From 39ff0f9cd9b34871e916db0f242a0c884eda6521 Mon Sep 17 00:00:00 2001 From: Jiabin Yang Date: Fri, 27 Sep 2019 18:18:17 +0800 Subject: [PATCH] Optimze/optimize dygraph api (#19999) * test=develop, fix docker with paddle nccl problem * test=develop, Add Variable api and refine dygraph related API * test=develop, Add Variable api and refine dygraph related API * test=develop, refine test for new api and error info * test=develop, refine error info and test_layers * test=develop, add API.spec * test=devleop, fix to_string python2 and python3 compat error and refien doc * test=devleop, add API spec * test=devleop, update API spec * test=devleop, update API spec * test=develop, invoke ci * test=develop, fix example code * test=develop, update API spec * test=develop, add compat test and fix inplace campat dict error --- paddle/fluid/API.spec | 29 +- python/paddle/compat.py | 14 + python/paddle/fluid/clip.py | 3 +- python/paddle/fluid/dygraph/base.py | 15 +- python/paddle/fluid/framework.py | 392 ++++++++++++++---- .../fluid/tests/unittests/test_compat.py | 32 ++ .../fluid/tests/unittests/test_detach.py | 7 +- .../tests/unittests/test_imperative_basic.py | 53 +++ .../unittests/test_imperative_decorator.py | 3 +- .../unittests/test_imperative_framework.py | 2 +- .../tests/unittests/test_imperative_gnn.py | 16 +- .../unittests/test_imperative_ptb_rnn.py | 10 +- ...test_imperative_ptb_rnn_sorted_gradient.py | 10 +- ..._imperative_transformer_sorted_gradient.py | 14 +- .../fluid/tests/unittests/test_layers.py | 93 +++-- .../tests/unittests/test_program_to_string.py | 34 ++ 16 files changed, 565 insertions(+), 162 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/test_program_to_string.py diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index e90eb305f8f..74c3920674b 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -1,13 +1,13 @@ -paddle.fluid.Program ('paddle.fluid.framework.Program', ('document', '7364a01d7b9132a435e46162c7fbd6c6')) +paddle.fluid.Program ('paddle.fluid.framework.Program', ('document', '4f9e1829c89e0711355820e935d2b447')) paddle.fluid.Program.__init__ (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.Program.block (ArgSpec(args=['self', 'index'], varargs=None, keywords=None, defaults=None), ('document', '86cd9499e226be661a3d686260ee1150')) -paddle.fluid.Program.clone (ArgSpec(args=['self', 'for_test'], varargs=None, keywords=None, defaults=(False,)), ('document', '11777d4121a64566a746e55497a4b78c')) -paddle.fluid.Program.current_block (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'd601c7719e425e3d9cf862ea4ad194ca')) -paddle.fluid.Program.global_block (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'd64ea1dc96e9f674499ea3006d470aa4')) -paddle.fluid.Program.list_vars (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '32c14b0f12baae4b352200fa09b5e789')) -paddle.fluid.Program.parse_from_string (ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None), ('document', 'b6a7ffb239a30bf2ce58cfaca8d8b8d5')) -paddle.fluid.Program.to_string (ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)), ('document', '89acca639baf00f3ad08b9d827e81706')) -paddle.fluid.default_startup_program (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'ba609cb02e4e55e8d626723567ef1778')) +paddle.fluid.Program.block (ArgSpec(args=['self', 'index'], varargs=None, keywords=None, defaults=None), ('document', '28d066e432ceda86810b1e7deb8a4afa')) +paddle.fluid.Program.clone (ArgSpec(args=['self', 'for_test'], varargs=None, keywords=None, defaults=(False,)), ('document', '1e910e8c4186e8ff1afb62602f369033')) +paddle.fluid.Program.current_block (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '365e49ce9f346ac6d54265e29db447b5')) +paddle.fluid.Program.global_block (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'dd3f2b49147861d6ae48989a77482f05')) +paddle.fluid.Program.list_vars (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '757cf8d083dff9507676b17376ac5af1')) +paddle.fluid.Program.parse_from_string (ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None), ('document', '70e063a0a09d5a8ed322db0d5de9edb4')) +paddle.fluid.Program.to_string (ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)), ('document', '6dfb00cd50eb515dcf2548a68ea94bfb')) +paddle.fluid.default_startup_program (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'accb52b28228f8e93a26fabdc960f56c')) paddle.fluid.default_main_program (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '853718df675e59aea7104f3d61bbf11d')) paddle.fluid.program_guard (ArgSpec(args=['main_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,)), ('document', '78fb5c7f70ef76bcf4a1862c3f6b8191')) paddle.fluid.name_scope (ArgSpec(args=['prefix'], varargs=None, keywords=None, defaults=(None,)), ('document', '917d313881ff990de5fb18d98a9c7b42')) @@ -16,6 +16,15 @@ paddle.fluid.cpu_places (ArgSpec(args=['device_count'], varargs=None, keywords=N paddle.fluid.cuda_pinned_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', 'c2562241744aabe3fff1b59af22dd281')) paddle.fluid.in_dygraph_mode (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '301bae0d8e02cc9eec5be02f052f11c6')) paddle.fluid.is_compiled_with_cuda (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '60c7f107a5050aeb58bb74eb175672b5')) +paddle.fluid.Variable ('paddle.fluid.framework.Variable', ('document', '65ff735c2b96673d7131f5ff6b0db40c')) +paddle.fluid.Variable.__init__ (ArgSpec(args=['self', 'block', 'type', 'name', 'shape', 'dtype', 'lod_level', 'capacity', 'persistable', 'error_clip', 'stop_gradient', 'is_data', 'need_check_feed'], varargs=None, keywords='kwargs', defaults=(VarType.LOD_TENSOR, None, None, None, None, None, None, None, False, False, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) +paddle.fluid.Variable.astype (ArgSpec(args=['self', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '78541af4039262ed7ce3c447f8cc9cc1')) +paddle.fluid.Variable.backward (ArgSpec(args=['self', 'backward_strategy'], varargs=None, keywords=None, defaults=(None,)), ('document', 'cb928fa194da09694f4267f0a25268f1')) +paddle.fluid.Variable.clear_gradient (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '509a96d23c876fc5bfb10e1147e21d5f')) +paddle.fluid.Variable.detach (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '0730b2d310b014d9b0a903b2034757d7')) +paddle.fluid.Variable.gradient (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '86b246bfaf20f3058e91927abbcf9fb9')) +paddle.fluid.Variable.numpy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '7536e8feb56d827875943e7f01d406fc')) +paddle.fluid.Variable.to_string (ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)), ('document', '31f359a2c074f26dc0ffff296fc3983f')) paddle.fluid.Executor ('paddle.fluid.executor.Executor', ('document', '34e8c1769313fbeff7817212dda6259e')) paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '3a584496aa1343f36eebf3c46b323a74')) @@ -573,7 +582,7 @@ paddle.fluid.dygraph.Layer.parameters (ArgSpec(args=['self', 'include_sublayers' paddle.fluid.dygraph.Layer.