Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3da3462f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3da3462f
编写于
10月 11, 2022
作者:
N
niuliling123
提交者:
GitHub
10月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update layout autotune for module with no modified (#46541)
上级
20eb6e00
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
285 addition
and
386 deletion
+285
-386
paddle/fluid/eager/auto_code_generator/generator/eager_gen.py
...le/fluid/eager/auto_code_generator/generator/eager_gen.py
+1
-1
paddle/fluid/eager/eager_layout_auto_tune.h
paddle/fluid/eager/eager_layout_auto_tune.h
+69
-125
paddle/fluid/eager/eager_layout_transformer.h
paddle/fluid/eager/eager_layout_transformer.h
+118
-185
paddle/fluid/imperative/layout_autotune.cc
paddle/fluid/imperative/layout_autotune.cc
+2
-0
paddle/fluid/pybind/eager_properties.cc
paddle/fluid/pybind/eager_properties.cc
+36
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+42
-1
paddle/phi/api/lib/data_transform.cc
paddle/phi/api/lib/data_transform.cc
+2
-1
python/paddle/fluid/tests/unittests/test_layout_autotune.py
python/paddle/fluid/tests/unittests/test_layout_autotune.py
+13
-71
python/paddle/nn/functional/conv.py
python/paddle/nn/functional/conv.py
+2
-2
未找到文件。
paddle/fluid/eager/auto_code_generator/generator/eager_gen.py
浏览文件 @
3da3462f
...
...
@@ -1093,7 +1093,7 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase):
tensors_vector_list_str
=
"{ "
+
","
.
join
(
amp_tensors_vector_list
)
+
" }"
if
len
(
amp_tensors_vector_list
)
==
0
:
if
len
(
amp_tensors_vector_list
)
==
0
:
# or forward_api_name == "shape":
layout_logic_str
=
""
else
:
after_call_str
=
f
"
{
returns_type_str
}
{
result_name
}
=
{
forward_function_name
}
(
{
layout_inputs_call_args_str
}
);
\n
"
...
...
paddle/fluid/eager/eager_layout_auto_tune.h
浏览文件 @
3da3462f
...
...
@@ -32,70 +32,50 @@ inline bool NeedTransLayout(
}
return
false
;
}
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
BaseTransformer
(
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
)
{
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
bool
unstart
=
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
);
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
VLOG
(
3
)
<<
"Layout autotune was is start ? "
<<
(
!
unstart
)
<<
op_name
<<
"'s layout is "
<<
first_layout
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
}
// For agnostic op like add, relu, exp
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
)
{
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
// For agnostic op like add, relu, exp
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
if
(
NeedTransLayout
(
tensors_vector
,
first_layout
))
{
auto
desired_layout
=
DesiredLayout
();
bool
is_started
=
!
(
desired_layout
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
);
if
(
is_started
&&
NeedTransLayout
(
tensors_vector
,
first_layout
))
{
bool
need_trans_back
=
false
;
for
(
size_t
i
=
0
;
i
<
tensors_vector
.
size
();
i
++
)
{
for
(
size_t
idx
=
0
;
idx
<
tensors_vector
[
0
].
size
();
idx
++
)
{
if
(
4
!=
tensors_vector
[
i
][
idx
].
shape
().
size
())
{
need_trans_back
=
true
;
VLOG
(
3
)
<<
"Agnostic op "
<<
op_name
<<
" shape is "
<<
tensors_vector
[
i
][
idx
].
shape
().
size
()
<<
" and layout is "
<<
tensors_vector
[
i
][
idx
].
layout
();
}
}
}
auto
final_layout
=
need_trans_back
?
default_layout
:
desired_layout
;
auto
final_layout
=
need_trans_back
?
DefaultLayout
()
:
desired_layout
;
VLOG
(
4
)
<<
op_name
<<
"'s has different layout, need trans to "
<<
final_layout
;
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
final_layout
);
}
return
BaseTransformer
(
op_name
,
tensors_vector
);
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
}
// For lightly op like reduce
template
<
typename
T
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
T
*
attr
)
{
VLOG
(
3
)
<<
"Lightly op "
<<
op_name
<<
"'s shape is "
<<
tensors_vector
[
0
][
0
].
shape
().
size
()
<<
" and layout is "
<<
tensors_vector
[
0
][
0
].
layout
();
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
transposer
=
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
// For lightly op like reduce
if
(
!
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
))
{
VLOG
(
4
)
<<
"LayoutAutotune was unstarted. Current op :"
<<
op_name
;
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
}
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
// For lightly op like argmax
template
<
typename
T1
,
typename
T2
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
...
...
@@ -103,28 +83,23 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
kSlotSmallVectorSize
>&
tensors_vector
,
T1
*
axis
,
T2
*
keep_dim
)
{
VLOG
(
3
)
<<
"Lightly op "
<<
op_name
<<
"'s shape is "
<<
tensors_vector
[
0
][
0
].
shape
().
size
()
<<
" and layout is "
<<
tensors_vector
[
0
][
0
].
layout
();
// For lightly op like argmax
return
EagerLayoutAutotune
<
T1
>
(
op_name
,
tensors_vector
,
axis
);
}
// heavily string data_format, data_layout
template
<
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
std
::
string
*
attr
)
{
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
// Heavily op with (string) data_format, data_layout
auto
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
// Layout autotune only supports model with convolutional layers
VLOG
(
3
)
<<
"Optimze Layout was not started "
<<
op_name
;
if
(
op_name
!=
"conv2d"
)
{
VLOG
(
4
)
<<
"LayoutAutotune was unstarted. Current op :"
<<
op_name
;
return
transposer
;
}
else
{
auto
data_type
=
tensors_vector
[
0
][
0
].
dtype
();
...
...
@@ -134,7 +109,8 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
bool
is_tune_fp16
=
(
data_type
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
&&
(
*
attr
==
"NCHW"
);
VLOG
(
3
)
<<
"Conv2d_dy's dtype "
<<
data_type
<<
" format"
<<
(
*
attr
);
VLOG
(
4
)
<<
"LayoutAutoTune assert with dtype and layout, Current op : "
<<
op_name
;
if
(
is_tune_fp32
)
{
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
paddle
::
experimental
::
DataLayout
::
NCHW
);
...
...
