Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3a7761a0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
3a7761a0
编写于
3月 31, 2022
作者:
C
Chen Weihang
提交者:
GitHub
3月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove comment yamls, test=document_fix (#41221)
上级
608a749d
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
0 addition
and
435 deletion
+0
-435
python/paddle/utils/code_gen/api.yaml
python/paddle/utils/code_gen/api.yaml
+0
-255
python/paddle/utils/code_gen/backward.yaml
python/paddle/utils/code_gen/backward.yaml
+0
-180
未找到文件。
python/paddle/utils/code_gen/api.yaml
浏览文件 @
3a7761a0
# - api : norm
# args : (Tensor x, int axis, float epsilon, bool is_test)
# output : Tensor(out), Tensor(norm)
# infer_meta :
# func : NormInferMeta
# kernel :
# func : norm
# intermediate : norm
# backward : norm_grad
# # maxout
# - api : maxout
# args : (Tensor x, int groups, int axis)
# output : Tensor
# infer_meta :
# func : MaxoutInferMeta
# kernel :
# func : maxout
# backward : maxout_grad
# # batch_norm
# - api : batch_norm
# args : (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
# output : Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
# infer_meta :
# func : XXXXInferMeta
# kernel :
# func : batch_norm
# backward: batch_norm_grad
# # bilinear_tensor_product ?? optional
# - api : bilinear_tensor_product
# args : (Tensor x, Tensor y, Tensor weight, Tensor bias)
# output : Tensor
# infer_meta :
# func : BilinearTensorProductInferMeta
# kernel :
# func : bilinear_tensor_product
# backward : bilinear_tensor_product_grad
# optional : bias
# broadcast_tensors
# - api : broadcast_tensors
# args : (Tensor[] x)
# output : Tensor[]
# infer_meta :
# func : BroadcastTensorsInferMeta
# kernel :
# func : broadcast_tensors
# backward : broadcast_tensors_grad
# # dropout
# - api : dropout
# args : (Tensor x, Tensor seed_tensor, float p, bool is_test, str mode, int seed, bool fix_seed)
# output : Tensor(out), Tensor(mask)
# infer_meta :
# func : DropoutInferMeta
# kernel :
# func : dropout
# # expand
# - api : expand
# args : (Tensor x, IntArray shape)
# output : Tensor
# infer_meta :
# func : ExpandInferMeta
# kernel :
# func : expand
# backward : expand_grad
# eye
# - api : eye
# args : (int64_t num_rows, int64_t num_colums, DataType dtype = DataType::FLOAT32)
# output : Tensor
# infer_meta :
# func : EyeInferMeta
# kernel :
# func : eye
# gaussian_random
# - api : gaussian_random
# args : (IntArray shape, float mean, float std, int seed, DataType dtype=DataType::FLOAT32)
# output : Tensor
# infer_meta :
# func : CreateInferMeta
# param : [shape, dtype]
# kernel :
# func : gaussian_random
# data_type : dtype
# # graph_send_recv
# - api : graph_send_recv
# args : (Tensor x, Tensor src_index, Tensor dst_index, str pool_type)
# output : Tensor(out), Tensor(dst_count)
# infer_meta :
# func : GraphSendRecvInferMeta
# kernel :
# func : graph_send_recv
# backward : graph_send_recv_grad
# # label_smooth
# - api : label_smooth
# args : (Tensor label, Tensor prior_dist, float epsilon)
# output : Tensor
# infer_meta :
# func : UnchangedInferMeta
# param : [label]
# kernel :
# func : label_smooth
# data_type : label
# optional : prior_dist
# backward : label_smooth_grad
# linspace start stop number
# - api : linspace
# args : (Tensor start, Tensor stop, Tensor number, DataType dtype=DataType::FLOAT32)
# output : Tensor
# infer_meta :
# func : LinspaceInferMeta
# kernel :
# func : linspace
# # multi_dot
# - api : multi_dot
# args : (Tensor[] x)
# output : Tensor
# infer_meta :
# func : MultiDotInferMeta
# kernel :
# func : multi_dot
# backward : multi_dot_grad
# # nll_loss
# - api : nll_loss
# args : (Tensor x, Tensor label, Tensor weight, int64_t ignore_index, str reduction)
# output : Tensor(out), Tensor(total_weight)
# infer_meta :
# func : NllLossRawInferMeta
# kernel :
# func : nll_loss
# data_type : x
# optional : weight
# backward : nll_loss_grad
# # psroi_pool
# - api : psroi_pool
# args : (Tensor x, Tensor rois, Tensor rois_num, int pooled_weight, int pooled_width, int output_channels, float spatial_scale )
