Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3c457a38
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3c457a38
编写于
9月 08, 2021
作者:
Z
Zeng Jinle
提交者:
GitHub
9月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix scatter_nd_add and gather bug (#35544)
* fix scatter_add_nd and gather bug * fix gather compile error
上级
5f369881
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
188 addition
and
117 deletion
+188
-117
paddle/fluid/operators/gather.cu.h
paddle/fluid/operators/gather.cu.h
+53
-51
paddle/fluid/operators/gather.h
paddle/fluid/operators/gather.h
+23
-23
paddle/fluid/operators/scatter.h
paddle/fluid/operators/scatter.h
+34
-43
python/paddle/fluid/tests/unittests/test_gather_op.py
python/paddle/fluid/tests/unittests/test_gather_op.py
+31
-0
python/paddle/fluid/tests/unittests/test_scatter_nd_op.py
python/paddle/fluid/tests/unittests/test_scatter_nd_op.py
+46
-0
python/paddle/fluid/tests/unittests/test_scatter_op.py
python/paddle/fluid/tests/unittests/test_scatter_op.py
+1
-0
未找到文件。
paddle/fluid/operators/gather.cu.h
浏览文件 @
3c457a38
...
@@ -32,9 +32,9 @@ template <typename T, typename IndexT = int>
...
@@ -32,9 +32,9 @@ template <typename T, typename IndexT = int>
__global__
void
GatherCUDAKernel
(
const
T
*
params
,
const
IndexT
*
indices
,
__global__
void
GatherCUDAKernel
(
const
T
*
params
,
const
IndexT
*
indices
,
T
*
output
,
size_t
index_size
,
T
*
output
,
size_t
index_size
,
size_t
slice_size
)
{
size_t
slice_size
)
{
CUDA_KERNEL_LOOP
(
i
,
index_size
*
slice_size
)
{
CUDA_KERNEL_LOOP
_TYPE
(
i
,
index_size
*
slice_size
,
int64_t
)
{
int
indices_i
=
i
/
slice_size
;
int
64_t
indices_i
=
i
/
slice_size
;
int
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
int
64_t
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
IndexT
gather_i
=
indices
[
indices_i
];
IndexT
gather_i
=
indices
[
indices_i
];
IndexT
params_i
=
gather_i
*
slice_size
+
slice_i
;
IndexT
params_i
=
gather_i
*
slice_size
+
slice_i
;
*
(
output
+
i
)
=
*
(
params
+
params_i
);
*
(
output
+
i
)
=
*
(
params
+
params_i
);
...
@@ -42,13 +42,13 @@ __global__ void GatherCUDAKernel(const T* params, const IndexT* indices,
...
@@ -42,13 +42,13 @@ __global__ void GatherCUDAKernel(const T* params, const IndexT* indices,
}
}
template
<
typename
T
,
typename
IndexT
=
int
>
template
<
typename
T
,
typename
IndexT
=
int
>
__global__
void
GatherNdCUDAKernel
(
const
T
*
input
,
const
int
*
input_dims
,
__global__
void
GatherNdCUDAKernel
(
const
T
*
input
,
const
int
64_t
*
input_dims
,
const
IndexT
*
indices
,
T
*
output
,
const
IndexT
*
indices
,
T
*
output
,
size_t
remain_size
,
size_t
slice_size
,
size_t
remain_size
,
size_t
slice_size
,
size_t
end_size
)
{
size_t
end_size
)
{
CUDA_KERNEL_LOOP
(
i
,
remain_size
*
slice_size
)
{
CUDA_KERNEL_LOOP
_TYPE
(
i
,
remain_size
*
slice_size
,
int64_t
)
{
int
indices_i
=
i
/
slice_size
;
int
64_t
indices_i
=
i
/
slice_size
;
int
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
int
64_t
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
IndexT
gather_i
=
0
;
IndexT
gather_i
=
0
;
int64_t
temp
=
slice_size
;
int64_t
temp
=
slice_size
;
for
(
int64_t
j
=
end_size
-
1
;
j
>=
0
;
--
j
)
{
for
(
int64_t
j
=
end_size
-
1
;
j
>=
0
;
--
j
)
{
...
@@ -92,14 +92,14 @@ void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
...
@@ -92,14 +92,14 @@ void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
}
}
// index size
// index size
int
index_size
=
index
.
dims
()[
0
];
int
64_t
index_size
=
index
.
dims
()[
0
];
auto
src_dims
=
src
.
dims
();
auto
src_dims
=
src
.
dims
();
framework
::
DDim
output_dims
(
src_dims
);
framework
::
DDim
output_dims
(
src_dims
);
output_dims
[
0
]
=
index_size
;
output_dims
[
0
]
=
index_size
;
// slice size
// slice size
int
slice_size
=
1
;
int
64_t
slice_size
=
1
;
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
const
T
*
p_src
=
src
.
data
<
T
>
();
const
T
*
p_src
=
src
.
data
<
T
>
();
...
@@ -107,8 +107,8 @@ void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
...
@@ -107,8 +107,8 @@ void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
T
*
p_output
=
output
->
data
<
T
>
();
T
*
p_output
=
output
->
data
<
T
>
();
int
block
=
512
;
int
block
=
512
;
int
n
=
slice_size
*
index_size
;
int
64_t
n
=
slice_size
*
index_size
;
int
grid
=
(
n
+
block
-
1
)
/
block
;
int
64_t
grid
=
(
n
+
block
-
1
)
/
block
;
GatherCUDAKernel
<
T
,
IndexT
><<<
GatherCUDAKernel
<
T
,
IndexT
><<<
grid
,
block
,
0
,
grid
,
block
,
0
,
...