@@ -147,58 +123,45 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
SetDefaultLayout
(
paddle
::
experimental
::
DataLayout
::
NCHW
);
}
else
{
VLOG
(
4
)
<<
"DisableLayoutAutoTune accoding to Conv op"
<<
" dtype : "
<<
data_type
<<
" format : "
<<
(
*
attr
);
egr
::
Controller
::
Instance
().
DisableLayoutAutoTune
();
return
transposer
;
}
VLOG
(
3
)
<<
"Tune the layout from "
<<
*
attr
<<
" to "
<<
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
VLOG
(
4
)
<<
"LayoutAutoTune from "
<<
*
attr
<<
" to "
<<
DesiredLayout
();
}
}
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
IsHeavilyLayoutSensitive
(
op_name
))
{
VLOG
(
3
)
<<
op_name
<<
"'s LayoutTransformer is EagerHeavilyLayoutSensitiveOpTransformer"
;
auto
heavily_transposer
=
std
::
make_shared
<
EagerHeavilyLayoutSensitiveOpTransformer
>
(
op_name
,
return
std
::
make_shared
<
EagerHeavilyLayoutSensitiveOpTransformer
>
(
op_name
,
attr
);
return
heavily_transposer
;
}
VLOG
(
3
)
<<
op_name
<<
"'s LayoutTransformer is unimplemented. Use default."
;
return
transposer
;
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
// lightly transpose
template
<
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
(
const
std
::
string
&
op_name
,
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
std
::
vector
<
int
>*
attr
)
{
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
3
)
<<
"Optimze Layout was not started"
<<
op_name
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
// lightly transpose
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
4
)
<<
"LayoutAutotune was unstarted. Current op :"
<<
op_name
;
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
}
if
(
op_name
==
"transpose2"
&&
(
tensors_vector
[
0
][
0
].
layout
()
==
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()))
{
(
tensors_vector
[
0
][
0
].
layout
()
==
DesiredLayout
()))
{
auto
trans
=
std
::
make_shared
<
EagerTransposeOpTransformer
>
(
op_name
);
trans
->
SetAttr
(
attr
,
tensors_vector
[
0
][
0
].
layout
()
==
paddle
::
experimental
::
DataLayout
::
NHWC
);
return
trans
;
}
transposer
=
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
// lightly int argmax
...
...
@@ -210,19 +173,14 @@ EagerLayoutAutotune<paddle::experimental::Scalar, bool>(
kSlotSmallVectorSize
>&
tensors_vector
,
paddle
::
experimental
::
Scalar
*
axis
,
bool
*
keep_dim
)
{
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
if
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
3
)
<<
"Optimze Layout was not started"
<<
op_name
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
4
)
<<
"LayoutAutotune was unstarted. Current op :"
<<
op_name
;
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
}
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
if
(
op_name
==
"argmax"
&&
(
tensors_vector
[
0
][
0
].
layout
()
==
desired_layout
)
&&
(
*
keep_dim
))
{
(
tensors_vector
[
0
][
0
].
layout
()
==
DesiredLayout
()
)
&&
(
*
keep_dim
))
{
std
::
shared_ptr
<
EagerArgmaxOpTransformer
>
argmax_transform
=
nullptr
;
argmax_transform
=
std
::
make_shared
<
EagerArgmaxOpTransformer
>
(
op_name
);
argmax_transform
->
SetAttr
(
axis
,
...
...
@@ -230,12 +188,9 @@ EagerLayoutAutotune<paddle::experimental::Scalar, bool>(
paddle
::
experimental
::
DataLayout
::
NHWC
);
return
argmax_transform
;
}
transposer
=
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
// lightly for flatten
template
<
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
<
int
,
int
>
(
const
std
::
string
&
op_name
,
...
...
@@ -243,32 +198,22 @@ inline std::shared_ptr<EagerLayoutTransformer> EagerLayoutAutotune<int, int>(
kSlotSmallVectorSize
>&
tensors_vector
,
int
*
start_axis
,
int
*
stop_axis
)
{
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
if
(
desired_layout
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
3
)
<<
"Optimze Layout was not started"
<<
op_name
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
4
)
<<
"Optimze Layout was not started"
<<
op_name
;
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
}
bool
no_tranpose
=
tensors_vector
[
0
][
0
].
layout
()
==
desired_layout
;
bool
no_tranpose
=
tensors_vector
[
0
][
0
].
layout
()
==
DesiredLayout
();
bool
is_valid
=
((
*
start_axis
)
==
1
&&
(
*
stop_axis
)
==
3
);
if
(
op_name
==
"flatten"
||
op_name
==
"flatten_contiguous_range"
)
{
if
(
no_tranpose
&&
is_valid
)
{
std
::
shared_ptr
<
EagerFlattenOpTransformer
>
flatten_transform
=
nullptr
;
flatten_transform
=
std
::
make_shared
<
EagerFlattenOpTransformer
>
(
op_name
);
return
flatten_transform
;
return
std
::
make_shared
<
EagerFlattenOpTransformer
>
(
op_name
);
}
}
transposer
=
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
// lightly int Concat
template
<
>
inline
std
::
shared_ptr
<
EagerLayoutTransformer
>
EagerLayoutAutotune
<
paddle
::
experimental
::
Scalar
>
(
...
...
@@ -276,27 +221,26 @@ EagerLayoutAutotune<paddle::experimental::Scalar>(
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
paddle
::
experimental
::
Scalar
*
axis
)
{
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
auto
first_layout
=
tensors_vector
[
0
][
0
].
layout
();
std
::
shared_ptr
<
EagerLayoutTransformer
>
transposer
=
nullptr
;
if
(
desired_layout
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
3
)
<<
"Optimze Layout was not started"
<<
op_name
;
transposer
=
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
first_layout
);
return
transposer
;
if
(
DesiredLayout
()
==
paddle
::
experimental
::
DataLayout
::
UNDEFINED
)
{
VLOG
(
4
)
<<
"Optimze Layout was not started"
<<
op_name
;
return
std
::
make_shared
<
EagerLayoutTransformer
>
(
op_name
,
tensors_vector
,
tensors_vector
[
0
][
0
].
layout
());
}
auto
desired_layout
=
DesiredLayout
();
if
(
NeedTransLayout
(
tensors_vector
,
desired_layout
))
{
VLOG
(
3
)
<<
op_name
<<
" need transpose to default layout"
;
transposer
=
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
return
transposer
;
}
else
{
VLOG
(
4
)
<<
op_name
<<
"'s has different layout"
;
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
if
(
op_name
==
"Concat"
)
{
if
(
desired_layout
==
tensors_vector
[
0
][
0
].
layout
()
&&
tensors_vector
[
0
][
0
].
shape
().
size
()
==
4
)
{
auto
trans
=
std
::
make_shared
<
EagerConcatOpTransformer
>
(
op_name
);
trans
->
SetAttr
(
axis
,
desired_layout
);
return
trans
;
}
}
return
std
::
make_shared
<
EagerLightlyLayoutSensitiveOpTransformer
>
(
op_name
);
}
}
// namespace egr
paddle/fluid/eager/eager_layout_transformer.h
浏览文件 @
3da3462f
...