# output : Tensor
# infer_meta :
# func : PsroiPoolInferMeta
# kernel :
# func : psroi_pool
# backward : psroi_pool_grad
# optional : rois_num
# # randint
# - api : randint
# args : (int low, int high, IntArray shape, DataType dtype)
# output : Tensor
# infer_meta :
# func : RandintInferMeta
# kernel :
# func : randint
# # randperm
# - api : randperm
# args : (int n, DataType dtype)
# output : Tensor
# infer_meta :
# func : RandpermInferMeta
# kernel :
# func : randperm
# # max
# - api : max
# args : (Tensor x, int64_t[] dims, bool keep_dim)
# output : Tensor
# infer_meta :
# func : MaxInferMeta
# kernel :
# func : max
# # phi_transfer_layout | not have python api
# # truncated_gaussian_random
# - api : truncated_gaussian_random
# args : (int[] shape, float mean, float std, int seed, DataType dtype)
# output : Tensor
# infer_meta :
# func : TruncatedGaussianRandomInferMeta
# kernel :
# func : truncated_gaussian_random
# # unbind
# - api : unbind
# args : (Tensor x, int axis)
# output : Tensor[]
# infer_meta :
# func : UnbindInferMeta
# kernel :
# func : unbind
# # uniform_random_raw selected rows ??
# - api : pixel_shuffle
# args : (Tensor x, int upscale_factor, const std::string& data_format)
# output : Tensor
# infer_meta :
# func : PixelShuffleInferMeta
# kernel :
# func : pixel_shuffle
# BilinearTensorProductInferMeta
# BroadcastTensorsInferMeta
# bincount
# - api : bincount
# args : (Tensor x, Tensor weight, int minlength)
# output : Tensor
# infer_meta :
# func : BincountInferMeta
# kernel :
# func : bincount
# optional : weight
# expand_as
# - api : expand_as
# args : (Tensor x, Tensor y, int[] target_shape)
# output : Tensor
# infer_meta :
# func : ExpandAsInferMeta
# kernel :
# func : expand_as
# optional : y
# # backward : expand_as_grad
# # optional : y
# - api : equal_all
# args : (Tensor x, Tensor y)
# output : Tensor
# infer_meta :
# func : CompareAllInferMeta
# kernel :
# func : equal_all
# histogram
# - api : histogram
# args : (Tensor x, int64_t bins, int min, int max)
# output : Tensor
# infer_meta :
# func : HistogramInferMeta
# kernel :
# func : histogram
-
api
:
abs
args
:
(Tensor x)
output
:
Tensor
...
...
python/paddle/utils/code_gen/backward.yaml
浏览文件 @
3a7761a0
# - backward_api : norm_grad
# forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
# args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
# output : Tensor(x_grad)
# infer_meta :
# func : UnchangedInferMeta
# param : [x]
# kernel :
# func : norm_grad
# - backward_api : matmul_triple_grad
# forward : matmul_double_grad (Tensor x, Tensor y, Tensor out_grad, Tensor dx_grad, Tensor dy_grad, bool transpose_x, bool transpose_y) -> Tensor(d2x), Tensor(d2y), Tensor(dout_grad)
# args : (Tensor x, Tensor y, Tensor out_grad, Tensor dx_grad, Tensor dy_grad, Tensor d2x_grad, Tensor d2y_grad, Tensor dout_grad_grad, bool transpose_x, bool transpose_y)
# output : Tensor(d3x), Tensor(d3y), Tensor(d2out_grad), Tensor(ddx_grad), Tensor(ddy_grad)
# infer_meta :
# func : MatmulTripleGradInferMeta
# kernel :
# func : matmul_triple_grad
# - backward_api : maxout_grad
# forward : maxout (Tensor x, int groups, int axis) -> Tensor(out)
# args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
# output : Tensor(x_grad)
# infer_meta :
# func : UnchangedInferMeta
# param : [x]
# kernel :
# func : maxout_grad
# - backward_api : batch_norm_grad
# forward : batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
# args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending)
# output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
# infer_meta :
# func : GeneralTernaryGradInferMeta
# param : [x, scale, bias]
# kernel :
# func : batch_norm_grad
# - backward_api : bilinear_tensor_product_grad
# forward : bilinear_tensor_product (Tensor x, Tensor y, Tensor weight, Tensor bias) -> Tensor(out)
# args : (Tensor x, Tensor y, Tensor weight, Tensor out_grad)
# output : Tensor(x_grad), Tensor(y_grad), Tensor(weight_grad), Tensor(bias_grad)
# infer_meta :
