From 3a222a4dcf4e3bf05c2c24bac76e9551144e4fcb Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Sat, 9 Dec 2017 12:39:19 +0800 Subject: [PATCH] add release note --- RELEASE.cn.md | 36 ++++++++++++++++++++++++++ RELEASE.md | 72 +++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 108 insertions(+) diff --git a/RELEASE.cn.md b/RELEASE.cn.md index 5deaf230a8f..a6531061af4 100644 --- a/RELEASE.cn.md +++ b/RELEASE.cn.md @@ -1,3 +1,39 @@ +# Release v0.11.0 + +## Fluid Python API + +- PaddlePaddle发布版本v0.11.0包含一个新的特性*PaddlePaddle Fluid*. Fluid 是设计用来让用户像Pytorch和Tensorflow Eager Execution一样执行程序。在这些系统中,不再有*模型*这个概念,应用也不再包含一个用于描述Operator图或者一系列层的符号描述,而是像通用程序那样描述训练或者预测的过程。而Fluid与PyTorch或Eager Execution的区别在于Fluid不依赖Python提供的控制流,例如 if-else-then或者for,而是提供了基于C++实现的控制流并暴露了对应的用with语法实现的Python接口。例如: + + https://github.com/PaddlePaddle/Paddle/blob/3df78ed2a98d37f7ae6725894cc7514effd5664b/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44 + +- 在v0.11.0版本中,我们提供了一个C++类`Executor`用于运行一个Fluid程序。Executor类似一个解释器。在未来的版本中,我们将提升和优化Executor成为一个调试器,就像GDB。并可能提供一些编译器,这个编译器会读取一个上文所描述的应用然后编译成一个等价的 +源代码,这个源代码可以被nvcc编译成可以使用CUDA的二进制,或者被icc编译成可以充分利用Intel CPU的二进制。 + + +## 新特点 + +* 发布 `Fluid` API。 +* 增加了用于模型预测的C-API。 +* 用Fluid API实现了一个简单的GAN的例子。 +* 增加了关于性能调优的文档。 +* 为`paddle.v2.dataset`下载数据集提供了重试机制. +* C++中使用protobuf-lite替换protobuf减少了二进制的大小。 +* 发布了新特性 [Elastic Deep Learning (EDL)](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment). +* 基于Bazel API利用cmake实现了一个的新的构建系统函数库。 +* 当使用编译选项`WITH_MKL=ON`时自动下载和编译Intel® [MKLML](https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz) 函数库. +* [Intel® MKL-DNN on PaddlePaddle](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn): + - 完成了 11个 MKL-DNN 层: Convolution, Fully connectivity, Pooling, ReLU, Tanh, ELU, Softmax, BatchNorm, AddTo, Concat, LRN。 + - 完成了 3个 MKL-DNN 网络: VGG-19, ResNet-50, GoogleNet + - 基于Intel Skylake 6148 CPU的[性能测试](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) : 相对于MKLML有2~3倍的训练加速。 +* 增加 [softsign activation](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/activation.html#softsign) +* 增加 [dot product layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#dot-prod) +* 增加 [L2 distance layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#l2-distance) +* 增加 [sub-nested sequence layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#sub-nested-seq) +* 增加 [kmax sequence score layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#kmax-sequence-score) +* 增加 [sequence slice layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#seq-slice) +* 增加 [row convolution layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#row-conv) +* 增加移动端友好的网页 + # v0.10.0版本 我们非常高兴发布了PaddlePaddle V0.10.0版,并开发了新的[Python API](http://research.baidu.com/paddlepaddles-new-api-simplifies-deep-learning-programs/)。 diff --git a/RELEASE.md b/RELEASE.md index 146f7afa7df..d6aaa341a2b 100644 --- a/RELEASE.md +++ b/RELEASE.md @@ -1,3 +1,75 @@ +# Release v0.11.0 + +## Fluid Python API + +- Release 0.11.0 includes a new feature *PaddlePaddle Fluid*. Fluid is + designed to allow users to program like PyTorch and TensorFlow Eager Execution. + In these systems, there is no longer the concept *model* and applications + do not include a symbolic description of a graph of operators nor a sequence + of layers. Instead, applications look exactly like a usual program that + describes a process of training or inference. The difference between + Fluid and PyTorch or Eager Execution is that Fluid doesn't rely on Python's + control-flow, `if-then-else` nor `for`. Instead, Fluid provides its + C++ implementations and their Python binding using the `with` statement. For an example + + https://github.com/PaddlePaddle/Paddle/blob/3df78ed2a98d37f7ae6725894cc7514effd5664b/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44 + +- In 0.11.0, we provides a C++ class `Executor` to run a Fluid program. +Executor works like an interpreter. In future version, we will improve +`Executor` into a debugger like GDB, and we might provide some compilers, +which, for example, takes an application like the above one, and outputs +an equivalent C++ source program, which can be compiled using +[`nvcc`](http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html) +to generate binaries that use CUDA, or using +[`icc`](https://software.intel.com/en-us/c-compilers) to generate binaries +that make full use of Intel CPUs. + +## New Features + +* Release `Fluid` API. +* Add C-API for model inference +* Use fluid API to create a simple GAN demo. +* Add develop guide about performance tunning. +* Add retry when download `paddle.v2.dataset`. +* Linking protobuf-lite not protobuf in C++. Reduce the binary size. +* Feature [Elastic Deep Learning (EDL)](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment) released. +* A new style cmake functions for Paddle. It is based on Bazel API. +* Automatically download and compile with Intel® [MKLML](https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz) library as CBLAS when build `WITH_MKL=ON`. +* [Intel® MKL-DNN on PaddlePaddle](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn): + - Complete 11 MKL-DNN layers: Convolution, Fully connectivity, Pooling, ReLU, Tanh, ELU, Softmax, BatchNorm, AddTo, Concat, LRN. + - Complete 3 MKL-DNN networks: VGG-19, ResNet-50, GoogleNet + - [Benchmark](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) on Intel Skylake 6148 CPU: 2~3x training speedup compared with MKLML. +* Add the [`softsign` activation](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/activation.html#softsign). +* Add the [dot product layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#dot-prod). +* Add the [L2 distance layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#l2-distance). +* Add the [sub-nested sequence layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#sub-nested-seq). +* Add the [kmax sequence score layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#kmax-sequence-score). +* Add the [sequence slice layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#seq-slice). +* Add the [row convolution layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#row-conv) +* Add mobile friendly webpages. + +## Improvements + +* Build and install using a single `whl` package. +* [Custom evaluating in V2 API](https://github.com/PaddlePaddle/models/tree/develop/ltr#训练过程中输出自定义评估指标). +* Change `PADDLE_ONLY_CPU` to `PADDLE_WITH_GPU`, since we will support many kinds of devices. +* Remove buggy BarrierStat. +* Clean and remove unused functions in paddle::Parameter. +* Remove ProtoDataProvider. +* Huber loss supports both regression and classification. +* Add the `stride` parameter for sequence pooling layers. +* Enable v2 API use cudnn batch normalization automatically. +* The BN layer's parameter can be shared by a fixed the parameter name. +* Support variable-dimension input feature for 2D convolution operation. +* Refine cmake about CUDA to automatically detect GPU architecture. +* Improved website navigation. + +## Bug Fixes + +* Fix bug in ROI pooling. cc9a761 +* Fix AUC is zero when label is dense vector. #5274 +* Fix bug in WarpCTC layer. + # Release v0.10.0 We are glad to release version 0.10.0. In this version, we are happy to release the new -- GitLab