...
@@ -23,7 +23,7 @@ inline paddle::experimental::Tensor EagerTraceTransposeOp(
const
paddle
::
experimental
::
DataLayout
layout
,
const
paddle
::
experimental
::
Tensor
&
in
)
{
VLOG
(
4
)
<<
"AutoTune Transpose from "
<<
in
.
layout
()
<<
" to "
<<
layout
<<
", tensor's
shap
e is "
<<
in
.
shape
().
size
();
<<
", tensor's
dim siz
e is "
<<
in
.
shape
().
size
();
if
(
in
.
shape
().
size
()
!=
4
)
{
return
in
;
}
...
...
@@ -36,12 +36,72 @@ inline paddle::experimental::Tensor EagerTraceTransposeOp(
axis
=
{
0
,
1
,
2
,
3
};
}
auto
out_tensor
=
transpose_ad_func
(
in
,
axis
);
VLOG
(
4
)
<<
"AutoTune Transpose from "
<<
paddle
::
framework
::
DataLayoutToString
(
in
.
layout
())
<<
" to "
<<
paddle
::
framework
::
DataLayoutToString
(
layout
);
VLOG
(
4
)
<<
"AutoTune Transpose from "
<<
in
.
layout
()
<<
" to "
<<
layout
;
return
out_tensor
;
}
inline
paddle
::
experimental
::
DataLayout
DesiredLayout
()
{
return
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
}
inline
paddle
::
experimental
::
DataLayout
DefaultLayout
()
{
return
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
}
inline
void
UpdateLayout
(
paddle
::
experimental
::
Tensor
*
out_tensor
,
const
paddle
::
experimental
::
DataLayout
layout
)
{
if
(
out_tensor
->
layout
()
!=
layout
)
{
VLOG
(
4
)
<<
"Update out_tensor's layout from "
<<
out_tensor
->
layout
()
<<
" to "
<<
layout
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
()))
->
layout
=
layout
;
}
}
inline
void
DealWithShapeOp
(
paddle
::
experimental
::
Tensor
*
out_tensor
,
const
paddle
::
experimental
::
DataLayout
layout
,
int
dim_size
)
{
auto
des_layout
=
DesiredLayout
();
auto
def_layout
=
DefaultLayout
();
int32_t
*
value
=
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
())
->
data
<
int32_t
>
();
bool
change_dim
=
(
des_layout
!=
def_layout
&&
layout
==
des_layout
&&
dim_size
==
4
);
VLOG
(
6
)
<<
"'Shape OP', layout autotune: True"
<<
" desired_layout: "
<<
des_layout
<<
" default_layout: "
<<
def_layout
<<
" tensor layout: "
<<
out_tensor
->
layout
()
<<
" tensor's shape size is : "
<<
dim_size
;
// It's means input tensor has been autotune and tensor's layout is
// desired_layout
std
::
vector
<
int32_t
>
dims
;
dims
.
resize
(
dim_size
);
for
(
int
i
=
0
;
i
<
dim_size
;
i
++
)
{
dims
[
i
]
=
value
[
i
];
}
auto
des_str
=
paddle
::
framework
::
DataLayoutToString
(
des_layout
);
if
(
change_dim
&&
des_str
==
"NCHW"
)
{
// NCHW -> NHWC
VLOG
(
6
)
<<
"layout autotune get Shape from NCHW -> NHWC "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
dims
[
0
]
<<
" "
<<
dims
[
2
]
<<
" "
<<
dims
[
3
]
<<
" "
<<
dims
[
1
];
value
[
0
]
=
dims
[
0
];
value
[
1
]
=
dims
[
2
];
value
[
2
]
=
dims
[
3
];
value
[
3
]
=
dims
[
1
];
}
else
if
(
change_dim
&&
des_str
==
"NHWC"
)
{
// NHWC -> NCHW
VLOG
(
6
)
<<
"layout autotune get Shape from NHWC -> NCHW "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
dims
[
0
]
<<
" "
<<
dims
[
3
]
<<
" "
<<
dims
[
1
]
<<
" "
<<
dims
[
2
];
value
[
0
]
=
dims
[
0
];
value
[
1
]
=
dims
[
3
];
value
[
2
]
=
dims
[
1
];
value
[
3
]
=
dims
[
2
];
}
}
// agnostic op
class
EagerLayoutTransformer
{
using
Layout
=
paddle
::
experimental
::
DataLayout
;
...
...
@@ -58,27 +118,27 @@ class EagerLayoutTransformer {
const
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
tensors_vector
,
const
Layout
final_layout
=
Layout
::
UNDEFINED
)
:
op_name_
(
op_name
),
final_layout_
(
final_layout
)
{
VLOG
(
4
)
<<
"Agnostic op : "
<<
op_name_
<<
" final_layout_ is "
<<
final_layout_
;
:
op_name_
(
op_name
),
final_layout_
(
final_layout
),
dim_size_
(
1
)
{
VLOG
(
4
)
<<
"Agnostic op : "
<<
op_name_
<<
"'s layout is "
<<
final_layout_
;
}
virtual
~
EagerLayoutTransformer
()
{}
virtual
paddle
::
experimental
::
Tensor
TransInTensor
(
const
std
::
string
&
in_name
,
const
paddle
::
experimental
::
Tensor
&
in
)
{
if
(
final_layout_
==
Layout
::
UNDEFINED
||
final_layout_
==
in
.
layout
())
{
VLOG
(
4
)
<<
"EagerLayoutTransformer with no trans"
;
return
in
;
}
else
{
// from NCHW to NHWC
VLOG
(
4
)
<<
"EagerLayoutTransformer with trans from "
<<
in
.
layout
()
<<
" to "
<<
final_layout_
;
// update in shape size
dim_size_
=
in
.
shape
().
size
()
;
bool
need_trans
=
!
