Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
39a5424e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
39a5424e
编写于
3月 09, 2021
作者:
J
Jacek Czaja
提交者:
GitHub
3月 09, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[oneDNN] elementwise add bf16 grad kernel with broadcasting (#31385)
上级
5f621321
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
131 addition
and
19 deletion
+131
-19
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+4
-1
paddle/fluid/operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
...operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
+23
-8
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+44
-0
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_add_bf16_mkldnn_op.py
...s/unittests/mkldnn/test_elementwise_add_bf16_mkldnn_op.py
+37
-4
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_add_mkldnn_op.py
.../tests/unittests/mkldnn/test_elementwise_add_mkldnn_op.py
+9
-3
python/paddle/fluid/tests/unittests/mkldnn/test_reshape_bf16_op.py
...ddle/fluid/tests/unittests/mkldnn/test_reshape_bf16_op.py
+4
-3
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+10
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
39a5424e
...
...
@@ -277,7 +277,10 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel {
#ifdef PADDLE_WITH_MKLDNN
// If broadcasting is needed, use native implementation
auto
CanMKLDNNElementwiseAddGradBeUsed
=
[
&
]()
{
return
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
auto
dx_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dy_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
// No broadcast or broadcasting of data on inner dims is supported
return
(
dx_dims
[
dx_dims
.
size
()
-
1
]
==
dy_dims
[
dy_dims
.
size
()
-
1
]);
};
if
(
this
->
CanMKLDNNBeUsed
(
ctx
,
input_data_type
)
&&
...
...
paddle/fluid/operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
浏览文件 @
39a5424e
...
...
@@ -64,16 +64,31 @@ class EltwiseAddMKLDNNGradKernel : public ElemwiseGradKernel<T> {
}
if
(
dy
)
{
// Direct copy
if
(
dout
->
dims
()
==
dy
->
dims
())
{
auto
reorder_dst_memory_p
=
handler
.
AcquireDstMemory
(
dy
,
dout
->
format
(),
ctx
.
GetPlace
());
auto
reorder_p
=
handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
platform
::
RecordEvent
record_reorder
(
"int_reorder"
,
platform
::
EventRole
::
kUniqueOp
);
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
}
else
{
// Broadcasting
platform
::
ReductionMKLDNNHandler
<
T
>
handler_sum
(
dnnl
::
algorithm
::
reduction_sum
,
0.0
f
,
0.0
f
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dy
,
ctx
.
InputName
(
framework
::
GradVarName
(
"Out"
)));
auto
dy_memory_p
=
handler_sum
.
AcquireDstMemory
(
dy
);
auto
reduction_p
=
handler_sum
.
AcquireForwardPrimitive
();
reduction_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
reorder_src_memory_p
},
{
DNNL_ARG_DST
,
*
dy_memory_p
}});
astream
.
wait
();
}
}
}
};
}
// namespace operators
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
39a5424e
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <memory>
#include <sstream>
#include <string>
...
...
@@ -621,6 +622,49 @@ class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
}
};
template
<
typename
T
>
class
ReductionMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
reduction
>
{
public:
ReductionMKLDNNHandler
(
const
dnnl
::
algorithm
algo
,
const
float
p
,
const
float
eps
,
const
MKLDNNDeviceContext
&
dev_ctx
,
const
mkldnn
::
engine
engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
const
Tensor
*
y
,
const
std
::
string
&
uniq_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
reduction
>
(
dev_ctx
,
engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
x
->
dims
()),
uniq_name
,
(
std
::
to_string
(
static_cast
<
int
>
(
algo
)))))
{
if
(
!
this
->
isCached
())
{
PADDLE_ENFORCE_EQ
(
x
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for X tensor."
));
PADDLE_ENFORCE_NE
(
x
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for X tensor."
));
const
auto
src_tz
=
framework
::
vectorize
(
x
->
dims
());
const
auto
dst_tz
=
framework
::
vectorize
(
y
->
dims
());
// For oneDNN dimensionality should match so we need to
// extend Y tensor dims with values of 1 (before and after pattern)
int
j
=
0
;
std
::
vector
<
int64_t
>
dst_tz_ex
(
src_tz
.
size
(),
1
);
for
(
size_t
i
=
0
;
i
<
src_tz
.
size
();
++
i
)
{
dst_tz_ex
[
i
]
=
(
src_tz
[
i
]
!=
dst_tz
[
j
])
?
1
:
dst_tz
[
j
++
];
}
const
auto
src_md
=
dnnl
::
memory
::
desc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
const
auto
dst_md
=
memory
::
desc
(
dst_tz_ex
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
algo
,
src_md
,
dst_md
,
p
,
eps
);
}
}
};
template
<
typename
T
>
class
ActivationMKLDNNHandler
:
public
MKLDNNHandlerT
<
T
,
mkldnn
::
eltwise_forward
,
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_add_bf16_mkldnn_op.py
浏览文件 @
39a5424e
...
...
@@ -45,13 +45,13 @@ class TestElementwiseAddBf16MklDNNOp(OpTest):
def
test_check_output
(
self
):
self
.
check_output_with_place
(
core
.
CPUPlace
())
# elementwise_add grad is just passing upper gradients to either X or Y or both
# elementwise_add grad
(no braodcasting)
is just passing upper gradients to either X or Y or both
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"X"
,
"Y"
],
"Out"
,
check_dygraph
=
False
,
user_defined_grads
=
[
self
.
x
_bf16
,
self
.
x_bf16
],
user_defined_grads
=
[
self
.
x
,
self
.
x
],
user_defined_grad_outputs
=
[
self
.
x_bf16
])
def
test_check_grad_ingore_x
(
self
):
...
