@@ -184,6 +184,42 @@ PyObject* tensor_properties_get_shape(TensorObject* self, void* closure) {
}
}
}
}
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
bool
change_dim
=
(
desired_layout
!=
default_layout
&&
self
->
tensor
.
layout
()
==
desired_layout
&&
value
.
size
()
==
4
);
VLOG
(
6
)
<<
"eager_properties 'Shape' method, layout autotune "
<<
" desired_layout: "
<<
desired_layout
<<
" default_layout: "
<<
default_layout
<<
" tensor layout: "
<<
self
->
tensor
.
layout
()
<<
" tensor's shape size is : "
<<
value
.
size
();
std
::
vector
<
int64_t
>
dims
=
value
;
if
(
change_dim
&&
paddle
::
framework
::
DataLayoutToString
(
desired_layout
)
==
"NCHW"
)
{
// NCHW -> NHWC
VLOG
(
6
)
<<
"layout autotune get Shape from NCHW -> NHWC "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
dims
[
0
]
<<
" "
<<
dims
[
2
]
<<
" "
<<
dims
[
3
]
<<
" "
<<
dims
[
1
];
value
[
0
]
=
dims
[
0
];
value
[
1
]
=
dims
[
2
];
value
[
2
]
=
dims
[
3
];
value
[
3
]
=
dims
[
1
];
}
else
if
(
change_dim
&&
paddle
::
framework
::
DataLayoutToString
(
desired_layout
)
==
"NHWC"
)
{
// NHWC -> NCHW
VLOG
(
6
)
<<
"layout autotune get Shape from NHWC -> NCHW "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
dims
[
0
]
<<
" "
<<
dims
[
3
]
<<
" "
<<
dims
[
1
]
<<
" "
<<
dims
[
2
]
<<
" "
<<
dims
[
1
];
value
[
0
]
=
dims
[
0
];
value
[
1
]
=
dims
[
3
];
value
[
2
]
=
dims
[
1
];
value
[
3
]
=
dims
[
2
];
}
return
ToPyObject
(
value
);
return
ToPyObject
(
value
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
3da3462f
...
@@ -2044,8 +2044,49 @@ void BindImperative(py::module *m_ptr) {
...
@@ -2044,8 +2044,49 @@ void BindImperative(py::module *m_ptr) {
"shape"
,
"shape"
,
[](
imperative
::
VarBase
&
self
)
{
[](
imperative
::
VarBase
&
self
)
{
if
(
self
.
Var
().
IsType
<
framework
::
LoDTensor
>
())
{
if
(
self
.
Var
().
IsType
<
framework
::
LoDTensor
>
())
{
return
phi
::
vectorize
<
int
>
(
auto
value
=
phi
::
vectorize
<
int
>
(
self
.
Var
().
Get
<
framework
::
LoDTensor
>
().
dims
());
self
.
Var
().
Get
<
framework
::
LoDTensor
>
().
dims
());
auto
tensor
=
self
.
Var
().
Get
<
framework
::
LoDTensor
>
();
auto
tmp_value
=
value
;
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
()
.
GetDesiredLayout
();
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
()
.
GetDefaultLayout
();
bool
change_dim
=
(
desired_layout
!=
default_layout
&&
tensor
.
layout
()
==
desired_layout
&&
value
.
size
()
==
4
);
VLOG
(
6
)
<<
"'Shape' method, layout autotune,"
<<
" desired_layout: "
<<
desired_layout
<<
" default_layout: "
<<
default_layout
<<
" tensor layout: "
<<
tensor
.
layout
()
<<
" tensor's shape size is : "
<<
value
.