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Layer.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.Layer.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.__impl__ (ArgSpec(args=['func'], varargs=None, keywords=None, defaults=()), ('document', 'fa71ad4e6c2b5bf2b5258bd1959f9b2a')) +paddle.fluid.dygraph.__impl__ (ArgSpec(args=['func'], varargs=None, keywords=None, defaults=()), ('document', '75d1d3afccc8b39cdebf05cb1f5969f9')) paddle.fluid.dygraph.guard (ArgSpec(args=['place'], varargs=None, keywords=None, defaults=(None,)), ('document', '7071320ffe2eec9aacdae574951278c6')) paddle.fluid.dygraph.to_variable (ArgSpec(args=['value', 'block', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '0e69fa3666f15dd01b6e3e270b9371cd')) paddle.fluid.dygraph.Conv2D ('paddle.fluid.dygraph.nn.Conv2D', ('document', 'baafe7ae0d3a61ae79cf4c7443e2c37c')) diff --git a/python/paddle/compat.py b/python/paddle/compat.py index 50726b6fa1b..f306ca7a360 100644 --- a/python/paddle/compat.py +++ b/python/paddle/compat.py @@ -72,6 +72,18 @@ def to_text(obj, encoding='utf-8', inplace=False): return obj else: return set([_to_text(item, encoding) for item in obj]) + elif isinstance(obj, dict): + if inplace: + new_obj = {} + for key, value in six.iteritems(obj): + new_obj[_to_text(key, encoding)] = _to_text(value, encoding) + obj.update(new_obj) + return obj + else: + new_obj = {} + for key, value in six.iteritems(obj): + new_obj[_to_text(key, encoding)] = _to_text(value, encoding) + return new_obj else: return _to_text(obj, encoding) @@ -99,6 +111,8 @@ def _to_text(obj, encoding): return obj.decode(encoding) elif isinstance(obj, six.text_type): return obj + elif isinstance(obj, (bool, float)): + return obj else: return six.u(obj) diff --git a/python/paddle/fluid/clip.py b/python/paddle/fluid/clip.py index 95d547f2f4a..aeef8505f8e 100644 --- a/python/paddle/fluid/clip.py +++ b/python/paddle/fluid/clip.py @@ -21,7 +21,6 @@ import functools from . import layers from . import framework from . import core -from .dygraph.base import _not_support __all__ = [ 'set_gradient_clip', @@ -337,7 +336,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr): return param, new_grad -@_not_support +@framework.dygraph_not_support def set_gradient_clip(clip, param_list=None, program=None): """ To specify parameters that require gradient clip. diff --git a/python/paddle/fluid/dygraph/base.py b/python/paddle/fluid/dygraph/base.py index e218544a130..762b65b551e 100644 --- a/python/paddle/fluid/dygraph/base.py +++ b/python/paddle/fluid/dygraph/base.py @@ -45,21 +45,12 @@ def _switch_tracer_mode_guard_(is_train=True): yield -def _dygraph_not_support_(func): - def __impl__(*args, **kwargs): - assert not framework.in_dygraph_mode( - ), "We don't support %s in Dygraph mode" % func.__name__ - return func(*args, **kwargs) - - return __impl__ - - def _no_grad_(func): """ This Decorator will avoid the func being decorated creating backward network in dygraph mode - Args: - func: the func don't need grad + Parameter: + - **func** (python func): the func don't need grad Examples: @@ -92,7 +83,6 @@ def _no_grad_(func): no_grad = wrap_decorator(_no_grad_) # for fluidDoc no_grad.__doc__ = _no_grad_.__doc__ -_not_support = wrap_decorator(_dygraph_not_support_) @signature_safe_contextmanager @@ -157,6 +147,7 @@ def _print_debug_msg(limit=5, is_test=False): return unique_name_size, tracer_var_size, alive_cpp_var_size +@framework.dygraph_only def to_variable(value, block=None, name=None): """ This function will create a variable from ndarray diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index a13e1f2a310..3b171ed5c68 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -18,7 +18,7 @@ import collections from collections import defaultdict from collections import Iterable import contextlib -from .wrapped_decorator import signature_safe_contextmanager +from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator import os import re import traceback @@ -28,6 +28,7 @@ import numpy as np import subprocess import multiprocessing import sys +import logging from .. import compat as cpt from .proto import framework_pb2 @@ -45,6 +46,7 @@ __all__ = [ 'cuda_pinned_places', 'in_dygraph_mode', 'is_compiled_with_cuda', + 'Variable', ] EMPTY_VAR_NAME = core.kEmptyVarName() @@ -75,6 +77,28 @@ def in_dygraph_mode(): return _dygraph_tracer_ is not None +def _dygraph_not_support_(func): + def __impl__(*args, **kwargs): + assert not in_dygraph_mode( + ), "We don't support %s in Dygraph mode" % func.__name__ + return func(*args, **kwargs) + + return __impl__ + + +def _dygraph_only_(func): + def __impl__(*args, **kwargs): + assert in_dygraph_mode( + ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__ + return func(*args, **kwargs) + + return __impl__ + + +dygraph_not_support = wrap_decorator(_dygraph_not_support_) +dygraph_only = wrap_decorator(_dygraph_only_) + + def _dygraph_tracer(): return _dygraph_tracer_ @@ -382,6 +406,11 @@ def _debug_string_(proto, throw_on_error=True): class Variable(object): """ + **Notes:** + **The constructor of Variable should not be invoked directly.** + **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.** + **In Dygraph Mode: Please use** `fluid.dygraph.to_variable()` **to create a dygraph variable with real data** + In Fluid, every input and output of an operator is a variable. In most cases, variables are used for holding different kinds of data or training labels. A variable belongs to a block. All variable has its own name and @@ -393,37 +422,9 @@ class Variable(object): Most of a Variable's member variables can be setted to be None. It mean it is not available or will be specified later. - Args: - block(Block): The block that the variable belongs to. - type(core.VarDesc.VarType): Variable type. Please reference the - framework.proto for details. - name(str|None): The name of the variable. If setted None, it will be - generated automatically. Default: None - shape(tuple|list|None): The shape of the variable. -1 means the batch size. - Some kinds of variable do not contain shape, just set it to None. - Default: None - dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable. - Default: None - lod_level (int|None): The level of lod tensor. 