Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3900d562
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3900d562
编写于
12月 21, 2022
作者:
姜
姜永久
提交者:
GitHub
12月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm unittests eager guard test part15 layers2maxout (#48837)
上级
53ce406a
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
18 addition
and
632 deletion
+18
-632
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+4
-555
python/paddle/fluid/tests/unittests/test_limit_by_capacity_op.py
...paddle/fluid/tests/unittests/test_limit_by_capacity_op.py
+1
-7
python/paddle/fluid/tests/unittests/test_linalg_cond.py
python/paddle/fluid/tests/unittests/test_linalg_cond.py
+3
-19
python/paddle/fluid/tests/unittests/test_linspace.py
python/paddle/fluid/tests/unittests/test_linspace.py
+0
-6
python/paddle/fluid/tests/unittests/test_logical_op.py
python/paddle/fluid/tests/unittests/test_logical_op.py
+8
-10
python/paddle/fluid/tests/unittests/test_logit_op.py
python/paddle/fluid/tests/unittests/test_logit_op.py
+0
-6
python/paddle/fluid/tests/unittests/test_lookahead.py
python/paddle/fluid/tests/unittests/test_lookahead.py
+1
-7
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
+0
-10
python/paddle/fluid/tests/unittests/test_max_op.py
python/paddle/fluid/tests/unittests/test_max_op.py
+0
-5
python/paddle/fluid/tests/unittests/test_maxout_op.py
python/paddle/fluid/tests/unittests/test_maxout_op.py
+1
-7
未找到文件。
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
3900d562
...
...
@@ -27,12 +27,7 @@ import paddle.fluid.nets as nets
import
paddle.nn.functional
as
F
from
paddle.fluid
import
core
from
paddle.fluid.dygraph
import
base
,
to_variable
from
paddle.fluid.framework
import
(
Program
,
_test_eager_guard
,
default_main_program
,
program_guard
,
)
from
paddle.fluid.framework
import
Program
,
default_main_program
,
program_guard
from
paddle.tensor
import
random
...
...
@@ -102,14 +97,6 @@ class TestLayer(LayerTest):
return
ret
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
inp
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
x
=
base
.
to_variable
(
inp
)
custom
=
CustomLayer
(
input_size
=
3
,
linear1_size
=
2
)
ret
=
custom
(
x
,
do_linear2
=
False
)
np
.
testing
.
assert_array_equal
(
ret
.
numpy
().
shape
,
[
3
,
2
])
ret
=
custom
(
x
,
do_linear2
=
True
)
np
.
testing
.
assert_array_equal
(
ret
.
numpy
().
shape
,
[
3
,
1
])
inp
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
x
=
base
.
to_variable
(
inp
)
custom
=
CustomLayer
(
input_size
=
3
,
linear1_size
=
2
)
...
...
@@ -134,14 +121,6 @@ class TestLayer(LayerTest):
feed
=
{
'data'
:
inp
},
fetch_list
=
[
ret
,
ret2
]
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
base
.
to_variable
(
inp
)
dropout
=
paddle
.
nn
.
Dropout
(
p
=
0.35
)
dy_eager_ret
=
dropout
(
t
)
dy_eager_ret2
=
paddle
.
nn
.
functional
.
dropout
(
t
,
p
=
0.35
)
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
dy_eager_ret2_value
=
dy_eager_ret2
.
numpy
()
t
=
base
.
to_variable
(
inp
)
dropout
=
paddle
.
nn
.
Dropout
(
p
=
0.35
)
dy_ret
=
dropout
(
t
)
...
...
@@ -149,9 +128,6 @@ class TestLayer(LayerTest):
dy_ret_value
=
dy_ret
.
numpy
()
dy_ret2_value
=
dy_ret2
.
numpy
()
np
.
testing
.
assert_array_equal
(
dy_eager_ret_value
,
dy_eager_ret2_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_eager_ret_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
static_ret2
)
np
.
testing
.
assert_array_equal
(
dy_ret_value
,
dy_ret2_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_ret_value
)
...
...
@@ -173,16 +149,6 @@ class TestLayer(LayerTest):
feed
=
{
'data'
:
inp
},
fetch_list
=
[
ret
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
base
.
to_variable
(
inp
)
linear
=
paddle
.
nn
.
Linear
(
32
,
4
,
bias_attr
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
1
),
)
dy_eager_ret
=
linear
(
t
)
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
base
.
to_variable
(
inp
)
linear
=
paddle
.
nn
.
Linear
(
32
,
4
,
bias_attr
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
1
)
...
...
@@ -190,7 +156,6 @@ class TestLayer(LayerTest):
dy_ret
=
linear
(
t
)
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_eager_ret_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_ret_value
)
with
self
.
static_graph
():
...
...
@@ -275,18 +240,11 @@ class TestLayer(LayerTest):
feed
=
{
'data'
:
inp
},
fetch_list
=
[
ret
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
base
.
to_variable
(
inp
)
flatten
=
paddle
.
nn
.
Flatten
()
dy_eager_ret
=
flatten
(
t
)
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
base
.
to_variable
(
inp
)
flatten
=
paddle
.
nn
.
Flatten
()
dy_ret
=
flatten
(
t
)
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_eager_ret_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_ret_value
)
with
self
.
static_graph
():
...
...
@@ -328,18 +286,11 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
np
.
ones
([
3
,
3
,
5
,
5
],
dtype
=
'float32'
)
my_syncbn
=
paddle
.
nn
.
SyncBatchNorm
(
3
)
dy_eager_ret
=
my_syncbn
(
base
.
to_variable
(
t
))
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
np
.
ones
([
3
,
3
,
5
,
5
],
dtype
=
'float32'
)
my_syncbn
=
paddle
.
nn
.