@@ -143,21 +143,21 @@ void GPUGatherNd(const framework::ExecutionContext& context,
...
@@ -143,21 +143,21 @@ void GPUGatherNd(const framework::ExecutionContext& context,
slice_size
*=
input_dims
[
i
];
slice_size
*=
input_dims
[
i
];
}
}
// source dim
// source dim
std
::
vector
<
int
>
v_input_dims
(
input_dims_size
);
std
::
vector
<
int
64_t
>
v_input_dims
(
input_dims_size
);
for
(
int
i
=
0
;
i
<
input_dims_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
input_dims_size
;
++
i
)
{
v_input_dims
[
i
]
=
static_cast
<
int
>
(
input_dims
[
i
])
;
v_input_dims
[
i
]
=
input_dims
[
i
]
;
}
}
auto
&
dev_ctx
=
context
.
cuda_device_context
();
auto
&
dev_ctx
=
context
.
cuda_device_context
();
int
bytes
=
input_dims_size
*
sizeof
(
in
t
);
int
64_t
bytes
=
input_dims_size
*
sizeof
(
int64_
t
);
auto
p_input_dims
=
memory
::
Alloc
(
dev_ctx
,
bytes
);
auto
p_input_dims
=
memory
::
Alloc
(
dev_ctx
,
bytes
);
int
*
g_input_dims
=
reinterpret_cast
<
in
t
*>
(
p_input_dims
->
ptr
());
int
64_t
*
g_input_dims
=
reinterpret_cast
<
int64_
t
*>
(
p_input_dims
->
ptr
());
memory
::
Copy
(
gplace
,
g_input_dims
,
cplace
,
v_input_dims
.
data
(),
bytes
,
memory
::
Copy
(
gplace
,
g_input_dims
,
cplace
,
v_input_dims
.
data
(),
bytes
,
ctx
.
stream
());
ctx
.
stream
());
int
block
=
512
;
int
block
=
512
;
int
n
=
slice_size
*
remain_numel
;
int
64_t
n
=
slice_size
*
remain_numel
;
int
grid
=
(
n
+
block
-
1
)
/
block
;
int
64_t
grid
=
(
n
+
block
-
1
)
/
block
;
GatherNdCUDAKernel
<
T
,
IndexT
><<<
GatherNdCUDAKernel
<
T
,
IndexT
><<<
grid
,
block
,
0
,
grid
,
block
,
0
,
...
@@ -168,16 +168,16 @@ void GPUGatherNd(const framework::ExecutionContext& context,
...
@@ -168,16 +168,16 @@ void GPUGatherNd(const framework::ExecutionContext& context,
template
<
typename
T
,
typename
U
>
template
<
typename
T
,
typename
U
>
__global__
void
GatherGPUKernel
(
const
T
*
input
,
const
U
*
index
,
T
*
out
,
__global__
void
GatherGPUKernel
(
const
T
*
input
,
const
U
*
index
,
T
*
out
,
int
outer_dim_size
,
in
t
inner_dim_size
,
int
64_t
outer_dim_size
,
int64_
t
inner_dim_size
,
int
out_index_dim_size
,
int
64_t
out_index_dim_size
,
int
input_index_dim_size
,
in
t
size
)
{
int
64_t
input_index_dim_size
,
int64_
t
size
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
64_t
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
outer_size
=
outer_dim_size
*
out_index_dim_size
;
int
64_t
outer_size
=
outer_dim_size
*
out_index_dim_size
;
for
(;
idx
<
size
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(;
idx
<
size
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
inner_dim_index
=
idx
/
outer_size
;
int
64_t
inner_dim_index
=
idx
/
outer_size
;
int
next_idx
=
idx
-
outer_size
*
inner_dim_index
;
int
64_t
next_idx
=
idx
-
outer_size
*
inner_dim_index
;
int
index_dim_index
=
next_idx
/
outer_dim_size
;
int
64_t
index_dim_index
=
next_idx
/
outer_dim_size
;
int
index_val
=
index
[
index_dim_index
];
U
index_val
=
index
[
index_dim_index
];
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
index_val
>=
0
&&
index_val
<
input_index_dim_size
,
index_val
>=
0
&&
index_val
<
input_index_dim_size
,
...
@@ -187,8 +187,8 @@ __global__ void GatherGPUKernel(const T* input, const U* index, T* out,
...
@@ -187,8 +187,8 @@ __global__ void GatherGPUKernel(const T* input, const U* index, T* out,
"be less than [%d] and greater than or equal to 0, but received [%d]"
,
"be less than [%d] and greater than or equal to 0, but received [%d]"
,
input_index_dim_size
,
index_val
);
input_index_dim_size
,
index_val
);
int
out_dim_index
=
next_idx
-
outer_dim_size
*
index_dim_index
;
int
64_t
out_dim_index
=
next_idx
-
outer_dim_size
*
index_dim_index
;
int
input_index
=
int
64_t
input_index
=
inner_dim_index
*
(
outer_dim_size
*
input_index_dim_size
)
+
inner_dim_index
*
(
outer_dim_size
*
input_index_dim_size
)
+
index_val
*
outer_dim_size
+
out_dim_index
;
index_val
*
outer_dim_size
+
out_dim_index
;
out
[
idx
]
=
input
[
input_index
];
out
[
idx
]
=
input
[
input_index
];
...
@@ -197,16 +197,18 @@ __global__ void GatherGPUKernel(const T* input, const U* index, T* out,
...