(
final_layout_
==
Layout
::
UNDEFINED
||
final_layout_
==
in
.
layout
());
// This is for Agnostic op when layout is differnet
if
(
need_trans
)
{
auto
out_tensor
=
EagerTraceTransposeOp
(
final_layout_
,
in
);
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
.
impl
().
get
()))
->
layout
=
final_layout_
;
return
out_tensor
;
}
return
in
;
}
virtual
paddle
::
optional
<
paddle
::
experimental
::
Tensor
>
TransInTensor
(
...
...
@@ -90,7 +150,6 @@ class EagerLayoutTransformer {
virtual
std
::
vector
<
paddle
::
experimental
::
Tensor
>
TransInTensors
(
const
std
::
string
&
in_name
,
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
in
)
{
VLOG
(
4
)
<<
" TransInTensor"
;
return
in
;
}
...
...
@@ -98,72 +157,59 @@ class EagerLayoutTransformer {
TransInTensors
(
const
std
::
string
&
in_name
,
const
paddle
::
optional
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>>&
in
)
{
VLOG
(
4
)
<<
" TransInTensor"
;
if
(
in
)
{
return
TransInTensors
(
in_name
,
*
in
);
}
return
in
;
}
virtual
void
SetOutTensorLayout
(
paddle
::
optional
<
paddle
::
experimental
::
Tensor
>*
out_tensor
)
{
VLOG
(
4
)
<<
"optional out_tensor"
;
return
(
in
?
TransInTensors
(
in_name
,
*
in
)
:
in
);
}
virtual
void
SetOutTensorLayout
(
std
::
vector
<
paddle
::
experimental
::
Tensor
>*
out_tensor
)
{
bool
u
se_default
=
(
final_layout_
==
Layout
::
UNDEFINED
);
if
(
!
use_defaul
t
)
{
bool
u
pdate_layout
=
!
(
final_layout_
==
Layout
::
UNDEFINED
);
if
(
update_layou
t
)
{
for
(
size_t
i
=
0
;
i
<
out_tensor
->
size
();
i
++
)
{
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
((
*
out_tensor
)[
i
].
impl
().
get
()))
->
layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
->
layout
=
DesiredLayout
();
}
}
VLOG
(
4
)
<<
op_name_
<<
"is is agnostic, use_default "
<<
use_default
;
}
virtual
void
SetOutTensorLayout
(
paddle
::
optional
<
paddle
::
experimental
::
Tensor
>*
out_tensor
)
{
VLOG
(
4
)
<<
"AutoTune out tensor is optional"
;
}
virtual
void
SetOutTensorLayout
(
paddle
::
optional
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>>*
out_tensor
)
{
VLOG
(
4
)
<<
"
optional out_tensor
"
;
VLOG
(
4
)
<<
"
AutoTune out tensor is optional
"
;
}
virtual
void
SetOutTensorLayout
(
paddle
::
experimental
::
Tensor
*
out_tensor
)
{
bool
use_default
=
final_layout_
==
Layout
::
UNDEFINED
;
if
(
!
use_default
)
{
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
()))
->
layout
=
final_layout_
;
if
(
op_name_
==
"shape"
)
{
return
DealWithShapeOp
(
out_tensor
,
final_layout_
,
dim_size_
);
}
bool
need_update
=
!
(
final_layout_
==
Layout
::
UNDEFINED
);
if
(
need_update
)
{
UpdateLayout
(
out_tensor
,
final_layout_
);
}
VLOG
(
4
)
<<
op_name_
<<
"is is agnostic, use_default "
<<
use_default
;
}
protected:
std
::
string
op_name_
;
const
Layout
final_layout_
;
int
dim_size_
;
};
class
EagerHeavilyLayoutSensitiveOpTransformer
:
public
EagerLayoutTransformer
{
public:
explicit
EagerHeavilyLayoutSensitiveOpTransformer
(
const
std
::
string
&
op_name
,
std
::
string
*
layout
)
:
op_name_
(
op_name
),
desired_layout_
(
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
())
{
VLOG
(
3
)
<<
"Optimze Layout heavily op: "
<<
op_name
;
final_layout_
=
paddle
::
framework
::
DataLayoutToString
(
desired_layout_
);
if
((
*
layout
)
!=
final_layout_
)
{
*
layout
=
final_layout_
;
}
:
op_name_
(
op_name
),
desired_layout_
(
DesiredLayout
())
{
VLOG
(
4
)
<<
"Heavily op: "
<<
op_name
;
*
layout
=
paddle
::
framework
::
DataLayoutToString
(
DesiredLayout
());
}
paddle
::
experimental
::
Tensor
TransInTensor
(
const
std
::
string
&
in_name
,
const
paddle
::
experimental
::
Tensor
&
in
)
{
if
(
heavily_input_
.
count
(
in_name
)
!=
0
&&
in
.
layout
()
!=
desired_layout_
)
{
VLOG
(
4
)
<<
op_name_
<<
"'s "
<<
in_name
<<
" need transpose from "
<<
paddle
::
framework
::
DataLayoutToString
(
in
.
layout
())
<<
" to "
<<
final_layout_
;
auto
out_tensor
=
EagerTraceTransposeOp
(
desired_layout_
,
in
);
return
out_tensor
;
}
...
...
@@ -171,14 +217,7 @@ class EagerHeavilyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
}
void
SetOutTensorLayout
(
paddle
::
experimental
::
Tensor
*
out_tensor
)
{
if
(
out_tensor
->
layout
()
!=
desired_layout_
)
{
VLOG
(
4
)
<<
" Set Out_tensor's layout from "
<<
paddle
::
framework
::
DataLayoutToString
(
out_tensor
->
layout
())
<<
" to "
<<
final_layout_
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
()))
->
layout
=
desired_layout_
;
}
UpdateLayout
(
out_tensor
,
desired_layout_
);
}
void
SetOutTensorLayout
(
...
...