size
();
if
(
change_dim
&&
paddle
::
framework
::
DataLayoutToString
(
desired_layout
)
==
"NCHW"
)
{
VLOG
(
6
)
<<
"layout autotune get Shape from NHWC -> NCHW "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
tmp_value
[
3
]
<<
" "
<<
tmp_value
[
1
]
<<
" "
<<
tmp_value
[
2
]
<<
" "
<<
tmp_value
[
1
];
// NCHW -> NHWC
value
[
1
]
=
tmp_value
[
2
];
value
[
2
]
=
tmp_value
[
3
];
value
[
3
]
=
tmp_value
[
1
];
}
else
if
(
change_dim
&&
paddle
::
framework
::
DataLayoutToString
(
desired_layout
)
==
"NHWC"
)
{
VLOG
(
6
)
<<
"layout autotune get Shape from NHWC -> NCHW "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
tmp_value
[
0
]
<<
" "
<<
tmp_value
[
3
]
<<
" "
<<
tmp_value
[
1
]
<<
" "
<<
tmp_value
[
2
];
// NHWC -> NCHW
value
[
1
]
=
tmp_value
[
3
];
value
[
2
]
=
tmp_value
[
1
];
value
[
3
]
=
tmp_value
[
2
];
}
return
value
;
}
else
if
(
self
.
Var
().
IsType
<
phi
::
SelectedRows
>
())
{
}
else
if
(
self
.
Var
().
IsType
<
phi
::
SelectedRows
>
())
{
return
phi
::
vectorize
<
int
>
(
return
phi
::
vectorize
<
int
>
(
self
.
Var
().
Get
<
phi
::
SelectedRows
>
().
value
().
dims
());
self
.
Var
().
Get
<
phi
::
SelectedRows
>
().
value
().
dims
());
...
...
paddle/phi/api/lib/data_transform.cc
浏览文件 @
3da3462f
...
@@ -205,7 +205,8 @@ phi::DenseTensor TransformData(phi::DenseTensor* tensor,
...
@@ -205,7 +205,8 @@ phi::DenseTensor TransformData(phi::DenseTensor* tensor,
if
(
NeedTransformLayout
(
tensor
->
layout
(),
if
(
NeedTransformLayout
(
tensor
->
layout
(),
target_args_def
.
layout
,
target_args_def
.
layout
,
tensor
->
place
(),
tensor
->
place
(),
transform_flag
))
{
transform_flag
)
&&
tensor
->
dims
().
size
()
!=
1
)
{
out
=
TransDataLayout
(
out
,
target_args_def
.
layout
);
out
=
TransDataLayout
(
out
,
target_args_def
.
layout
);
trans_layout
=
true
;
trans_layout
=
true
;
}
}
...
...
python/paddle/fluid/tests/unittests/test_layout_autotune.py
浏览文件 @
3da3462f
...
@@ -93,15 +93,6 @@ class LayoutAutoTune(unittest.TestCase):
...
@@ -93,15 +93,6 @@ class LayoutAutoTune(unittest.TestCase):
return
conv_out
,
predict
return
conv_out
,
predict
def
test_enable_autotune
(
self
):
def
test_enable_autotune
(
self
):
if
self
.
use_autoune
():
conv_out
,
predict
=
self
.
train
(
data_format
=
"NCHW"
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
14
,
8
])
self
.
assertEqual
(
predict
.
shape
,
[
1
,
2
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
14
])
self
.
assertEqual
(
predict
.
shape
,
[
1
,
2
])
else
:
conv_out
,
predict
=
self
.
train
(
data_format
=
"NCHW"
)
conv_out
,
predict
=
self
.
train
(
data_format
=
"NCHW"
)
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
14
])
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
14
])
self
.
assertEqual
(
predict
.
shape
,
[
1
,
2
])
self
.
assertEqual
(
predict
.
shape
,
[
1
,
2
])
...
@@ -124,10 +115,6 @@ class LayoutAutoTune(unittest.TestCase):
...
@@ -124,10 +115,6 @@ class LayoutAutoTune(unittest.TestCase):
scaled
.
backward
()
scaled
.
backward
()
scaler
.
minimize
(
optimizer
,
scaled
)
scaler
.
minimize
(
optimizer
,
scaled
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
12
,
8
,
14
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
12
,
8
,
14
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
12
,
8
,
14
])
...
@@ -143,10 +130,6 @@ class LayoutAutoTune(unittest.TestCase):
...
@@ -143,10 +130,6 @@ class LayoutAutoTune(unittest.TestCase):
# because it flatten the C and H dimensions.
# because it flatten the C and H dimensions.
out
=
flatten
(
conv_out
)
out
=
flatten
(
conv_out
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
112
,
12
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
112
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
112
,
12
])
...