@@ -197,16 +197,18 @@ __global__ void GatherGPUKernel(const T* input, const U* index, T* out,
template
<
typename
T
,
typename
U
>
template
<
typename
T
,
typename
U
>
__global__
void
GatherGradGPUKernel
(
const
T
*
input
,
const
U
*
index
,
T
*
out
,
__global__
void
GatherGradGPUKernel
(
const
T
*
input
,
const
U
*
index
,
T
*
out
,
int
outer_dim_size
,
int
inner_dim_size
,
int64_t
outer_dim_size
,
int
input_index_dim_size
,
int64_t
inner_dim_size
,
int
out_index_dim_size
,
int
size
)
{
int64_t
input_index_dim_size
,
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int64_t
out_index_dim_size
,
int64_t
size
)
{
int64_t
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
size
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(;
idx
<
size
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
inner_dim_index
=
idx
/
(
outer_dim_size
*
input_index_dim_size
);
int64_t
inner_dim_index
=
idx
/
(
outer_dim_size
*
input_index_dim_size
);
int
next_idx
=
idx
%
(
outer_dim_size
*
input_index_dim_size
);
int64_t
next_idx
=
idx
%
(
outer_dim_size
*
input_index_dim_size
);
int
index_dim_index
=
next_idx
/
(
outer_dim_size
);
int64_t
index_dim_index
=
next_idx
/
(
outer_dim_size
);
int
out_dim_index
=
next_idx
%
outer_dim_size
;
int64_t
out_dim_index
=
next_idx
%
outer_dim_size
;
int
out_index
=
inner_dim_index
*
(
outer_dim_size
*
out_index_dim_size
)
+
int64_t
out_index
=
inner_dim_index
*
(
outer_dim_size
*
out_index_dim_size
)
+
index
[
index_dim_index
]
*
outer_dim_size
+
out_dim_index
;
index
[
index_dim_index
]
*
outer_dim_size
+
out_dim_index
;
paddle
::
platform
::
CudaAtomicAdd
(
out
+
out_index
,
*
(
input
+
idx
));
paddle
::
platform
::
CudaAtomicAdd
(
out
+
out_index
,
*
(
input
+
idx
));
}
}
...
@@ -217,8 +219,8 @@ void GatherV2CUDAFunction(const Tensor* input, const Tensor* index,
...
@@ -217,8 +219,8 @@ void GatherV2CUDAFunction(const Tensor* input, const Tensor* index,
const
int
axis
,
Tensor
*
out
,
const
int
axis
,
Tensor
*
out
,
const
paddle
::
platform
::
Place
&
place
,
const
paddle
::
platform
::
Place
&
place
,
const
framework
::
ExecutionContext
&
ctx
)
{
const
framework
::
ExecutionContext
&
ctx
)
{
int
index_size
=
index
->
numel
();
int
64_t
index_size
=
index
->
numel
();
int
input_size
=
input
->
numel
();
int
64_t
input_size
=
input
->
numel
();
auto
input_dim
=
input
->
dims
();
auto
input_dim
=
input
->
dims
();
auto
*
input_data
=
input
->
data
<
T
>
();
auto
*
input_data
=
input
->
data
<
T
>
();
auto
*
index_data
=
index
->
data
<
U
>
();
auto
*
index_data
=
index
->
data
<
U
>
();
...
@@ -226,11 +228,11 @@ void GatherV2CUDAFunction(const Tensor* input, const Tensor* index,
...
@@ -226,11 +228,11 @@ void GatherV2CUDAFunction(const Tensor* input, const Tensor* index,
if
(
input
->
numel
()
==
0
)
return
;
if
(
input
->
numel
()
==
0
)
return
;
int
axis_index
=
axis
;
int
axis_index
=
axis
;
int
index_dim_size
=
input_dim
[
axis_index
];
int
64_t
index_dim_size
=
input_dim
[
axis_index
];
int
inner_dim_size
=
1
;
int
64_t
inner_dim_size
=
1
;
int
outer_dim_size
=
1
;
int
64_t
outer_dim_size
=
1
;
std
::
vector
<
int
>
out_dim_vec
;
std
::
vector
<
int
64_t
>
out_dim_vec
;
for
(
int
i
=
0
;
i
<
axis_index
;
i
++
)
{
for
(
int
i
=
0
;
i
<
axis_index
;
i
++
)
{
inner_dim_size
*=
input_dim
[
i
];
inner_dim_size
*=
input_dim
[
i
];
...
@@ -245,7 +247,7 @@ void GatherV2CUDAFunction(const Tensor* input, const Tensor* index,
...
@@ -245,7 +247,7 @@ void GatherV2CUDAFunction(const Tensor* input, const Tensor* index,
out
->
Resize
(
out_dim
);
out
->
Resize
(
out_dim
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
place
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
place
);
int
out_size
=
out
->
numel
();
int
64_t
out_size
=
out
->
numel
();
platform
::
GpuLaunchConfig
config
=
platform
::
GpuLaunchConfig
config
=
platform
::
GetGpuLaunchConfig1D
(
ctx
.
cuda_device_context
(),
out_size
);
platform
::
GetGpuLaunchConfig1D
(
ctx
.
cuda_device_context
(),
out_size
);
...
@@ -262,17 +264,17 @@ void GatherV2GradCUDAFunction(const Tensor* input, const Tensor* index,
...