# func : FourXXXXInferMeta
# param : [x, y, weight, bias]
# kernel :
# func : bilinear_tensor_product_grad
# optional : bias
# - backward_api : broadcast_tensor_grad
# forward : broadcast_tensors (Tensor[] x) -> Tensor [] (out)
# args : (Tensor [] out_grad)
# output : Tensor [] (x_grad)
# infer_meta :
# func : XXXXInferMeta
# param : [out_grad]
# kernel :
# func : broadcast_tensor_grad
# - backward_api : gumbel_softmax_grad
# forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out)
# args : (Tensor out, Tensor out_grad, int axis)
# output : Tensor(x_grad)
# infer_meta :
# func : GumbelSoftmaxGradInferMeta
# param : [out, out_grad, axis]
# kernel :
# func : gumbel_softmax_grad
# - backward_api : huber_loss_grad
# forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
# args : (Tensor residual, Tensor out_grad, float delta)
# output : Tensor(input_grad), Tensor(label_grad)
# infer_meta :
# func : GeneralBinaryGradInferMeta
# param : [x, y]
# kernel :
# func : where_grad
# - backward_api : triangular_solve_grad
# forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out)
# args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular)
# output : Tensor(x_grad), Tensor(y_grad)
# infer_meta :
# func : GeneralBinaryGradInferMeta
# param : [x, y]
# kernel :
# func : triangular_solve_grad
# - backward_api : dropout_grad
# forward : dropout (Tensor x, Tensor seed_tensor, float p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
# args : (Tensor mask, Tensor out_grad, float p, bool is_test, str mode)
# output : Tensor(x_grad)
# infer_meta :
# func : UnchangedInferMeta
# param : [out_grad]
# kernel :
# func : dropout_grad
# - backward_api : expand_as_grad
# forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out)
# args : (Tensor x, Tensor out_grad, int[] target_shape)
# output : Tensor(x_grad)
# infer_meta :
# func : UnchangedInferMeta
# param : [x]
# kernel :
# func : expand_as_grad
# - backward_api : expand_grad
# forward : expand (Tensor x, IntArray shape) -> Tensor(out)
# args : (Tensor x, Tensor out_grad, IntArray shape)
# output : Tensor(x_grad)
# infer_meta :
# func : UnchangedGradInferMeta
# param : [x]
# kernel :
# func : expand_grad
# - backward_api : graph_send_recv_grad
# forward : graph_send_recv (Tensor x, Tensor src_index, Tensor dst_index, str pool_type) -> Tensor(out), Tensor(dst_count)
# args : (Tensor out_grad, Tensor x, Tensor out, Tensor src_index, Tensor dst_index, Tensor dst_count, str pool_type)
# output : Tensor(x_grad)
# infer_meta :
# func : UnchangedInferMeta
# param : [x]
# kernel :
# func : graph_send_recv_grad
# - backward_api : multi_dot_grad
# forward : multi_dot (Tensor[] x) -> Tensor(out)
# args : (Tensor out_grad, Tensor[] x)
# output : Tensor[] (x_grad)
# infer_meta :
# func : XXXXInferMeta
# param : [x]
# kernel :
# func : multi_dot_grad
# - backward_api : pad_grad
# forward : pad (Tensor x, int[] paddings, float pad_value) -> Tensor(out)
# args : (Tensor out_grad, int[] paddings, float pad_value)
# output : Tensor(x_grad)
# infer_meta :
# func : XXXXXInferMeta
# param : [x]
# kernel :
# func : pad_grad
# - backward_api : pixel_shuffle_grad
# forward : pixel_shuffle (Tensor x, int upscale_factor, str data_format) -> Tensor(out)
# args : (Tensor out_grad, int upscale_factor, str data_format)
# output : Tensor(x_grad)
# infer_meta :
# func : XXXXXInferMeta
# param : [x]
# kernel :
# func : pixel_shuffle_grad
# - backward_api : poisson_grad
# forward : poisson (Tensor x) -> Tensor(out)
# args : ()
# output : Tensor(x_grad)
# infer_meta :
# func : XXXXXInferMeta
# param : [x]
# kernel :
# func : poisson_grad
# - backward_api : where_index_grad
# forward : where_index (Tensor condition) -> Tensor(out)
# args : (Tensor out_grad, Tensor x, int offset, int axis1, int axis2)
# output : Tensor(x_grad)
# infer_meta :
# func : UnchangedInferMeta
# param : [x]
# kernel :
# func : where_index_grad
-
backward_api
:
abs_grad
forward
:
abs (Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录