@@ -192,10 +231,8 @@ class EagerHeavilyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
std
::
vector
<
paddle
::
experimental
::
Tensor
>*
out_tensor
)
{
for
(
size_t
i
=
0
;
i
<
out_tensor
->
size
();
i
++
)
{
if
((
*
out_tensor
)[
i
].
layout
()
!=
desired_layout_
)
{
VLOG
(
4
)
<<
" Set Out_tensor's layout from "
<<
paddle
::
framework
::
DataLayoutToString
(
(
*
out_tensor
)[
i
].
layout
())
<<
" to "
<<
final_layout_
;
VLOG
(
4
)
<<
"Update out_tensor's layout from "
<<
(
*
out_tensor
)[
i
].
layout
()
<<
" to "
<<
desired_layout_
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
((
*
out_tensor
)[
i
].
impl
().
get
()))
->
layout
=
desired_layout_
;
...
...
@@ -205,7 +242,6 @@ class EagerHeavilyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
protected:
std
::
string
op_name_
;
std
::
string
final_layout_
;
const
paddle
::
experimental
::
DataLayout
desired_layout_
;
std
::
unordered_set
<
std
::
string
>
heavily_input_
{
"x"
,
"y"
,
"input"
};
};
...
...
@@ -213,11 +249,10 @@ class EagerHeavilyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
class
EagerLightlyLayoutSensitiveOpTransformer
:
public
EagerLayoutTransformer
{
public:
EagerLightlyLayoutSensitiveOpTransformer
()
{}
explicit
EagerLightlyLayoutSensitiveOpTransformer
(
const
std
::
string
&
op_name
)
:
op_name_
(
op_name
)
{
VLOG
(
3
)
<<
"Optimze Layout lightly "
<<
op_name
;
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
explicit
EagerLightlyLayoutSensitiveOpTransformer
(
const
std
::
string
&
op_name
)
{
VLOG
(
4
)
<<
"Lightly op : "
<<
op_name
;
auto
desired_layout
=
DesiredLayout
();
final_layout_
=
paddle
::
framework
::
DataLayoutToString
(
desired_layout
);
}
...
...
@@ -226,11 +261,8 @@ class EagerLightlyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
const
std
::
string
&
in_name
,
const
paddle
::
experimental
::
Tensor
&
in
)
{
std
::
string
input_layout
=
paddle
::
framework
::
DataLayoutToString
(
in
.
layout
());
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
auto
default_layout
=
DefaultLayout
();
if
(
final_layout_
==
input_layout
&&
in
.
shape
().
size
()
==
4
)
{
VLOG
(
4
)
<<
op_name_
<<
"'s "
<<
in_name
<<
" need transpose from "
<<
input_layout
<<
" to default_layout"
;
auto
out_tensor
=
EagerTraceTransposeOp
(
paddle
::
experimental
::
DataLayout
::
UNDEFINED
,
in
);
phi
::
DenseTensorUtils
::
GetMutableMeta
(
...
...
@@ -238,7 +270,6 @@ class EagerLightlyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
->
layout
=
default_layout
;
return
out_tensor
;
}
VLOG
(
4
)
<<
in_name
<<
"'s layout is "
<<
input_layout
;
return
in
;
}
...
...
@@ -246,15 +277,11 @@ class EagerLightlyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
const
std
::
string
&
in_name
,
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
in
)
{
std
::
vector
<
paddle
::
experimental
::
Tensor
>
result
;
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
auto
desired_layout
=
DesiredLayout
();
auto
default_layout
=
DefaultLayout
();
for
(
size_t
i
=
0
;
i
<
in
.
size
();
i
++
)
{
auto
in_tensor
=
in
[
i
];
if
(
in_tensor
.
layout
()
==
desired_layout
)
{
VLOG
(
4
)
<<
op_name_
<<
"'s "
<<
in_name
<<
" need transpose from "
<<
final_layout_
<<
" to default_layout"
;
auto
out_tensor
=
EagerTraceTransposeOp
(
paddle
::
experimental
::
DataLayout
::
UNDEFINED
,
in_tensor
);
phi
::
DenseTensorUtils
::
GetMutableMeta
(
...
...
@@ -269,33 +296,20 @@ class EagerLightlyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
}
void
SetOutTensorLayout
(
paddle
::
experimental
::
Tensor
*
out_tensor
)
{
auto
out_layout
=
out_tensor
->
layout
();
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
if
(
out_layout
!=
default_layout
)
{
VLOG
(
4
)
<<
op_name_
<<
"'s out need transpose to default_layout"
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
()))
->
layout
=
default_layout
;
}
UpdateLayout
(
out_tensor
,
DefaultLayout
());
}
void
SetOutTensorLayout
(
std
::
vector
<
paddle
::
experimental
::
Tensor
*>*
out_tensor
)
{
for
(
size_t
i
=
0
;
i
<
out_tensor
->
size
();
i
++
)
{
VLOG
(
4
)
<<
"out layout is"
<<
paddle
::
framework
::
DataLayoutToString
(
(
*
out_tensor
)[
i
]
->
layout
());
SetOutTensorLayout
((
*
out_tensor
)[
i
]);
}
}
void
SetOutTensorLayout
(
std
::
vector
<
paddle
::
experimental
::
Tensor
>*
out_tensor
)
{
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
auto
default_layout
=
DefaultLayout
();
for
(
size_t
i
=
0
;
i
<
out_tensor
->
size
();
i
++
)
{
VLOG
(
4
)
<<
" out_tensor layout trans to default "
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
((
*
out_tensor
)[
i
].
impl
().
get
()))
->
layout
=
default_layout
;
...
...
@@ -303,7 +317,6 @@ class EagerLightlyLayoutSensitiveOpTransformer : public EagerLayoutTransformer {
}
protected:
std
::
string
op_name_
;
std
::
string
final_layout_
;
std
::
unordered_set
<
std
::
string
>
heavily_input_
{
"x"
,
"y"
,
"input"
};
};
...
...