@@ -262,17 +264,17 @@ void GatherV2GradCUDAFunction(const Tensor* input, const Tensor* index,
const
paddle
::
platform
::
Place
&
place
,
const
paddle
::
platform
::
Place
&
place
,
const
framework
::
ExecutionContext
&
ctx
)
{
const
framework
::
ExecutionContext
&
ctx
)
{
auto
*
index_data
=
index
->
data
<
U
>
();
auto
*
index_data
=
index
->
data
<
U
>
();
int
index_size
=
index
->
numel
();
int
64_t
index_size
=
index
->
numel
();
int
input_size
=
input
->
numel
();
int
64_t
input_size
=
input
->
numel
();
auto
input_dim
=
input
->
dims
();
auto
input_dim
=
input
->
dims
();
auto
*
input_data
=
input
->
data
<
T
>
();
auto
*
input_data
=
input
->
data
<
T
>
();
if
(
input
->
numel
()
==
0
)
return
;
if
(
input
->
numel
()
==
0
)
return
;
int
axis_index
=
axis
;
int
axis_index
=
axis
;
int
input_index_dim_size
=
input_dim
[
axis_index
];
int
64_t
input_index_dim_size
=
input_dim
[
axis_index
];
int
inner_dim_size
=
1
;
int
64_t
inner_dim_size
=
1
;
int
outer_dim_size
=
1
;
int
64_t
outer_dim_size
=
1
;
for
(
int
i
=
0
;
i
<
axis_index
;
i
++
)
{
for
(
int
i
=
0
;
i
<
axis_index
;
i
++
)
{
inner_dim_size
*=
input_dim
[
i
];
inner_dim_size
*=
input_dim
[
i
];
...
@@ -284,7 +286,7 @@ void GatherV2GradCUDAFunction(const Tensor* input, const Tensor* index,
...
@@ -284,7 +286,7 @@ void GatherV2GradCUDAFunction(const Tensor* input, const Tensor* index,
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
place
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
place
);
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
auto
out_dim
=
out
->
dims
();
auto
out_dim
=
out
->
dims
();
int
out_index_dim_size
=
out_dim
[
axis_index
];
int
64_t
out_index_dim_size
=
out_dim
[
axis_index
];
operators
::
math
::
set_constant
(
*
dev_ctx
,
out
,
0.0
);
operators
::
math
::
set_constant
(
*
dev_ctx
,
out
,
0.0
);
platform
::
GpuLaunchConfig
config
=
platform
::
GpuLaunchConfig
config
=
...
...
paddle/fluid/operators/gather.h
浏览文件 @
3c457a38
...
@@ -65,10 +65,10 @@ void CPUGather(const platform::DeviceContext& ctx, const Tensor& src,
...
@@ -65,10 +65,10 @@ void CPUGather(const platform::DeviceContext& ctx, const Tensor& src,
T
*
p_output
=
output
->
data
<
T
>
();
T
*
p_output
=
output
->
data
<
T
>
();
// slice size
// slice size
int
slice_size
=
1
;
int
64_t
slice_size
=
1
;
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
// input size
// input size
int
input_size
=
src_dims
[
0
]
*
slice_size
;
int
64_t
input_size
=
src_dims
[
0
]
*
slice_size
;
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
...
@@ -144,16 +144,16 @@ template <typename T, typename U>
...
@@ -144,16 +144,16 @@ template <typename T, typename U>
void
GatherV2Function
(
const
Tensor
*
input
,
const
Tensor
*
index
,
int
axis
,
void
GatherV2Function
(
const
Tensor
*
input
,
const
Tensor
*
index
,
int
axis
,
Tensor
*
out
,
const
paddle
::
platform
::
Place
&
place
)
{
Tensor
*
out
,
const
paddle
::
platform
::
Place
&
place
)
{
auto
*
index_data
=
index
->
data
<
U
>
();
auto
*
index_data
=
index
->
data
<
U
>
();
int
index_size
=
index
->
numel
();
int
64_t
index_size
=
index
->
numel
();
int
input_size
=
input
->
numel
();
int
64_t
input_size
=
input
->
numel
();
auto
input_dim
=
input
->
dims
();
auto
input_dim
=
input
->
dims
();
auto
*
input_data
=
input
->
data
<
T
>
();
auto
*
input_data
=
input
->
data
<
T
>
();
if
(
input
->
numel
()
==
0
)
return
;
if
(
input
->
numel
()
==
0
)
return
;
int
axis_index
=
axis
;
int
axis_index
=
axis
;
int
input_index_dim_size
=
input_dim
[
axis_index
];
int
64_t
input_index_dim_size
=
input_dim
[
axis_index
];
for
(
int
i
=
0
;
i
<
index_size
;
i
++
)
{
for
(
int
64_t
i
=
0
;
i
<
index_size
;
i
++
)
{
PADDLE_ENFORCE_LT
(
index_data
[
i
],
input_index_dim_size
,
PADDLE_ENFORCE_LT
(
index_data
[
i
],
input_index_dim_size
,
platform
::
errors
::
OutOfRange
(
platform
::
errors
::
OutOfRange
(
"The element of Index must be less than the size of "
"The element of Index must be less than the size of "
...
@@ -168,9 +168,9 @@ void GatherV2Function(const Tensor* input, const Tensor* index, int axis,
...
@@ -168,9 +168,9 @@ void GatherV2Function(const Tensor* input, const Tensor* index, int axis,
index_data
[
i
],
i
));
index_data
[
i
],
i
));
}
}
int
inner_dim_size
=
1
;
int
64_t
inner_dim_size
=
1
;
int
outer_dim_size
=
1
;
int
64_t
outer_dim_size
=
1
;
std
::
vector
<
int
>
out_dim_vec
;
std
::
vector
<
int
64_t
>
out_dim_vec
;
for
(
int
i
=
0
;
i
<
axis_index
;
i
++
)
{
for
(
int
i
=
0
;
i
<
axis_index
;
i
++
)
{
inner_dim_size
*=
input_dim
[
i
];
inner_dim_size
*=
input_dim
[
i
];
...