0 means it is not a time - series data. - Default: None - capacity (int|None): The capacity of Channel variable. Ignored for other - types. Default: None - persistable (bool|None): True if the variable is persistable. A persistable - variable will not be deleted after an iteration ending. Defaults: None. - error_clip (BaseErrorClipAttr|None): The error clip attributes of the - corresponding gradient variable. Default: None - stop_gradient (bool): True if the variable will stop to calculate its - gradients when backward. Default: False. - is_data (bool): True if the variable is an input data. Default: False - need_check_feed (bool): True if the variable is an input data and have - to check the feed data shape and dtype. Default: False - - Notes: - The constructor of Variable should not be invoked directly. Please - use `Block.create_var` to create a variable. - Examples: + In Static Graph Mode: + .. code-block:: python import paddle.fluid as fluid @@ -432,6 +433,16 @@ class Variable(object): new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') + In Dygraph Mode: + + .. code-block:: python + + import paddle.fluid as fluid + import numpy as np + + with fluid.dygraph.guard(): + new_variable = fluid.dygraph.to_variable(np.arange(10)) + """ def __init__(self, @@ -551,13 +562,19 @@ class Variable(object): self._stop_gradient = stop_gradient self.is_data = is_data + @dygraph_only def detach(self): """ + **Notes: This API is ONLY avaliable in Dygraph mode** + Returns a new Variable, detached from the current graph. - + Returns: Variable: The detached Variable. + Returns type: + Variable(Tensor|LoDTensor) dtype is same as current Variable + Examples: .. code-block:: python @@ -585,11 +602,74 @@ class Variable(object): else: raise AttributeError("static graph model DO NOT supprt detach") + @dygraph_only def numpy(self): + """ + **Notes: This API is ONLY avaliable in Dygraph mode** + + Returns a numpy array shows the value of current :ref:`api_guide_Variable` + + Returns: + ndarray: The numpy value of current Variable. + + Returns type: + ndarray dtype is same as current Variable + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + from paddle.fluid.dygraph.base import to_variable + from paddle.fluid.dygraph import FC + import numpy as np + + data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') + with fluid.dygraph.guard(): + fc = FC("fc", 64, num_flatten_dims=2) + data = to_variable(data) + x = fc(data) + print(x.numpy()) + + """ + + if not self._ivar.value().get_tensor()._is_initialized(): + raise ValueError("%s is Empty, Please check if it has no data in" % + self.name) new_ivar = self._ivar._copy_to(core.CPUPlace(), True) return np.array(new_ivar.value().get_tensor()) + @dygraph_only def backward(self, backward_strategy=None): + """ + **Notes: This API is ONLY avaliable in Dygraph mode** + + Run backward of current Graph which starts from current Variable + + Parameter: + - **backward_strategy** : ( :ref:`api_fluid_dygraph_BackwardStrategy` ) - The Backward Strategy to run backward + + Returns: None + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import numpy as np + + x = np.ones([2, 2], np.float32) + with fluid.dygraph.guard(): + inputs2 = [] + for _ in range(10): + tmp = fluid.dygraph.base.to_variable(x) + tmp.stop_gradient=False + inputs2.append(tmp) + ret2 = fluid.layers.sums(inputs2) + loss2 = fluid.layers.reduce_sum(ret2) + backward_strategy = fluid.dygraph.BackwardStrategy() + backward_strategy.sort_sum_gradient = True + loss2.backward(backward_strategy) + + """ if in_dygraph_mode(): from .dygraph import BackwardStrategy if backward_strategy is None: @@ -601,11 +681,81 @@ class Variable(object): raise ValueError( "Variable.backward() is only avaliable in DyGraph mode") + @dygraph_only def gradient(self): + """ + **Notes: This API is ONLY avaliable in Dygraph mode** + + Get the Gradient of Current Variable + + Returns: Numpy value of the gradient of current Variable + + Returns type: ndarray + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import numpy as np + + x = np.ones([2, 2], np.float32) + with fluid.dygraph.guard(): + inputs2 = [] + for _ in range(10): + tmp = fluid.dygraph.base.to_variable(x) + tmp.stop_gradient=False + inputs2.append(tmp) + ret2 = fluid.layers.sums(inputs2) + loss2 = fluid.layers.reduce_sum(ret2) + backward_strategy = fluid.dygraph.BackwardStrategy() + backward_strategy.sort_sum_gradient = True + loss2.backward(backward_strategy) + print(loss2.gradient()) + + """ + if self._ivar._grad_ivar() is None: + raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \ + "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \ + "stop_gradient=False, to make sure it has gradient " % self.name) + if not self._ivar._grad_ivar().value().get_tensor()._is_initialized(): + raise ValueError( + "%s's Grad is Empty, Please check if it has no data in" % + self.name) new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True) return np.array(new_ivar.value().get_tensor()) + @dygraph_only def clear_gradient(self): + """ + **Notes: This API is ONLY avaliable in Dygraph mode** + + Clear (set to zero) the Gradient of Current Variable + + Returns: None + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import numpy as np + + x = np.ones([2, 2], np.float32) + with fluid.dygraph.guard(): + inputs2 = [] + for _ in range(10): + tmp = fluid.dygraph.base.to_variable(x) + tmp.stop_gradient=False + inputs2.append(tmp) + ret2 = fluid.layers.sums(inputs2) + loss2 = fluid.layers.reduce_sum(ret2) + backward_strategy = fluid.dygraph.BackwardStrategy() + backward_strategy.sort_sum_gradient = True + loss2.backward(backward_strategy) + print(loss2.gradient()) + loss2.clear_gradient() + print("After clear {}".format(loss2.gradient())) + + """ self._ivar._clear_gradient() def __str__(self): @@ -615,26 +765,32 @@ class Variable(object): """ Get debug string. - Args: - throw_on_error(bool): True if raise an exception when self is + Parameters: + - **throw_on_error** (bool): True if raise an exception when self is not initialized. - with_details(bool): more details about variables and parameters + - **with_details** (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default False; Returns: str: The debug string. + Returns Type: + str + Examples: .. code-block:: python import paddle.fluid as fluid + cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') - new_variable.to_string(True) + print(new_variable.to_string(True)) + print("\n=============with detail===============\n") + print(new_variable.to_string(True, True)) """ if in_dygraph_mode(): # TODO(panyx0718): add more dygraph debug info. @@ -654,8 +810,9 @@ class Variable(object): if with_details: additional_attr = ("error_clip", "stop_gradient") for attr_name in additional_attr: - res_str += "%s: %s\n" % ( - attr_name, six.binary_type(getattr(self, attr_name))) + res_str += "%s: %s\n" % (attr_name, + cpt.to_text(getattr(self, attr_name))) + return res_str __repr__ = __str__ @@ -684,7 +841,9 @@ class Variable(object): @persistable.setter def persistable(self, p): if in_dygraph_mode(): - return self._ivar.persistable + logging.warn( + "There will be no use to set persistable in Dygraph Mode, since " + "you can just do it by hold it as normal Python variable") else: self.desc.set_persistable(p) @@ -718,6 +877,7 @@ class Variable(object): return self.desc.dtype() @property + @dygraph_not_support def lod_level(self): # TODO(minqiyang): Support lod_level in dygraph mode if in_dygraph_mode(): @@ -2945,11 +3105,10 @@ class IrGraph(object): class Program(object): """ - Python Program. Beneath it is a ProgramDesc, which is used for - create c++ Program. A program is a self-contained programing - language like container. It has at least one Block, when the - control flow op like conditional_block, while_op is included, + Create Python Program. It has at least one :ref:`api_guide_Block_en`, when the + control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included, it will contain nested block. + Please reference the framework.proto for details. A set of Program usually contains startup program and main program. @@ -2967,7 +3126,9 @@ class Program(object): default_main_program run in every mini batch and adjust the weights. Returns: - A empty program. + An empty Program. + + Return type: Program Examples: .. code-block:: python @@ -3152,16 +3313,16 @@ class Program(object): """ To debug string. - Args: - throw_on_error(bool): raise Value error when any of required fields + Parameters: + - **throw_on_error** (bool): raise Value error when any of required fields is not set. - with_details(bool): True if more details about variables and + - **with_details** (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print. Returns: - str : The debug string. + The debug string describe current Program. Raises: ValueError: If any of required fields is not set and throw_on_error is @@ -3203,12 +3364,19 @@ class Program(object): def _version(self): return self.desc._version() + @dygraph_not_support def clone(self, for_test=False): """ - Create a new, duplicated program. + **Notes**: + **1.** :code:`Program.clone()` **method DOES NOT clone** :code:`py_reader`. + **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.** + **3. This API has no effect in Dygraph Mode** + Create a new Program with forward content of original one when ``for_test=True``. + Create a new Program as the same as original one when ``for_test=False`` - Some operators, e.g., :code:`batch_norm`, behave differently between + + Some operators, e.g., :ref:`cn_api_fluid_layers_batch_norm` , behave differently between training and testing. They have an attribute, :code:`is_test`, to control this behaviour. This method will change the :code:`is_test` attribute of them to :code:`True` when :code:`for_test=True`. @@ -3217,29 +3385,27 @@ class Program(object): * Set for_test to True when we want to clone the program for testing. We will prune the backward and optimize part of the program when you use :code:`clone` after :code:`Opimizer.minimize`, but we still - recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. + recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. For example: - Notes: - 1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`. - 2. We recommend you to use :code:`clone(for_test=True)` before backward - and optimization. E.g. .. code-block:: python test_program = fluid.default_main_program().clone(for_test=True) + # Here we use clone before Momentum optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9) optimizer.minimize() - Args: - for_test(bool): True if change the :code:`is_test` attribute of + Parameters: + - **for_test** (bool) - True if change the :code:`is_test` attribute of operators to :code:`True`. - Returns: - Program: The new, duplicated Program object. + Returns: A new Program with forward content of original one when ``for_test=True``. A new Program as the same as original one when ``for_test=False`` + + Return type: Program Examples: - Notes: The Program Descs' order maybe different after :code:`clone` and + Notes: The Program's order maybe different after :code:`clone` and this will not affect your training or testing progress. In the following example we give you an simple method :code:`print_prog(program)` to print Program Descs inorder to make sure you have same print result @@ -3499,16 +3665,41 @@ class Program(object): @staticmethod def parse_from_string(binary_str): """ - Deserialize a program desc from protobuf binary string. + **Notes:** + **- All information about parameters will be lost after serialization** + **- This API has no effect in Dygraph mode** - Notes: All information about parameters will be lost after serialization - and deserialization. + Deserialize a Program from `protobuf `_ binary string. + This method always use to save and load model - Args: - binary_str_type(str): The binary prootbuf string. + Parameters: + - **binary_str_type** (str) - the binary prootbuf string. - Returns: - Program: A deserialized program desc. + Returns: Program: A deserialized Program. + + Return type: Program + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + + startup_prog = fluid.Program() + main_prog = fluid.Program() + with fluid.program_guard(startup_prog, main_prog): + x = fluid.layers.data( + name='X', shape=[1000, 784], dtype='float32', append_batch_size=False) + + y = fluid.layers.data( + name='Y', shape=[784, 100], dtype='float32', append_batch_size=False) + + z = fluid.layers.mul(x=x, y=y) + + binary_str = fluid.default_main_program().desc.serialize_to_string() + prog_restored = fluid.default_main_program().parse_from_string(binary_str) + + print(fluid.default_main_program()) + print(prog_restored) """ p = Program() p.desc = core.ProgramDesc(binary_str) @@ -3536,10 +3727,14 @@ class Program(object): @property def random_seed(self): """ + **Notes: It must be set before the operators have been added.