@@ -157,42 +140,9 @@ class LayoutAutoTune(unittest.TestCase):
...
@@ -157,42 +140,9 @@ class LayoutAutoTune(unittest.TestCase):
conv_out
=
conv
(
data
)
conv_out
=
conv
(
data
)
# conv_out.shape = [1, 14, 12, 8] with NHWC
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
argmax
(
conv_out
,
axis
=
1
,
keepdim
=
True
)
out
=
paddle
.
argmax
(
conv_out
,
axis
=
1
,
keepdim
=
True
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
14
,
12
,
1
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
1
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
1
,
14
,
12
])
def
test_argmax_op_transposer_ff
(
self
):
conv
=
paddle
.
nn
.
Conv2D
(
3
,
8
,
(
3
,
3
))
data
=
paddle
.
rand
([
1
,
3
,
16
,
14
])
with
paddle
.
amp
.
auto_cast
(
level
=
"O2"
):
conv_out
=
conv
(
data
)
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
argmax
(
conv_out
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
])
def
test_argmax_op_transposer_t
(
self
):
conv
=
paddle
.
nn
.
Conv2D
(
3
,
8
,
(
3
,
3
))
data
=
paddle
.
rand
([
1
,
3
,
16
,
14
])
with
paddle
.
amp
.
auto_cast
(
level
=
"O2"
):
conv_out
=
conv
(
data
)
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
argmax
(
conv_out
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
])
def
test_concat_op_transposer
(
self
):
def
test_concat_op_transposer
(
self
):
in1
=
paddle
.
rand
([
1
,
8
,
14
,
12
])
in1
=
paddle
.
rand
([
1
,
8
,
14
,
12
])
conv
=
paddle
.
nn
.
Conv2D
(
3
,
8
,
(
3
,
3
))
conv
=
paddle
.
nn
.
Conv2D
(
3
,
8
,
(
3
,
3
))
...
@@ -202,10 +152,6 @@ class LayoutAutoTune(unittest.TestCase):
...
@@ -202,10 +152,6 @@ class LayoutAutoTune(unittest.TestCase):
# conv_out.shape = [1, 14, 12, 8] with NHWC
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
concat
(
x
=
[
conv_out
,
in1
],
axis
=
0
)
out
=
paddle
.
concat
(
x
=
[
conv_out
,
in1
],
axis
=
0
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
8
,
14
,
12
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
8
,
14
,
12
])
...
@@ -219,10 +165,6 @@ class LayoutAutoTune(unittest.TestCase):
...
@@ -219,10 +165,6 @@ class LayoutAutoTune(unittest.TestCase):
# conv_out.shape = [1, 14, 12, 8] with NHWC
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
concat
(
x
=
[
conv_out1
,
conv_out2
],
axis
=
0
)
out
=
paddle
.
concat
(
x
=
[
conv_out1
,
conv_out2
],
axis
=
0
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out1
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
14
,
12
,
8
])
else
:
self
.
assertEqual
(
conv_out1
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
conv_out1
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
8
,
14
,
12
])
...
...
python/paddle/nn/functional/conv.py
浏览文件 @
3da3462f
...
@@ -152,8 +152,8 @@ def _conv_nd(x,
...
@@ -152,8 +152,8 @@ def _conv_nd(x,
channel_dim
=
channel_dim
+
len
(
channel_dim
=
channel_dim
+
len
(
x
.
shape
)
if
channel_dim
<
0
else
channel_dim
x
.
shape
)
if
channel_dim
<
0
else
channel_dim
tmp_bias
=
_C_ops
.
reshape
(
tmp_bias
=
_C_ops
.
reshape
(
bias
,
bias
,
[
1
for
i
in
range
(
channel_dim
)]
+
bias
.
shape
+
bias
.
shape
+
[
1
for
i
in
range
(
len
(
x
.
shape
)
-
channel_dim
-
1
)])
[
1
for
i
in
range
(
len
(
x
.
shape
)
-
channel_dim
-
1
)])
return
_C_ops
.
add
(
pre_bias
,
tmp_bias
)
return
_C_ops
.
add
(
pre_bias
,
tmp_bias
)
else
:
else
:
return
pre_bias
return
pre_bias
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录