@@ -187,10 +187,10 @@ void GatherV2Function(const Tensor* input, const Tensor* index, int axis,
...
@@ -187,10 +187,10 @@ void GatherV2Function(const Tensor* input, const Tensor* index, int axis,
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
place
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
place
);
int
out_index
=
0
;
int
out_index
=
0
;
for
(
int
i
=
0
;
i
<
inner_dim_size
;
i
++
)
{
for
(
int
64_t
i
=
0
;
i
<
inner_dim_size
;
i
++
)
{
for
(
int
j
=
0
;
j
<
index_size
;
j
++
)
{
for
(
int
64_t
j
=
0
;
j
<
index_size
;
j
++
)
{
for
(
int
k
=
0
;
k
<
outer_dim_size
;
k
++
)
{
for
(
int
64_t
k
=
0
;
k
<
outer_dim_size
;
k
++
)
{
int
index
=
k
+
index_data
[
j
]
*
outer_dim_size
+
int
64_t
index
=
k
+
index_data
[
j
]
*
outer_dim_size
+
(
i
*
input_size
/
inner_dim_size
);
(
i
*
input_size
/
inner_dim_size
);
out_data
[
out_index
]
=
input_data
[
index
];
out_data
[
out_index
]
=
input_data
[
index
];
out_index
++
;
out_index
++
;
...
@@ -210,10 +210,10 @@ void GatherV2GradFunction(const Tensor* input, const Tensor* index,
...
@@ -210,10 +210,10 @@ void GatherV2GradFunction(const Tensor* input, const Tensor* index,
if
(
input
->
numel
()
==
0
)
return
;
if
(
input
->
numel
()
==
0
)
return
;
int
axis_index
=
axis
;
int
axis_index
=
axis
;
int
input_index_dim_size
=
input_dim
[
axis_index
];
int
64_t
input_index_dim_size
=
input_dim
[
axis_index
];
int
inner_dim_size
=
1
;
int
64_t
inner_dim_size
=
1
;
int
outer_dim_size
=
1
;
int
64_t
outer_dim_size
=
1
;
for
(
int
i
=
0
;
i
<
axis_index
;
i
++
)
{
for
(
int
i
=
0
;
i
<
axis_index
;
i
++
)
{
inner_dim_size
*=
input_dim
[
i
];
inner_dim_size
*=
input_dim
[
i
];
...
@@ -225,13 +225,13 @@ void GatherV2GradFunction(const Tensor* input, const Tensor* index,
...
@@ -225,13 +225,13 @@ void GatherV2GradFunction(const Tensor* input, const Tensor* index,
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
place
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
place
);
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
auto
out_dim
=
out
->
dims
();
auto
out_dim
=
out
->
dims
();
int
out_index_dim_size
=
out_dim
[
axis_index
];
int
64_t
out_index_dim_size
=
out_dim
[
axis_index
];
operators
::
math
::
set_constant
(
*
dev_ctx
,
out
,
0.0
);
operators
::
math
::
set_constant
(
*
dev_ctx
,
out
,
0.0
);
for
(
int
i
=
0
;
i
<
inner_dim_size
;
i
++
)
{
for
(
int
64_t
i
=
0
;
i
<
inner_dim_size
;
i
++
)
{
for
(
int
j
=
0
;
j
<
input_index_dim_size
;
j
++
)
{
for
(
int
64_t
j
=
0
;
j
<
input_index_dim_size
;
j
++
)
{
for
(
int
k
=
0
;
k
<
outer_dim_size
;
k
++
)
{
for
(
int
64_t
k
=
0
;
k
<
outer_dim_size
;
k
++
)
{
int
index
=
k
+
index_data
[
j
]
*
outer_dim_size
+
int
64_t
index
=
k
+
index_data
[
j
]
*
outer_dim_size
+
i
*
outer_dim_size
*
out_index_dim_size
;
i
*
outer_dim_size
*
out_index_dim_size
;
out_data
[
index
]
+=
input_data
[
j
*
outer_dim_size
+
k
];
out_data
[
index
]
+=
input_data
[
j
*
outer_dim_size
+
k
];
}
}
...
...
paddle/fluid/operators/scatter.h
浏览文件 @
3c457a38
...
@@ -35,34 +35,30 @@ using Tensor = framework::Tensor;
...
@@ -35,34 +35,30 @@ using Tensor = framework::Tensor;
template
<
typename
T
,
typename
IndexT
=
int
>
template
<
typename
T
,
typename
IndexT
=
int
>
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
type
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
type
elementwise_inner_add
(
const
framework
::
ExecutionContext
&
ctx
,
elementwise_inner_add
(
const
framework
::
ExecutionContext
&
ctx
,
const
T
*
src_pointer
,
const
T
*
dist_pointer
,
const
T
*
src_pointer
,
T
*
dst_pointer
,
size_t
src_index
,
T
*
result_dist_pointer
,
const
framework
::
Tensor
&
src
,
IndexT
dst_index
,
size_t
slice_size
)
{
framework
::
Tensor
*
dist
,
const
int
&
src_index
,
const
IndexT
&
dist_index
,
const
int
&
slice_size
,
const
size_t
&
slice_bytes
)
{
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
);
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
);
blas
.
VADD
(
slice_size
,
src_pointer
+
src_index
*
slice_size
,
blas
.