** + The default random seed for random operators in Program. Zero means get the random seed from random device. - Notes: It must be set before the operators have been added. + Returns: random seed in current Program + + Return type: int64 Examples: .. code-block:: python @@ -3548,8 +3743,13 @@ class Program(object): prog = fluid.default_main_program() random_seed = prog.random_seed + x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False) + + # Here we need to set random seed before we use fluid.layers.dropout print(random_seed) prog.random_seed = 1 + z_var = fluid.layers.dropout(x_var, 0.7) + print(prog.random_seed) """ return self._seed @@ -3557,7 +3757,13 @@ class Program(object): @property def num_blocks(self): """ - The number of blocks in this program. + **Notes: This API has no effect in Dygraph mode** + + The number of :ref:`api_guide_Block_en` in this Program. + + Returns: num of :ref:`api_guide_Block_en` in current Program + + Return type: int(Platform-dependent size) Examples: .. code-block:: python @@ -3567,6 +3773,8 @@ class Program(object): prog = fluid.default_main_program() num_blocks = prog.num_blocks print(num_blocks) + + """ return self.desc.num_blocks() @@ -3581,7 +3789,13 @@ class Program(object): def global_block(self): """ - Get the first block of this program. + **Notes: This API has no effect in Dygraph mode** + + Get the first :ref:`api_guide_Block_en` of this Program. + + Returns: The first :ref:`api_guide_Block_en` of this Program. + + Return type: :ref:`api_guide_Block_en` Examples: .. code-block:: python @@ -3591,17 +3805,22 @@ class Program(object): prog = fluid.default_main_program() gb_block = prog.global_block() print(gb_block) + """ return self.blocks[0] def block(self, index): """ - Get the :code:`index` block of this program - Args: - index(int): The index of block to get + **Notes: This API has no effect in Dygraph mode** - Returns: - Block: The :code:`index` block + Get the :code:`index` :ref:`api_guide_Block_en` of this Program + + Parameter: + - **index** (int) - The index of :ref:`api_guide_Block_en` to get + + Returns: The :code:`index` block + + Return type: :ref:`api_guide_Block_en` Examples: .. code-block:: python @@ -3616,9 +3835,15 @@ class Program(object): def current_block(self): """ + **Notes: This API has no effect in Dygraph mode** + Get the current block. The :code:`current` block is the block to append operators. + Returns: The :code:`index` block + + Return type: Block + Examples: .. code-block:: python @@ -3741,12 +3966,14 @@ class Program(object): if var.desc.need_check_feed(): self.global_block().var(var.name).desc.set_need_check_feed(True) + @dygraph_not_support def list_vars(self): """ - Get all variables from this Program. A iterable object is returned. + Get all :ref:`api_guide_Variable` from this Program. A iterable object is returned. - Returns: - iterable: The generator will yield every variable in this program. + Returns: The Generator will yield every variable in this program. + + Return type: iterable :ref:`api_guide_Variable_en` Examples: .. code-block:: python @@ -3845,8 +4072,8 @@ class Parameter(Variable): additional_attr = ("trainable", "optimize_attr", "regularizer", "gradient_clip_attr", "do_model_average") for attr_name in additional_attr: - res_str += "%s: %s\n" % ( - attr_name, six.binary_type(getattr(self, attr_name))) + res_str += "%s: %s\n" % (attr_name, + cpt.to_text(getattr(self, attr_name))) else: res_str = Variable.to_string(self, throw_on_error, False) return res_str @@ -3871,8 +4098,9 @@ def default_startup_program(): This method will return the :code:`default` or the :code:`current` startup program. Users can use :code:`fluid.program_guard` to switch program. - Returns: - Program: startup program + Returns: current default startup program + + Returns type: Program Examples: .. code-block:: python diff --git a/python/paddle/fluid/tests/unittests/test_compat.py b/python/paddle/fluid/tests/unittests/test_compat.py index 1c2c46f99a8..0c85e85d06f 100644 --- a/python/paddle/fluid/tests/unittests/test_compat.py +++ b/python/paddle/fluid/tests/unittests/test_compat.py @@ -135,6 +135,22 @@ class TestCompatible(unittest.TestCase): self.assertEqual(l, l2) self.assertEqual(set([u"", u"123", u"321"]), l2) + # check dict types, not inplace + l = {"": ""} + l2 = cpt.to_text(l, inplace=False) + self.assertTrue(isinstance(l2, dict)) + self.assertFalse(l is l2) + self.assertEqual(l, l2) + self.assertEqual({"": ""}, l2) + + # check dict types, inplace + l = {"": ""} + l2 = cpt.to_text(l, inplace=True) + self.assertTrue(isinstance(l2, dict)) + self.assertTrue(l is l2) + self.assertEqual(l, l2) + self.assertEqual({"": ""}, l2) + elif six.PY3: self.assertIsNone(cpt.to_text(None)) @@ -236,6 +252,22 @@ class TestCompatible(unittest.TestCase): for i in l2: self.assertTrue(isinstance(i, str)) + # check dict types, not inplace + l = {"": ""} + l2 = cpt.to_text(l, inplace=False) + self.assertTrue(isinstance(l2, dict)) + self.assertFalse(l is l2) + self.assertEqual(l, l2) + self.assertEqual({"": ""}, l2) + + # check dict types, inplace + l = {"": ""} + l2 = cpt.to_text(l, inplace=True) + self.assertTrue(isinstance(l2, dict)) + self.assertTrue(l is l2) + self.assertEqual(l, l2) + self.assertEqual({"": ""}, l2) + def test_to_bytes(self): # Only support python2.x and python3.x now self.assertTrue(six.PY2 | six.PY3) diff --git a/python/paddle/fluid/tests/unittests/test_detach.py b/python/paddle/fluid/tests/unittests/test_detach.py index 684fe3298e2..6b163ee56e1 100644 --- a/python/paddle/fluid/tests/unittests/test_detach.py +++ b/python/paddle/fluid/tests/unittests/test_detach.py @@ -155,8 +155,11 @@ class Test_Detach(unittest.TestCase): try: y_detach = y.detach() except Exception as e: - assert type(e) == AttributeError - assert str(e) == 'static graph model DO NOT supprt detach' + # Here is to check + assert type(e) == AssertionError + assert str( + e + ) == 'We Only support detach in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode' if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_imperative_basic.py b/python/paddle/fluid/tests/unittests/test_imperative_basic.py index acfc1e75c0f..245c6a6ecc0 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_basic.