@@ -312,18 +325,11 @@ class EagerTransposeOpTransformer
:
public
EagerLightlyLayoutSensitiveOpTransformer
{
public:
EagerTransposeOpTransformer
()
{}
explicit
EagerTransposeOpTransformer
(
const
std
::
string
&
op_name
)
:
op_name_
(
op_name
)
{
VLOG
(
3
)
<<
"Optimze Layout TransposeOpTransformer "
<<
op_name
;
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
std
::
string
desired_layout_str
=
paddle
::
framework
::
DataLayoutToString
(
desired_layout
);
final_layout_
=
desired_layout_str
;
explicit
EagerTransposeOpTransformer
(
const
std
::
string
&
op_name
)
{
VLOG
(
4
)
<<
"AutoTuneTransformer op: "
<<
op_name
;
}
void
SetAttr
(
std
::
vector
<
int
>*
axis
,
bool
is_nhwc
)
{
// input's layout is nhwc and input's layout === desired_layout
std
::
vector
<
int
>
perm_nchw
=
{
0
,
2
,
3
,
1
};
std
::
vector
<
int
>
perm_nhwc
=
{
0
,
3
,
1
,
2
};
auto
perm
=
is_nhwc
?
perm_nhwc
:
perm_nchw
;
...
...
@@ -331,8 +337,6 @@ class EagerTransposeOpTransformer
(
*
axis
)[
1
]
=
perm
[(
*
axis
)[
1
]];
(
*
axis
)[
2
]
=
perm
[(
*
axis
)[
2
]];
(
*
axis
)[
3
]
=
perm
[(
*
axis
)[
3
]];
VLOG
(
4
)
<<
" EagerTransposeOpTransformer "
<<
op_name_
<<
"'s layout is equal to desire: "
<<
is_nhwc
;
}
paddle
::
experimental
::
Tensor
TransInTensor
(
...
...
@@ -341,31 +345,16 @@ class EagerTransposeOpTransformer
}
void
SetOutTensorLayout
(
paddle
::
experimental
::
Tensor
*
out_tensor
)
{
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
if
(
out_tensor
->
layout
()
!=
default_layout
)
{
VLOG
(
4
)
<<
" Set Out_tensor's layout from "
<<
paddle
::
framework
::
DataLayoutToString
(
out_tensor
->
layout
())
<<
" to "
<<
default_layout
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
()))
->
layout
=
default_layout
;
}
UpdateLayout
(
out_tensor
,
DefaultLayout
());
}
protected:
std
::
string
op_name_
;
std
::
string
final_layout_
;
std
::
unordered_set
<
std
::
string
>
heavily_input_
{
"x"
,
"y"
,
"input"
};
};
class
EagerArgmaxOpTransformer
:
public
EagerLightlyLayoutSensitiveOpTransformer
{
public:
EagerArgmaxOpTransformer
()
{}
explicit
EagerArgmaxOpTransformer
(
const
std
::
string
&
op_name
)
:
op_name_
(
op_name
)
{
VLOG
(
3
)
<<
"Optimze Layout lightly "
<<
op_name
;
explicit
EagerArgmaxOpTransformer
(
const
std
::
string
&
op_name
)
{
VLOG
(
4
)
<<
"AutoTuneTransformer op: "
<<
op_name
;
}
void
SetAttr
(
paddle
::
experimental
::
Scalar
*
axis
,
bool
is_nhwc
)
{
...
...
@@ -377,38 +366,16 @@ class EagerArgmaxOpTransformer
}
void
SetOutTensorLayout
(
paddle
::
experimental
::
Tensor
*
out_tensor
)
{
VLOG
(
4
)
<<
"EagerArgmaxOpTransformer's out layout is"
<<
paddle
::
framework
::
DataLayoutToString
(
out_tensor
->
layout
());
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
if
(
default_layout
!=
out_tensor
->
layout
())
{
VLOG
(
4
)
<<
"Change layout from "
<<
paddle
::
framework
::
DataLayoutToString
(
out_tensor
->
layout
())
<<
" to "
<<
default_layout
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
()))
->
layout
=
default_layout
;
UpdateLayout
(
out_tensor
,
DesiredLayout
());
}
}
protected:
std
::
string
op_name_
;
std
::
string
final_layout_
;
std
::
unordered_set
<
std
::
string
>
heavily_input_
{
"x"
,
"y"
,
"input"
};
};
class
EagerFlattenOpTransformer
:
public
EagerLightlyLayoutSensitiveOpTransformer
{
public:
EagerFlattenOpTransformer
()
{}
explicit
EagerFlattenOpTransformer
(
const
std
::
string
&
op_name
)
:
op_name_
(
op_name
)
{
VLOG
(
3
)
<<
"Optimze Layout lightly "
<<
op_name
;
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
std
::
string
default_layout_str
=
paddle
::
framework
::
DataLayoutToString
(
default_layout
);
final_layout_
=
default_layout_str
;
explicit
EagerFlattenOpTransformer
(
const
std
::
string
&
op_name
)
{
VLOG
(
4
)
<<
"AutoTuneTransformer op: "
<<
op_name
;
}
// transpose from NHWC to NCHW
...
...
@@ -418,38 +385,16 @@ class EagerFlattenOpTransformer
}
void
SetOutTensorLayout
(
paddle
::
experimental
::
Tensor
*
out_tensor
)
{
VLOG
(
4
)
<<
"EagerFlattenOpTransformer's out layout is"
<<
paddle
::
framework
::
DataLayoutToString
(
out_tensor
->
layout
());
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
if
(
desired_layout
!=
out_tensor
->
layout
())
{
VLOG
(
4
)
<<
"Change layout from "
<<
paddle
::
framework
::
DataLayoutToString
(
out_tensor
->
layout
())
<<
" to "
<<
desired_layout
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
()))
->
layout
=
desired_layout
;
}
UpdateLayout
(
out_tensor
,
DefaultLayout
());
}
protected:
std
::
string
op_name_
;
std
::
string
final_layout_
;
std
::
unordered_set
<
std
::
string
>
heavily_input_
{
"x"
,
"y"
,
"input"
};
};
class
EagerConcatOpTransformer
:
public
EagerLightlyLayoutSensitiveOpTransformer
{
public:
EagerConcatOpTransformer
()
{}
explicit
EagerConcatOpTransformer
(
const
std
::
string
&
op_name
)
:
op_name_
(
op_name
)
{
VLOG
(
3
)
<<
"Optimze Layout lightly "
<<
op_name
;
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
std
::
string
default_layout_str
=
paddle
::
framework
::
DataLayoutToString
(
default_layout
);
final_layout_
=
default_layout_str
;
explicit
EagerConcatOpTransformer
(
const
std
::
string
&
op_name
)
{
VLOG
(
4
)
<<
"AutoTuneTransformer op : "
<<
op_name
;
}
void
SetAttr
(
paddle
::
experimental
::
Scalar
*
axis
,
...
...