VADD
(
slice_size
,
src_pointer
+
src_index
*
slice_size
,
d
ist_pointer
+
di
st_index
*
slice_size
,
d
st_pointer
+
d
st_index
*
slice_size
,
result_dist_pointer
+
di
st_index
*
slice_size
);
dst_pointer
+
d
st_index
*
slice_size
);
}
}
template
<
typename
T
,
typename
IndexT
=
int
>
template
<
typename
T
,
typename
IndexT
=
int
>
typename
std
::
enable_if
<!
std
::
is_floating_point
<
T
>::
value
>::
type
typename
std
::
enable_if
<!
std
::
is_floating_point
<
T
>::
value
>::
type
elementwise_inner_add
(
const
framework
::
ExecutionContext
&
ctx
,
elementwise_inner_add
(
const
framework
::
ExecutionContext
&
ctx
,
const
T
*
src_pointer
,
const
T
*
dist_pointer
,
const
T
*
src_pointer
,
T
*
dst_pointer
,
size_t
src_index
,
T
*
result_dist_pointer
,
const
framework
::
Tensor
&
src
,
IndexT
dst_index
,
size_t
slice_size
)
{
framework
::
Tensor
*
dist
,
const
int
&
src_index
,
using
EigenVector
=
typename
framework
::
EigenTensor
<
T
,
1
>::
Type
;
const
IndexT
&
dist_index
,
const
int
&
slice_size
,
using
ConstEigenVector
=
typename
framework
::
EigenTensor
<
T
,
1
>::
ConstType
;
const
size_t
&
slice_bytes
)
{
auto
src_slice
=
src
.
Slice
(
src_index
,
src_index
+
1
);
framework
::
EigenDim
<
1
>::
Type
dim
;
auto
dist_slice
=
dist
->
Slice
(
dist_index
,
dist_index
+
1
);
dim
[
0
]
=
slice_size
;
auto
eigen_src
=
framework
::
EigenVector
<
T
>::
Flatten
(
src_slice
);
ConstEigenVector
eigen_src
(
src_pointer
+
src_index
*
slice_size
,
dim
);
auto
eigen_dist
=
framework
::
EigenVector
<
T
>::
Flatten
(
dist_slice
);
EigenVector
eigen_dst
(
dst_pointer
+
dst_index
*
slice_size
,
dim
);
eigen_dst
+=
eigen_src
;
eigen_dist
+=
eigen_src
;
}
}
/**
/**
* Return an updated tensor from source tensor, scattered according to index:
* Return an updated tensor from source tensor, scattered according to index:
* dst[i] = src[index[i]]
* dst[i] = src[index[i]]
...
@@ -91,7 +87,7 @@ void ScatterAssign(const platform::DeviceContext& ctx, const Tensor& src,
...
@@ -91,7 +87,7 @@ void ScatterAssign(const platform::DeviceContext& ctx, const Tensor& src,
"But received value is [%d]"
,
"But received value is [%d]"
,
index
.
dims
().
size
()));
index
.
dims
().
size
()));
}
}
int
index_size
=
index
.
dims
()[
0
];
int
64_t
index_size
=
index
.
dims
()[
0
];
auto
src_dims
=
src
.
dims
();
auto
src_dims
=
src
.
dims
();
auto
dst_dims
=
output
->
dims
();
auto
dst_dims
=
output
->
dims
();
...
@@ -146,7 +142,7 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
...
@@ -146,7 +142,7 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
"expect index'dims shape is 1 or 2 and index.dims[1] is 1"
"expect index'dims shape is 1 or 2 and index.dims[1] is 1"
"but got index'dims shape is %d"
,
"but got index'dims shape is %d"
,
index
.
dims
().
size
()));
index
.
dims
().
size
()));
int
index_size
=
index
.
dims
()[
0
];
int
64_t
index_size
=
index
.
dims
()[
0
];
auto
src_dims
=
src
.
dims
();
auto
src_dims
=
src
.
dims
();
auto
dst_dims
=
output
->
dims
();
auto
dst_dims
=
output
->
dims
();
...
@@ -154,8 +150,7 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
...
@@ -154,8 +150,7 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
const
T
*
p_src
=
src
.
data
<
T
>
();
const
T
*
p_src
=
src
.
data
<
T
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
const
T
*
p_output
=
output
->
data
<
T
>
();
T
*
p_output
=
output
->
data
<
T
>
();
T
*
result_p_output
=
output
->
data
<
T
>
();
// check src shape and dst shape should match
// check src shape and dst shape should match
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
i
++
)
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
i
++
)
...
@@ -174,26 +169,25 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
...
@@ -174,26 +169,25 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
const
size_t
&
slice_bytes
=
slice_size
*
sizeof
(
T
);
const
size_t
&
slice_bytes
=
slice_size
*
sizeof
(
T
);
// if not in overwrite mode, need to init output data
// if not in overwrite mode, need to init output data
for
(
int
i
=
0
;
i
<
index_size
;
++
i
)
{
for
(
int
64_t
i
=
0
;
i
<
index_size
;
++
i
)
{
const
IndexT
&
index_
=
p_index
[
i
];
const
IndexT
&
index_
val
=
p_index
[
i
];
memset
(
result_p_output
+
slice_size
*
index_
,
0
,
slice_bytes
);
memset
(
p_output
+
slice_size
*
index_val
,
0
,
slice_bytes
);
}
}
// if not in overwrite mode, need to init output data
// if not in overwrite mode, need to init output data
for
(
int
i
=
0
;
i
<
index_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
index_size
;
++
i
)
{
const
IndexT
&
index_
=
p_index
[
i
];
const
IndexT
&
index_
val
=
p_index
[
i
];
PADDLE_ENFORCE_GE
(
index_
,
0
,
PADDLE_ENFORCE_GE
(
index_
val
,
0
,
platform
::
errors
::
OutOfRange
(
platform
::
errors
::
OutOfRange
(
"The index is out of bounds, "
"The index is out of bounds, "
"please check whether the dimensions of index and "
"please check whether the dimensions of index and "
"input meet the requirements. It should "
"input meet the requirements. It should "
"be greater than or equal to 0, but received [%d]"
,
"be greater than or equal to 0, but received [%d]"
,
index_
));
index_
val
));
elementwise_inner_add
<
T
,
IndexT
>
(
ctx
,
p_src
,
p_output
,
result_p_output
,
src
,
elementwise_inner_add
<
T
,
IndexT
>
(
ctx
,
p_src
,
p_output
,
i
,
index_val
,
output
,
i
,
index_
,
slice_size
,
slice_size
);
slice_bytes
);
}
}
}
}
...