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_basic.py @@ -207,6 +207,59 @@ class TestImperative(unittest.TestCase): a = inputs2[0].gradient() self.assertTrue(np.allclose(inputs2[0].gradient(), x)) + def test_empty_var(self): + with fluid.dygraph.guard(): + cur_program = fluid.Program() + cur_block = cur_program.current_block() + new_variable = cur_block.create_var( + name="X", shape=[-1, 23, 48], dtype='float32') + try: + new_variable.numpy() + except Exception as e: + assert type(e) == ValueError + + try: + new_variable.backward() + except Exception as e: + assert type(e) == ValueError + + try: + new_variable.clear_gradient() + except Exception as e: + assert type(e) == ValueError + + def test_empty_grad(self): + with fluid.dygraph.guard(): + x = np.ones([2, 2], np.float32) + new_var = fluid.dygraph.base.to_variable(x) + try: + new_var.gradient() + except Exception as e: + assert type(e) == ValueError + + try: + new_var.clear_gradient() + except Exception as e: + assert type(e) == ValueError + + with fluid.dygraph.guard(): + cur_program = fluid.Program() + cur_block = cur_program.current_block() + new_variable = cur_block.create_var( + name="X", shape=[-1, 23, 48], dtype='float32') + try: + new_variable.gradient() + except Exception as e: + assert type(e) == ValueError + + def test_set_persistable(self): + with fluid.dygraph.guard(): + x = np.ones([2, 2], np.float32) + new_var = fluid.dygraph.base.to_variable(x) + self.assertFalse(new_var.persistable) + new_var.persistable = True + self.assertFalse(new_var.persistable) + def test_layer(self): with fluid.dygraph.guard(): cl = core.Layer() diff --git a/python/paddle/fluid/tests/unittests/test_imperative_decorator.py b/python/paddle/fluid/tests/unittests/test_imperative_decorator.py index f55f36c00f5..504c4dbdb2a 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_decorator.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_decorator.py @@ -15,6 +15,7 @@ import paddle.fluid as fluid import paddle.fluid.framework as framework import unittest + from test_imperative_base import new_program_scope @@ -30,7 +31,7 @@ class TestTracerMode(unittest.TestCase): self.assertEqual(self.tracer._train_mode, False) return a - @fluid.dygraph.base._not_support + @framework.dygraph_not_support def not_support_func(self): return True diff --git a/python/paddle/fluid/tests/unittests/test_imperative_framework.py b/python/paddle/fluid/tests/unittests/test_imperative_framework.py index 0f83f89f7bd..d68d362f0be 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_framework.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_framework.py @@ -56,7 +56,7 @@ class TestDygraphFramework(unittest.TestCase): out.backward() raise AssertionError( "backward should not be usable in static graph mode") - except ValueError as e: + except AssertionError as e: self.assertTrue((e is not None)) def test_dygraph_to_string(self): diff --git a/python/paddle/fluid/tests/unittests/test_imperative_gnn.py b/python/paddle/fluid/tests/unittests/test_imperative_gnn.py index 8531eda8697..3ac301a8f69 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_gnn.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_gnn.py @@ -135,6 +135,8 @@ class TestDygraphGNN(unittest.TestCase): adam.minimize(loss) model.clear_gradients() + loss_value = loss.numpy() + model_gc_weight_value = model.gc.weight.numpy() with fluid.dygraph.guard(): fluid.default_startup_program().random_seed = seed @@ -157,12 +159,14 @@ class TestDygraphGNN(unittest.TestCase): adam2 = AdamOptimizer(learning_rate=1e-3) adam2.minimize(loss2) model2.clear_gradients() - - self.assertEqual(static_loss, loss.numpy()) - self.assertTrue(np.allclose(static_weight, model.gc.weight.numpy())) - self.assertEqual(static_loss, loss2.numpy()) - self.assertTrue(np.allclose(static_weight, model2.gc.weight.numpy())) - sys.stderr.write('%s %s\n' % (static_loss, loss.numpy())) + loss2_value = loss2.numpy() + model2_gc_weight_value = model2.gc.weight.numpy() + + self.assertEqual(static_loss, loss_value) + self.assertTrue(np.allclose(static_weight, model_gc_weight_value)) + self.assertEqual(static_loss, loss2_value) + self.assertTrue(np.allclose(static_weight, model2_gc_weight_value)) + sys.stderr.write('%s %s\n' % (static_loss, loss_value)) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py index 5f6c5b1cb6a..3804150f9e8 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py @@ -264,6 +264,10 @@ class TestDygraphPtbRnn(unittest.TestCase): for param in ptb_model.parameters(): dy_param_updated[param.name] = param.numpy() + dy_loss_value = dy_loss.numpy() + dy_last_cell_value = last_cell.numpy() + dy_last_hidden_value = last_hidden.numpy() + with new_program_scope(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed @@ -330,11 +334,11 @@ class TestDygraphPtbRnn(unittest.TestCase): static_param_updated[static_param_name_list[k - 3]] = out[k] - self.assertTrue(np.array_equal(static_loss_value, dy_loss.numpy())) + self.assertTrue(np.array_equal(static_loss_value, dy_loss_value)) self.assertTrue( - np.array_equal(static_last_cell_value, last_cell.numpy())) + np.array_equal(static_last_cell_value, dy_last_cell_value)) self.assertTrue( - np.array_equal(static_last_hidden_value, last_hidden.numpy())) + np.array_equal(static_last_hidden_value, dy_last_hidden_value)) for key, value in six.iteritems(static_param_init): self.assertTrue(np.array_equal(value, dy_param_init[key])) for key, value in six.iteritems(static_param_updated): diff --git a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn_sorted_gradient.py b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn_sorted_gradient.py index d3beed7b007..ca0b03c60ab 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn_sorted_gradient.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn_sorted_gradient.py @@ -84,6 +84,10 @@ class TestDygraphPtbRnnSortGradient(unittest.TestCase): for param in ptb_model.parameters(): dy_param_updated[param.name] = param.numpy() + dy_loss_value = dy_loss.numpy() + dy_last_cell_value = last_cell.numpy() + dy_last_hidden_value = last_hidden.numpy() + with new_program_scope(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed @@ -150,11 +154,11 @@ class TestDygraphPtbRnnSortGradient(unittest.TestCase): static_param_updated[static_param_name_list[k - 3]] = out[k] - self.assertTrue(np.array_equal(static_loss_value, dy_loss.numpy())) + self.assertTrue(np.array_equal(static_loss_value, dy_loss_value)) self.assertTrue( - np.array_equal(static_last_cell_value, last_cell.numpy())) + np.array_equal(static_last_cell_value, dy_last_cell_value)) self.assertTrue( - np.array_equal(static_last_hidden_value, last_hidden.numpy())) + np.array_equal(static_last_hidden_value, dy_last_hidden_value)) for key, value in six.iteritems(static_param_init): self.assertTrue(np.array_equal(value, dy_param_init[key])) for key, value