...
@@ -59,7 +59,7 @@ class TestElementwiseAddBf16MklDNNOp(OpTest):
core
.
CPUPlace
(),
[
"Y"
],
"Out"
,
check_dygraph
=
False
,
user_defined_grads
=
[
self
.
y
_bf16
],
user_defined_grads
=
[
self
.
y
],
user_defined_grad_outputs
=
[
self
.
y_bf16
])
def
test_check_grad_ingore_y
(
self
):
...
...
@@ -67,7 +67,40 @@ class TestElementwiseAddBf16MklDNNOp(OpTest):
core
.
CPUPlace
(),
[
"X"
],
"Out"
,
check_dygraph
=
False
,
user_defined_grads
=
[
self
.
x_bf16
],
user_defined_grads
=
[
self
.
x
],
user_defined_grad_outputs
=
[
self
.
x_bf16
])
class
TestElementwiseAddBroadCastingBf16MklDNNOp
(
TestElementwiseAddBf16MklDNNOp
):
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
3
,
4
,
100
]).
astype
(
np
.
float32
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
np
.
float32
)
self
.
out
=
np
.
add
(
self
.
x
,
self
.
y
)
# Compute partial sums along all axes but last one
def
compute_reduced_gradients
(
self
,
out_grads
):
part_sum
=
np
.
add
.
reduceat
(
out_grads
,
[
0
],
axis
=
0
)
part_sum
=
np
.
add
.
reduceat
(
part_sum
,
[
0
],
axis
=
1
)
part_sum
=
np
.
add
.
reduceat
(
part_sum
,
[
0
],
axis
=
2
)
return
part_sum
.
flatten
()
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"X"
,
"Y"
],
"Out"
,
check_dygraph
=
False
,
user_defined_grads
=
[
self
.
x
,
self
.
compute_reduced_gradients
(
self
.
x
)
],
user_defined_grad_outputs
=
[
self
.
x_bf16
])
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"Y"
],
"Out"
,
check_dygraph
=
False
,
user_defined_grads
=
[
self
.
compute_reduced_gradients
(
self
.
x
)],
user_defined_grad_outputs
=
[
self
.
x_bf16
])
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_add_mkldnn_op.py
浏览文件 @
39a5424e
...
...
@@ -17,6 +17,7 @@ import unittest
import
numpy
as
np
from
paddle.fluid.tests.unittests.op_test
import
skip_check_grad_ci
from
paddle.fluid.tests.unittests.test_elementwise_add_op
import
TestElementwiseAddOp
from
paddle
import
enable_static
class
TestMKLDNNElementwiseAddOp
(
TestElementwiseAddOp
):
...
...
@@ -51,13 +52,17 @@ class TestMKLDNNElementwiseAddOp4(TestMKLDNNElementwiseAddOp):
def
test_check_grad_normal
(
self
):
pass
def
test_check_grad_ingore_x
(
self
):
pass
def
test_check_grad_ingore_y
(
self
):
pass
class
TestMKLDNNElementwiseAddOp5
(
TestMKLDNNElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
3
,
4
,
100
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
add
(
self
.
x
,
self
.
y
)
class
TestMKLDNNElementwiseAddOp_broadcast_3
(
TestMKLDNNElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
self
.
dtype
)
...
...
@@ -150,4 +155,5 @@ class TestUint8Scales(TestInt8Scales):
if
__name__
==
'__main__'
:
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_reshape_bf16_op.py
浏览文件 @
39a5424e
...
...
@@ -50,8 +50,9 @@ class TestReshapeBf16Op(OpTest):
self
.
infered_shape
=
(
10
,
2
,
3
,
-
1
)
def
init_input_data
(
self
):
self
.
input_data
=
convert_float_to_uint16
(
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
np
.
float32
))
self
.
input_data_fp32
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
np
.
float32
)
self
.
input_data
=
convert_float_to_uint16
(
self
.
input_data_fp32
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
core
.
CPUPlace
(),
no_check_set
=
[
'XShape'
])
...
...
@@ -61,7 +62,7 @@ class TestReshapeBf16Op(OpTest):
core
.
CPUPlace
(),
[
"X"
],
"Out"
,
check_dygraph
=
False
,
user_defined_grads
=
[
self
.
input
s
[
"X"
]
],
user_defined_grads
=
[
self
.
input
_data_fp32
],
user_defined_grad_outputs
=
[
self
.
inputs
[
"X"
].
reshape
(
self
.
infered_shape
)
])
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
39a5424e
...
...
@@ -1452,6 +1452,16 @@ class OpTest(unittest.TestCase):
analytic_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place
,
output_names
,
no_grad_set
,
user_defined_grad_outputs
)
# comparison of bf16 results will happen as fp32
# loop over list of grads and convert bf16 to fp32
fp32_grads
=
[]
for
grad
in
analytic_grads
:
if
grad
.
dtype
==
np
.
uint16
:
grad
=
convert_uint16_to_float
(
grad
)
max_relative_error
=
0.03
fp32_grads
.
append
(
grad
)
analytic_grads
=
fp32_grads
self
.
_assert_is_close
(
numeric_grads
,
analytic_grads
,
inputs_to_check
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录