@@ -202,14 +196,14 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
...
@@ -202,14 +196,14 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
template
<
typename
T
,
typename
IndexT
=
int
>
template
<
typename
T
,
typename
IndexT
=
int
>
void
CPUScatterGradForX
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
index
,
void
CPUScatterGradForX
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
index
,
Tensor
*
output
)
{
Tensor
*
output
)
{
int
index_size
=
index
.
dims
()[
0
];
int
64_t
index_size
=
index
.
dims
()[
0
];
auto
dst_dims
=
output
->
dims
();
auto
dst_dims
=
output
->
dims
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
T
*
p_output
=
output
->
data
<
T
>
();
T
*
p_output
=
output
->
data
<
T
>
();
size_t
slice_size
=
1
;
size_t
slice_size
=
1
;
for
(
int
i
=
1
;
i
<
dst_dims
.
size
();
++
i
)
slice_size
*=
dst_dims
[
i
];
for
(
int
i
=
1
;
i
<
dst_dims
.
size
();
++
i
)
slice_size
*=
dst_dims
[
i
];
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
int
i
=
0
;
i
<
index_size
;
++
i
)
{
for
(
int
64_t
i
=
0
;
i
<
index_size
;
++
i
)
{
const
IndexT
&
index_
=
p_index
[
i
];
const
IndexT
&
index_
=
p_index
[
i
];
memset
(
p_output
+
slice_size
*
index_
,
0
,
slice_bytes
);
memset
(
p_output
+
slice_size
*
index_
,
0
,
slice_bytes
);
}
}
...
@@ -231,8 +225,7 @@ void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
...
@@ -231,8 +225,7 @@ void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
const
T
*
p_update
=
update
.
data
<
T
>
();
const
T
*
p_update
=
update
.
data
<
T
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
T
*
result_p_output
=
output
->
data
<
T
>
();
T
*
p_output
=
output
->
data
<
T
>
();
const
T
*
p_output
=
output
->
data
<
T
>
();
// final dim
// final dim
int64_t
end_size
=
index_dims
[
index_dims_size
-
1
];
int64_t
end_size
=
index_dims
[
index_dims_size
-
1
];
...
@@ -244,10 +237,9 @@ void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
...
@@ -244,10 +237,9 @@ void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
for
(
int64_t
i
=
end_size
;
i
<
output_dims_size
;
++
i
)
{
for
(
int64_t
i
=
end_size
;
i
<
output_dims_size
;
++
i
)
{
slice_size
*=
output_dims
[
i
];
slice_size
*=
output_dims
[
i
];
}
}
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
int64_t
i
=
0
;
i
<
remain_numel
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
remain_numel
;
++
i
)
{
IndexT
index_
=
0
;
IndexT
index_
val
=
0
;
IndexT
temp
=
1
;
IndexT
temp
=
1
;
for
(
int64_t
j
=
end_size
-
1
;
j
>=
0
;
--
j
)
{
for
(
int64_t
j
=
end_size
-
1
;
j
>=
0
;
--
j
)
{
IndexT
index_value
=
p_index
[
i
*
end_size
+
j
];
IndexT
index_value
=
p_index
[
i
*
end_size
+
j
];
...
@@ -260,12 +252,11 @@ void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
...
@@ -260,12 +252,11 @@ void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
"be less than [%d] and greater or equal to 0, but received [%d]"
,
"be less than [%d] and greater or equal to 0, but received [%d]"
,
output_dims
[
j
],
index_value
));
output_dims
[
j
],
index_value
));
index_
+=
(
index_value
*
temp
);
index_
val
+=
(
index_value
*
temp
);
temp
*=
output_dims
[
j
];
temp
*=
output_dims
[
j
];
}
}
elementwise_inner_add
<
T
,
IndexT
>
(
ctx
,
p_update
,
p_output
,
result_p_output
,
elementwise_inner_add
<
T
,
IndexT
>
(
ctx
,
p_update
,
p_output
,
i
,
index_val
,
update
,
output
,
i
,
index_
,
slice_size
,
slice_size
);
slice_bytes
);
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_gather_op.py
浏览文件 @
3c457a38
...
@@ -20,6 +20,7 @@ from op_test import OpTest
...
@@ -20,6 +20,7 @@ from op_test import OpTest
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.framework
import
core
from
paddle.framework
import
core
from
paddle.fluid.dygraph.base
import
switch_to_static_graph
def
gather_numpy
(
x
,
index
,
axis
):
def
gather_numpy
(
x
,
index
,
axis
):
...
@@ -247,6 +248,36 @@ class API_TestDygraphGather(unittest.TestCase):
...