in six.iteritems(static_param_updated): diff --git a/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py b/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py index 51fb66f7743..fe780df680c 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py @@ -993,6 +993,11 @@ class TestDygraphTransformerSortGradient(unittest.TestCase): for param in transformer.parameters(): dy_param_updated[param.name] = param.numpy() + dy_avg_cost_value = dy_avg_cost.numpy() + dy_sum_cost_value = dy_sum_cost.numpy() + dy_predict_value = dy_predict.numpy() + dy_token_num_value = dy_token_num.numpy() + with new_program_scope(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed @@ -1067,13 +1072,12 @@ class TestDygraphTransformerSortGradient(unittest.TestCase): 4]] = out[k] self.assertTrue( - np.array_equal(static_avg_cost_value, dy_avg_cost.numpy())) - self.assertTrue( - np.array_equal(static_sum_cost_value, dy_sum_cost.numpy())) + np.array_equal(static_avg_cost_value, dy_avg_cost_value)) self.assertTrue( - np.array_equal(static_predict_value, dy_predict.numpy())) + np.array_equal(static_sum_cost_value, dy_sum_cost_value)) + self.assertTrue(np.array_equal(static_predict_value, dy_predict_value)) self.assertTrue( - np.array_equal(static_token_num_value, dy_token_num.numpy())) + np.array_equal(static_token_num_value, dy_token_num_value)) for key, value in six.iteritems(static_param_init): self.assertTrue(np.array_equal(value, dy_param_init[key])) diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 3466a9b7829..838314115a7 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -112,9 +112,10 @@ class TestLayer(LayerTest): fc2 = nn.FC('fc2', size=4) ret = fc1(t) dy_ret = fc2(ret) + dy_ret_value = dy_ret.numpy() self.assertTrue(np.array_equal(static_ret, static_ret2)) - self.assertTrue(np.array_equal(static_ret, dy_ret.numpy())) + self.assertTrue(np.array_equal(static_ret, dy_ret_value)) def test_layer_norm(self): inp = np.ones([3, 32, 32], dtype='float32') @@ -149,6 +150,7 @@ class TestLayer(LayerTest): bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid') dy_ret = lm(base.to_variable(inp)) + dy_ret_value = dy_ret.numpy() with self.dynamic_graph(): lm = nn.LayerNorm( 'layer_norm', @@ -163,7 +165,7 @@ class TestLayer(LayerTest): self.assertFalse(hasattr(lm, "_bias_w")) self.assertTrue(np.array_equal(static_ret, static_ret2)) - self.assertTrue(np.array_equal(dy_ret.numpy(), static_ret2)) + self.assertTrue(np.array_equal(dy_ret_value, static_ret2)) def test_relu(self): with self.static_graph(): @@ -176,8 +178,9 @@ class TestLayer(LayerTest): with self.dynamic_graph(): t = np.ones([3, 3], dtype='float32') dy_ret = layers.relu(base.to_variable(t)) + dy_ret_value = dy_ret.numpy() - self.assertTrue(np.allclose(static_ret, dy_ret.numpy())) + self.assertTrue(np.allclose(static_ret, dy_ret_value)) def test_matmul(self): with self.static_graph(): @@ -197,8 +200,9 @@ class TestLayer(LayerTest): t = np.ones([3, 3], dtype='float32') t2 = np.ones([3, 3], dtype='float32') dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2)) + dy_ret_value = dy_ret.numpy() - self.assertTrue(np.allclose(static_ret, dy_ret.numpy())) + self.assertTrue(np.allclose(static_ret, dy_ret_value)) def test_conv2d(self): with self.static_graph(): @@ -222,6 +226,7 @@ class TestLayer(LayerTest): images = np.ones([2, 3, 5, 5], dtype='float32') conv2d = nn.Conv2D('conv2d', num_filters=3, filter_size=[2, 2]) dy_ret = conv2d(base.to_variable(images)) + dy_ret_value = dy_ret.numpy() with self.dynamic_graph(): images = np.ones([2, 3, 5, 5], dtype='float32') @@ -230,7 +235,7 @@ class TestLayer(LayerTest): dy_ret = conv2d(base.to_variable(images)) self.assertTrue(conv2d._bias_param is None) - self.assertTrue(np.allclose(static_ret, dy_ret.numpy())) + self.assertTrue(np.allclose(static_ret, dy_ret_value)) self.assertTrue(np.allclose(static_ret, static_ret2)) def test_gru_unit(self): @@ -269,10 +274,13 @@ class TestLayer(LayerTest): gru = nn.GRUUnit('gru', size=D * 3) dy_ret = gru( base.to_variable(input), base.to_variable(hidden_input)) + dy_ret_value = [] + for i in range(len(static_ret)): + dy_ret_value.append(dy_ret[i].numpy()) for i in range(len(static_ret)): self.assertTrue(np.allclose(static_ret[i], static_ret2[i])) - self.assertTrue(np.allclose(static_ret[i], dy_ret[i].numpy())) + self.assertTrue(np.allclose(static_ret[i], dy_ret_value[i])) def test_elementwise_math(self): n = np.ones([3, 3], dtype='float32') @@ -313,9 +321,8 @@ class TestLayer(LayerTest): ret = layers.elementwise_div(ret, n4) ret = layers.elementwise_sub(ret, n5) dy_ret = layers.elementwise_mul(ret, n6) - self.assertTrue( - np.allclose(static_ret, dy_ret.numpy()), - '%s vs %s' % (static_ret, dy_ret.numpy())) + dy_ret_value = dy_ret.numpy() + self.assertTrue(np.allclose(static_ret, dy_ret_value)) def test_elementwise_minmax(self): n = np.ones([3, 3], dtype='float32') @@ -324,9 +331,11 @@ class TestLayer(LayerTest): with self.dynamic_graph(): min_ret = layers.elementwise_min(n, n2) max_ret = layers.elementwise_max(n, n2) + min_ret_value = min_ret.numpy() + max_ret_value = max_ret.numpy() - self.assertTrue(np.allclose(n, min_ret.numpy())) - self.assertTrue(np.allclose(n2, max_ret.numpy())) + self.assertTrue(np.allclose(n, min_ret_value)) + self.assertTrue(np.allclose(n2, max_ret_value)) def test_sequence_conv(self): inp_np = np.arange(12).reshape([3, 4]).astype('float32') @@ -404,8 +413,9 @@ class TestLayer(LayerTest): act='sigmoid', bias_attr=fluid.initializer.ConstantInitializer(value=1)) dy_rlt = conv2d_transpose(base.to_variable(inp_np)) + dy_rlt_value = dy_rlt.numpy() self.assertTrue(np.allclose(static_rlt2, static_rlt)) - self.assertTrue(np.allclose(dy_rlt.numpy(), static_rlt2)) + self.assertTrue(np.allclose(dy_rlt_value, static_rlt2)) def test_bilinear_tensor_product(self): inp_np_x = np.array([[1, 2, 3]]).astype('float32') @@ -460,12 +470,12 @@ class TestLayer(LayerTest): bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid') dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y)) - + dy_rlt_value = dy_rlt.numpy() with self.dynamic_graph(): btp2 = nn.BilinearTensorProduct('btp', 6, act='sigmoid') dy_rlt2 = btp2( base.to_variable(inp_np_x), base.to_variable(inp_np_y)) - + dy_rlt2_value = dy_rlt2.numpy() with self.static_graph(): data_x2 = layers.data( name='x', @@ -484,9 +494,9 @@ class TestLayer(LayerTest): feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2])[0] - self.assertTrue(np.array_equal(dy_rlt2.numpy(), static_rlt3)) + self.assertTrue(np.array_equal(dy_rlt2_value, static_rlt3)) self.assertTrue(np.array_equal(static_rlt2, static_rlt)) - self.assertTrue(np.array_equal(dy_rlt.numpy(), static_rlt)) + self.assertTrue(np.array_equal(dy_rlt_value, static_rlt)) def