@@ -457,6 +402,7 @@ class EagerConcatOpTransformer
std
::
vector
<
int
>
perm_nhwc
=
{
0
,
3
,
1
,
2
};
std
::
vector
<
int
>
perm_nchw
=
{
0
,
2
,
3
,
1
};
int
axes
=
axis
->
to
<
int
>
();
axes
=
axes
<
0
?
axes
+
4
:
axes
;
auto
perm
=
(
paddle
::
framework
::
DataLayout
::
NHWC
==
layout
)
?
perm_nhwc
:
perm_nchw
;
(
*
axis
)
=
static_cast
<
paddle
::
experimental
::
Scalar
>
(
perm
[
axes
]);
...
...
@@ -469,20 +415,7 @@ class EagerConcatOpTransformer
}
void
SetOutTensorLayout
(
paddle
::
experimental
::
Tensor
*
out_tensor
)
{
auto
layout
=
paddle
::
framework
::
StringToDataLayout
(
final_layout_
);
if
(
layout
!=
out_tensor
->
layout
())
{
VLOG
(
4
)
<<
"Change layout from "
<<
paddle
::
framework
::
DataLayoutToString
(
out_tensor
->
layout
())
<<
" to "
<<
final_layout_
;
phi
::
DenseTensorUtils
::
GetMutableMeta
(
static_cast
<
phi
::
DenseTensor
*>
(
out_tensor
->
impl
().
get
()))
->
layout
=
layout
;
UpdateLayout
(
out_tensor
,
DesiredLayout
());
}
}
protected:
std
::
string
op_name_
;
std
::
string
final_layout_
;
std
::
unordered_set
<
std
::
string
>
heavily_input_
{
"x"
,
"y"
,
"input"
};
};
}
// namespace egr
paddle/fluid/imperative/layout_autotune.cc
浏览文件 @
3da3462f
...
...
@@ -194,8 +194,10 @@ paddle::imperative::NameVarMap<VarType> AutoTuneLayout(
(
conv_in_type
==
framework
::
proto
::
VarType
::
FP16
);
if
(
is_tune_fp32
)
{
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
DataLayout
::
NCHW
);
LayoutAutoTune
::
Instance
().
SetDefaultLayout
(
DataLayout
::
NHWC
);
}
else
if
(
is_tune_fp16
)
{
LayoutAutoTune
::
Instance
().
SetDesiredLayout
(
DataLayout
::
NHWC
);
LayoutAutoTune
::
Instance
().
SetDefaultLayout
(
DataLayout
::
NCHW
);
}
else
{
tracer
->
DisableLayoutAutoTune
();
return
ins
;
...
...
paddle/fluid/pybind/eager_properties.cc
浏览文件 @
3da3462f
...
...
@@ -184,6 +184,42 @@ PyObject* tensor_properties_get_shape(TensorObject* self, void* closure) {
}
}
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDesiredLayout
();
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
GetDefaultLayout
();
bool
change_dim
=
(
desired_layout
!=
default_layout
&&
self
->
tensor
.
layout
()
==
desired_layout
&&
value
.
size
()
==
4
);
VLOG
(
6
)
<<
"eager_properties 'Shape' method, layout autotune "
<<
" desired_layout: "
<<
desired_layout
<<
" default_layout: "
<<
default_layout
<<
" tensor layout: "
<<
self
->
tensor
.
layout
()
<<
" tensor's shape size is : "
<<
value
.
size
();
std
::
vector
<
int64_t
>
dims
=
value
;
if
(
change_dim
&&
paddle
::
framework
::
DataLayoutToString
(
desired_layout
)
==
"NCHW"
)
{
// NCHW -> NHWC
VLOG
(
6
)
<<
"layout autotune get Shape from NCHW -> NHWC "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
dims
[
0
]
<<
" "
<<
dims
[
2
]
<<
" "
<<
dims
[
3
]
<<
" "
<<
dims
[
1
];
value
[
0
]
=
dims
[
0
];
value
[
1
]
=
dims
[
2
];
value
[
2
]
=
dims
[
3
];
value
[
3
]
=
dims
[
1
];
}
else
if
(
change_dim
&&
paddle
::
framework
::
DataLayoutToString
(
desired_layout
)
==
"NHWC"
)
{
// NHWC -> NCHW
VLOG
(
6
)
<<
"layout autotune get Shape from NHWC -> NCHW "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
dims
[
0
]
<<
" "
<<
dims
[
3
]
<<
" "
<<
dims
[
1
]
<<
" "
<<
dims
[
2
]
<<
" "
<<
dims
[
1
];
value
[
0
]
=
dims
[
0
];
value
[
1
]
=
dims
[
3
];
value
[
2
]
=
dims
[
1
];
value
[
3
]
=
dims
[
2
];
}
return
ToPyObject
(
value
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
3da3462f
...
...
@@ -2044,8 +2044,49 @@ void BindImperative(py::module *m_ptr) {
"shape"
,
[](
imperative
::
VarBase
&
self
)
{
if
(
self
.
Var
().
IsType
<
framework
::
LoDTensor
>
())
{
return
phi
::
vectorize
<
int
>
(
auto
value
=
phi
::
vectorize
<
int
>
(
self
.
Var
().
Get
<
framework
::
LoDTensor
>
().
dims
());
auto
tensor
=
self
.
Var
().
Get
<
framework
::
LoDTensor
>
();
auto
tmp_value
=
value
;
auto
desired_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
()
.
GetDesiredLayout
();
auto
default_layout
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
()
.