@@ -247,6 +248,36 @@ class API_TestDygraphGather(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
output_np
,
expected_output
))
self
.
assertTrue
(
np
.
allclose
(
output_np
,
expected_output
))
paddle
.
enable_static
()
paddle
.
enable_static
()
def
test_large_data
(
self
):
if
not
paddle
.
is_compiled_with_cuda
():
return
x
=
np
.
random
.
rand
(
226862
,
256
).
astype
(
"float32"
)
index
=
np
.
random
.
randint
(
0
,
22682
,
size
=
(
11859027
))
def
test_dygraph
():
with
fluid
.
dygraph
.
guard
():
gpu_out
=
paddle
.
gather
(
paddle
.
to_tensor
(
x
),
paddle
.
to_tensor
(
index
))
return
gpu_out
.
numpy
()
@
switch_to_static_graph
def
test_static_graph
():
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
x_t
=
paddle
.
static
.
data
(
name
=
"x"
,
dtype
=
x
.
dtype
,
shape
=
x
.
shape
)
index_t
=
paddle
.
static
.
data
(
name
=
"index"
,
dtype
=
index
.
dtype
,
shape
=
index
.
shape
)
out_t
=
paddle
.
gather
(
x_t
,
index_t
)
feed
=
{
x_t
.
name
:
x
,
index_t
.
name
:
index
}
fetch
=
[
out_t
]
gpu_exe
=
paddle
.
static
.
Executor
(
paddle
.
CUDAPlace
(
0
))
gpu_value
=
gpu_exe
.
run
(
feed
=
feed
,
fetch_list
=
fetch
)[
0
]
return
gpu_value
self
.
assertTrue
(
np
.
array_equal
(
test_dygraph
(),
test_static_graph
()))
class
TestGathertError
(
unittest
.
TestCase
):
class
TestGathertError
(
unittest
.
TestCase
):
def
test_error1
(
self
):
def
test_error1
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_scatter_nd_op.py
浏览文件 @
3c457a38
...
@@ -19,6 +19,7 @@ import numpy as np
...
@@ -19,6 +19,7 @@ import numpy as np
from
op_test
import
OpTest
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle
import
paddle
from
paddle.fluid.dygraph.base
import
switch_to_static_graph
def
numpy_scatter_nd
(
ref
,
index
,
updates
,
fun
):
def
numpy_scatter_nd
(
ref
,
index
,
updates
,
fun
):
...
@@ -227,6 +228,50 @@ class TestScatterNdOpAPI(unittest.TestCase):
...
@@ -227,6 +228,50 @@ class TestScatterNdOpAPI(unittest.TestCase):
output4
=
fluid
.
layers
.
scatter_nd
(
output4
=
fluid
.
layers
.
scatter_nd
(
index4
,
updates4
,
shape4
,
name
=
'scatter_nd'
)
index4
,
updates4
,
shape4
,
name
=
'scatter_nd'
)
def
testcase5
(
self
):
if
not
fluid
.
core
.
is_compiled_with_cuda
():
return
shape
=
[
2
,
3
,
4
]
x
=
np
.
arange
(
int
(
np
.
prod
(
shape
))).
reshape
(
shape
)
index
=
np
.
array
([[
0
,
0
,
2
],
[
0
,
1
,
2
]])
val
=
np
.
array
([
-
1
,
-
3
])
with
fluid
.
dygraph
.
guard
():
device
=
paddle
.
get_device
()
paddle
.
set_device
(
'gpu'
)
gpu_value
=
paddle
.
scatter_nd_add
(
paddle
.
to_tensor
(
x
),
paddle
.
to_tensor
(
index
),
paddle
.
to_tensor
(
val
))
paddle
.
set_device
(
'cpu'
)
cpu_value
=
paddle
.
scatter_nd_add
(
paddle
.
to_tensor
(
x
),
paddle
.
to_tensor
(
index
),
paddle
.
to_tensor
(
val
))
self
.
assertTrue
(
np
.
array_equal
(
gpu_value
.
numpy
(),
cpu_value
.
numpy
()))
paddle
.
set_device
(
device
)
@
switch_to_static_graph
def
test_static_graph
():
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
x_t
=
paddle
.
static
.
data
(
name
=
"x"
,
dtype
=
x
.
dtype
,
shape
=
x
.
shape
)
index_t
=
paddle
.
static
.
data
(
name
=
"index"
,
dtype
=
index
.
dtype
,
shape
=
index
.
shape
)
val_t
=
paddle
.
static
.
data
(
name
=
"val"
,
dtype
=
val
.
dtype
,
shape
=
val
.
shape
)
out_t
=
paddle
.
scatter_nd_add
(
x_t
,
index_t
,
val_t
)
feed
=
{
x_t
.
name
:
x
,
index_t
.
name
:
index
,
val_t
.
name
:
val
}
fetch
=
[
out_t
]
gpu_exe
=
paddle
.
static
.
Executor
(
paddle
.
CUDAPlace
(
0
))
gpu_value
=
gpu_exe
.
run
(
feed
=
feed
,
fetch_list
=
fetch
)[
0
]
cpu_exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
cpu_value
=
cpu_exe
.
run
(
feed
=
feed
,
fetch_list
=
fetch
)[
0
]
self
.
assertTrue
(
np
.
array_equal
(
gpu_value
,
cpu_value
))
test_static_graph
()
#Test Raise Error
#Test Raise Error
class
TestScatterNdOpRaise
(
unittest
.
TestCase
):
class
TestScatterNdOpRaise
(
unittest
.
TestCase
):
...
@@ -304,4 +349,5 @@ class TestDygraph(unittest.TestCase):
...
@@ -304,4 +349,5 @@ class TestDygraph(unittest.TestCase):
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_scatter_op.py
浏览文件 @
3c457a38
...
@@ -235,4 +235,5 @@ class TestScatterInplaceAPI(TestScatterAPI):
...
@@ -235,4 +235,5 @@ class TestScatterInplaceAPI(TestScatterAPI):
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录