test_prelu(self): inp_np = np.ones([5, 200, 100, 100]).astype('float32') @@ -525,9 +535,10 @@ class TestLayer(LayerTest): mode=mode, param_attr=ParamAttr(initializer=Constant(1.0))) dy_rlt = prelu(base.to_variable(inp_np)) + dy_rlt_value = dy_rlt.numpy() self.assertTrue(np.allclose(static_rlt2, static_rlt)) - self.assertTrue(np.allclose(dy_rlt.numpy(), static_rlt)) + self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) def test_embeding(self): inp_word = np.array([[[1]]]).astype('int64') @@ -557,10 +568,11 @@ class TestLayer(LayerTest): size=[dict_size, 32], param_attr='emb.w', is_sparse=False) - static_rlt3 = emb2(base.to_variable(inp_word)) + dy_rlt = emb2(base.to_variable(inp_word)) + dy_rlt_value = dy_rlt.numpy() self.assertTrue(np.allclose(static_rlt2, static_rlt)) - self.assertTrue(np.allclose(static_rlt3.numpy(), static_rlt)) + self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) def test_nce(self): window_size = 5 @@ -677,10 +689,11 @@ class TestLayer(LayerTest): bias_attr='nce.b', sample_weight=sample_weights) - nce_loss3 = nce(embs3, words[label_word]) + dy_rlt = nce(embs3, words[label_word]) + dy_rlt_value = dy_rlt.numpy() self.assertTrue(np.allclose(static_rlt2, static_rlt)) - self.assertTrue(np.allclose(nce_loss3.numpy(), static_rlt)) + self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) def test_conv3d(self): with self.static_graph(): @@ -706,8 +719,9 @@ class TestLayer(LayerTest): images = np.ones([2, 3, 6, 6, 6], dtype='float32') conv3d = nn.Conv3D('conv3d', num_filters=3, filter_size=2) dy_ret = conv3d(base.to_variable(images)) + dy_rlt_value = dy_ret.numpy() - self.assertTrue(np.allclose(static_ret, dy_ret.numpy())) + self.assertTrue(np.allclose(static_ret, dy_rlt_value)) self.assertTrue(np.allclose(static_ret, static_ret2)) def test_row_conv(self): @@ -800,8 +814,9 @@ class TestLayer(LayerTest): with self.dynamic_graph(): groupNorm = nn.GroupNorm('GroupNorm', groups=2) dy_ret = groupNorm(base.to_variable(input)) + dy_rlt_value = dy_ret.numpy() - self.assertTrue(np.allclose(static_ret, dy_ret.numpy())) + self.assertTrue(np.allclose(static_ret, dy_rlt_value)) self.assertTrue(np.allclose(static_ret, static_ret2)) def test_spectral_norm(self): @@ -850,8 +865,9 @@ class TestLayer(LayerTest): with self.dynamic_graph(): spectralNorm = nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2) dy_ret = spectralNorm(base.to_variable(input)) + dy_rlt_value = dy_ret.numpy() - self.assertTrue(np.allclose(static_ret, dy_ret.numpy())) + self.assertTrue(np.allclose(static_ret, dy_rlt_value)) self.assertTrue(np.allclose(static_ret, static_ret2)) def test_tree_conv(self): @@ -922,9 +938,10 @@ class TestLayer(LayerTest): treeConv = nn.TreeConv( 'SpectralNorm', output_size=6, num_filters=1, max_depth=2) dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj)) + dy_rlt_value = dy_ret.numpy() self.assertTrue(np.allclose(static_ret, static_ret2)) - self.assertTrue(np.allclose(static_ret, dy_ret.numpy())) + self.assertTrue(np.allclose(static_ret, dy_rlt_value)) def test_conv3d_transpose(self): input_array = np.arange(0, 48).reshape( @@ -953,8 +970,9 @@ class TestLayer(LayerTest): filter_size=12, use_cudnn=False) dy_rlt = conv3d_transpose(base.to_variable(input_array)) + dy_rlt_value = dy_rlt.numpy() self.assertTrue(np.allclose(static_rlt2, static_rlt)) - self.assertTrue(np.allclose(dy_rlt.numpy(), static_rlt)) + self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) def test_eye_op(self): np_eye = np.eye(3, 2) @@ -972,11 +990,14 @@ class TestLayer(LayerTest): num_columns=2, batch_shape=[4, 3]) diag_tensor = layers.eye(20) - - self.assertTrue(np.allclose(eye_tensor.numpy(), np_eye)) - self.assertTrue(np.allclose(eye_tensor_rlt1.numpy(), stack_rlt1)) - self.assertTrue(np.allclose(eye_tensor_rlt2.numpy(), stack_rlt2)) - self.assertTrue(np.allclose(diag_tensor.numpy(), np.eye(20))) + eye_tensor_value = eye_tensor.numpy() + eye_tensor_rlt1_value = eye_tensor_rlt1.numpy() + eye_tensor_rlt2_value = eye_tensor_rlt2.numpy() + diag_tensor_value = diag_tensor.numpy() + self.assertTrue(np.allclose(eye_tensor_value, np_eye)) + self.assertTrue(np.allclose(eye_tensor_rlt1_value, stack_rlt1)) + self.assertTrue(np.allclose(eye_tensor_rlt2_value, stack_rlt2)) + self.assertTrue(np.allclose(diag_tensor_value, np.eye(20))) with self.assertRaises(TypeError): layers.eye(num_rows=3.1) @@ -998,8 +1019,9 @@ class TestLayer(LayerTest): with self.dynamic_graph(): t = np.ones([3, 3], dtype='float32') dy_ret = layers.hard_swish(base.to_variable(t)) + dy_ret_rlt = dy_ret.numpy() - self.assertTrue(np.allclose(static_ret, dy_ret.numpy())) + self.assertTrue(np.allclose(static_ret, dy_ret_rlt)) def test_compare(self): value_a = np.arange(3) @@ -1017,8 +1039,8 @@ class TestLayer(LayerTest): db = base.to_variable(value_b) dcond = layers.less_than(x=da, y=db) - for i in range(len(static_ret)): - self.assertTrue(dcond.numpy()[i] == static_ret[i]) + for i in range(len(static_ret)): + self.assertTrue(dcond.numpy()[i] == static_ret[i]) # less equal with self.static_graph(): @@ -1160,8 +1182,9 @@ class TestBook(LayerTest): dy_result = method() if isinstance(dy_result, tuple): dy_result = dy_result[0] + dy_result_value = dy_result.numpy() - self.assertTrue(np.array_equal(static_result[0], dy_result.numpy())) + self.assertTrue(np.array_equal(static_result[0], dy_result_value)) def _get_np_data(self, shape, dtype, append_batch_size=True): np.random.seed(self.seed) diff --git a/python/paddle/fluid/tests/unittests/test_program_to_string.py b/python/paddle/fluid/tests/unittests/test_program_to_string.py new file mode 100644 index 00000000000..22ba43bde2a --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_program_to_string.py @@ -0,0 +1,34 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import paddle.fluid as fluid +import unittest + + +class TestProgram(unittest.TestCase): + def test_program_to_string(self): + prog = fluid.default_main_program() + a = fluid.layers.data( + name="X", shape=[2, 3], dtype="float32", append_batch_size=False) + c = fluid.layers.fc(a, size=3) + prog_string = prog.to_string(throw_on_error=True, with_details=False) + prog_string_with_details = prog.to_string( + throw_on_error=False, with_details=True) + assert prog_string is not None + assert len(prog_string_with_details) > len(prog_string) + + +if __name__ == '__main__': + unittest.main() -- GitLab