GetDefaultLayout
();
bool
change_dim
=
(
desired_layout
!=
default_layout
&&
tensor
.
layout
()
==
desired_layout
&&
value
.
size
()
==
4
);
VLOG
(
6
)
<<
"'Shape' method, layout autotune,"
<<
" desired_layout: "
<<
desired_layout
<<
" default_layout: "
<<
default_layout
<<
" tensor layout: "
<<
tensor
.
layout
()
<<
" tensor's shape size is : "
<<
value
.
size
();
if
(
change_dim
&&
paddle
::
framework
::
DataLayoutToString
(
desired_layout
)
==
"NCHW"
)
{
VLOG
(
6
)
<<
"layout autotune get Shape from NHWC -> NCHW "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
tmp_value
[
3
]
<<
" "
<<
tmp_value
[
1
]
<<
" "
<<
tmp_value
[
2
]
<<
" "
<<
tmp_value
[
1
];
// NCHW -> NHWC
value
[
1
]
=
tmp_value
[
2
];
value
[
2
]
=
tmp_value
[
3
];
value
[
3
]
=
tmp_value
[
1
];
}
else
if
(
change_dim
&&
paddle
::
framework
::
DataLayoutToString
(
desired_layout
)
==
"NHWC"
)
{
VLOG
(
6
)
<<
"layout autotune get Shape from NHWC -> NCHW "
<<
value
[
0
]
<<
" "
<<
value
[
1
]
<<
" "
<<
value
[
2
]
<<
" "
<<
value
[
3
]
<<
" to "
<<
tmp_value
[
0
]
<<
" "
<<
tmp_value
[
3
]
<<
" "
<<
tmp_value
[
1
]
<<
" "
<<
tmp_value
[
2
];
// NHWC -> NCHW
value
[
1
]
=
tmp_value
[
3
];
value
[
2
]
=
tmp_value
[
1
];
value
[
3
]
=
tmp_value
[
2
];
}
return
value
;
}
else
if
(
self
.
Var
().
IsType
<
phi
::
SelectedRows
>
())
{
return
phi
::
vectorize
<
int
>
(
self
.
Var
().
Get
<
phi
::
SelectedRows
>
().
value
().
dims
());
...
...
paddle/phi/api/lib/data_transform.cc
浏览文件 @
3da3462f
...
...
@@ -205,7 +205,8 @@ phi::DenseTensor TransformData(phi::DenseTensor* tensor,
if
(
NeedTransformLayout
(
tensor
->
layout
(),
target_args_def
.
layout
,
tensor
->
place
(),
transform_flag
))
{
transform_flag
)
&&
tensor
->
dims
().
size
()
!=
1
)
{
out
=
TransDataLayout
(
out
,
target_args_def
.
layout
);
trans_layout
=
true
;
}
...
...
python/paddle/fluid/tests/unittests/test_layout_autotune.py
浏览文件 @
3da3462f
...
...
@@ -93,15 +93,6 @@ class LayoutAutoTune(unittest.TestCase):
return
conv_out
,
predict
def
test_enable_autotune
(
self
):
if
self
.
use_autoune
():
conv_out
,
predict
=
self
.
train
(
data_format
=
"NCHW"
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
14
,
8
])
self
.
assertEqual
(
predict
.
shape
,
[
1
,
2
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
14
])
self
.
assertEqual
(
predict
.
shape
,
[
1
,
2
])
else
:
conv_out
,
predict
=
self
.
train
(
data_format
=
"NCHW"
)
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
14
])
self
.
assertEqual
(
predict
.
shape
,
[
1
,
2
])
...
...
@@ -124,10 +115,6 @@ class LayoutAutoTune(unittest.TestCase):
scaled
.
backward
()
scaler
.
minimize
(
optimizer
,
scaled
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
12
,
8
,
14
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
12
,
8
,
14
])
...
...
@@ -143,10 +130,6 @@ class LayoutAutoTune(unittest.TestCase):
# because it flatten the C and H dimensions.
out
=
flatten
(
conv_out
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
112
,
12
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
112
,
12
])
...
...
@@ -157,42 +140,9 @@ class LayoutAutoTune(unittest.TestCase):
conv_out
=
conv
(
data
)
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
argmax
(
conv_out
,
axis
=
1
,
keepdim
=
True
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
14
,
12
,
1
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
,
1
,
14
,
12
])
def
test_argmax_op_transposer_ff
(
self
):
conv
=
paddle
.
nn
.
Conv2D
(
3
,
8
,
(
3
,
3
))
data
=
paddle
.
rand
([
1
,
3
,
16
,
14
])
with
paddle
.
amp
.
auto_cast
(
level
=
"O2"
):
conv_out
=
conv
(
data
)
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
argmax
(
conv_out
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
])
def
test_argmax_op_transposer_t
(
self
):
conv
=
paddle
.
nn
.
Conv2D
(
3
,
8
,
(
3
,
3
))
data
=
paddle
.
rand
([
1
,
3
,
16
,
14
])
with
paddle
.
amp
.
auto_cast
(
level
=
"O2"
):
conv_out
=
conv
(
data
)
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
argmax
(
conv_out
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
1
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
1
])
def
test_concat_op_transposer
(
self
):
in1
=
paddle
.
rand
([
1
,
8
,
14
,
12
])
conv
=
paddle
.
nn
.
Conv2D
(
3
,
8
,
(
3
,
3
))
...
...
@@ -202,10 +152,6 @@ class LayoutAutoTune(unittest.TestCase):
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
concat
(
x
=
[
conv_out
,
in1
],
axis
=
0
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
8
,
14
,
12
])
else
:
self
.
assertEqual
(
conv_out
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
8
,
14
,
12
])
...
...
@@ -219,10 +165,6 @@ class LayoutAutoTune(unittest.TestCase):
# conv_out.shape = [1, 14, 12, 8] with NHWC
out
=
paddle
.
concat
(
x
=
[
conv_out1
,
conv_out2
],
axis
=
0
)
if
paddle
.
fluid
.
core
.
use_layout_autotune
():
self
.
assertEqual
(
conv_out1
.
shape
,
[
1
,
14
,
12
,
8
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
14
,
12
,
8
])
else
:
self
.
assertEqual
(
conv_out1
.
shape
,
[
1
,
8
,
14
,
12
])
self
.
assertEqual
(
out
.
shape
,
[
2
,
8
,
14
,
12
])
...
...
python/paddle/nn/functional/conv.py
浏览文件 @
3da3462f
...
...
@@ -152,8 +152,8 @@ def _conv_nd(x,
channel_dim
=
channel_dim
+
len
(
x
.
shape
)
if
channel_dim
<
0
else
channel_dim
tmp_bias
=
_C_ops
.
reshape
(
bias
,
bias
.
shape
+
[
1
for
i
in
range
(
len
(
x
.
shape
)
-
channel_dim
-
1
)])
bias
,
[
1
for
i
in
range
(
channel_dim
)]
+
bias
.
shape
+
[
1
for
i
in
range
(
len
(
x
.
shape
)
-
channel_dim
-
1
)])
return
_C_ops
.
add
(
pre_bias
,
tmp_bias
)
else
:
return
pre_bias
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录