SyncBatchNorm
(
3
)
dy_ret
=
my_syncbn
(
base
.
to_variable
(
t
))
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_ret_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_eager_ret_value
)
def
test_relu
(
self
):
with
self
.
static_graph
():
...
...
@@ -350,17 +301,11 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_eager_ret
=
F
.
relu
(
base
.
to_variable
(
t
))
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_ret
=
F
.
relu
(
base
.
to_variable
(
t
))
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_ret_value
,
rtol
=
1e-05
)
def
test_matmul
(
self
):
with
self
.
static_graph
():
...
...
@@ -376,21 +321,12 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
t2
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_eager_ret
=
paddle
.
matmul
(
base
.
to_variable
(
t
),
base
.
to_variable
(
t2
)
)
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
t2
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_ret
=
paddle
.
matmul
(
base
.
to_variable
(
t
),
base
.
to_variable
(
t2
))
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_ret_value
,
rtol
=
1e-05
)
def
test_elementwise_math
(
self
):
n
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
...
...
@@ -420,14 +356,6 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
ret
=
paddle
.
add
(
to_variable
(
n
),
to_variable
(
n2
))
ret
=
paddle
.
pow
(
ret
,
to_variable
(
n3
))
ret
=
paddle
.
divide
(
ret
,
to_variable
(
n4
))
ret
=
paddle
.
subtract
(
ret
,
to_variable
(
n5
))
dy_eager_ret
=
paddle
.
multiply
(
ret
,
to_variable
(
n6
))
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
ret
=
paddle
.
add
(
to_variable
(
n
),
to_variable
(
n2
))
ret
=
paddle
.
pow
(
ret
,
to_variable
(
n3
))
ret
=
paddle
.
divide
(
ret
,
to_variable
(
n4
))
...
...
@@ -436,19 +364,12 @@ class TestLayer(LayerTest):
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_ret_value
,
rtol
=
1e-05
)
def
test_elementwise_minmax
(
self
):
n
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
n2
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
*
2
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
min_eager_ret
=
paddle
.
minimum
(
to_variable
(
n
),
to_variable
(
n2
))
max_eager_ret
=
paddle
.
maximum
(
to_variable
(
n
),
to_variable
(
n2
))
min_eager_ret_value
=
min_eager_ret
.
numpy
()
max_eager_ret_value
=
max_eager_ret
.
numpy
()
min_ret
=
paddle
.
minimum
(
to_variable
(
n
),
to_variable
(
n2
))
max_ret
=
paddle
.
maximum
(
to_variable
(
n
),
to_variable
(
n2
))
min_ret_value
=
min_ret
.
numpy
()
...
...
@@ -456,8 +377,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_allclose
(
n
,
min_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
n2
,
max_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
n
,
min_eager_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
n2
,
max_eager_ret_value
,
rtol
=
1e-05
)
def
test_conv2d_transpose
(
self
):
inp_np
=
np
.
arange
(
0
,
24
).
reshape
([
2
,
3
,
2
,
2
]).
astype
(
'float32'
)
...
...
@@ -487,17 +406,6 @@ class TestLayer(LayerTest):
feed
=
{
'pixel'
:
inp_np
},
fetch_list
=
[
out
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
conv2d_transpose
=
paddle
.
nn
.
Conv2DTranspose
(
3
,
10
,
27
,
bias_attr
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
1
),
)
dy_eager_rlt
=
conv2d_transpose
(
base
.
to_variable
(
inp_np
))
dy_eager_rlt
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_eager_rlt
)
dy_eager_rlt_value
=
dy_eager_rlt
.
numpy
()
conv2d_transpose
=
paddle
.
nn
.
Conv2DTranspose
(
3
,
10
,
...
...
@@ -509,53 +417,8 @@ class TestLayer(LayerTest):
dy_rlt_value
=
dy_rlt
.
numpy
()
np
.
testing
.
assert_allclose
(
static_rlt2
,
static_rlt
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
dy_rlt_value
,
static_rlt2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
dy_eager_rlt_value
,
static_rlt2
,
rtol
=
1e-05
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
images
=
np
.
ones
([
2
,
3
,
5
,
5
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
conv2d1
=
paddle
.
nn
.
Conv2DTranspose
(
3
,
3
,
[
2
,
2
])
conv2d2
=
paddle
.
nn
.
Conv2DTranspose
(
3
,
3
,
[
2
,
2
],
weight_attr
=
weight_attr
,
)
dy_ret1
=
conv2d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv2d2
(
base
.
to_variable
(
images
))
self
.
assertFalse
(
np
.
array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
)
conv2d1_weight_np
=
conv2d1
.
weight
.
numpy
()
conv2d1_bias
=
conv2d1
.
bias
self
.
assertFalse
(
np
.
array_equal
(
conv2d1_weight_np
,
conv2d2
.
weight
.
numpy
())
)
conv2d2
.
weight
.
set_value
(
conv2d1_weight_np
)
np
.
testing
.
assert_array_equal
(
conv2d1_weight_np
,
conv2d2
.
weight
.
numpy
()
)
conv2d2
.
bias
.
set_value
(
conv2d1_bias
)
dy_ret1
=
conv2d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv2d2
(
base
.
to_variable
(
images
))
np
.
testing
.
assert_array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
conv2d2
.
weight
=
conv2d1
.
weight
conv2d2
.
bias
=
conv2d1
.
bias
np
.
testing
.
assert_array_equal
(
conv2d1
.
weight
.
numpy
(),
conv2d2
.
weight
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
conv2d1
.
bias
.
numpy
(),
conv2d2
.
bias
.
numpy
()
)
images
=
np
.
ones
([
2
,
3
,
5
,
5
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
...
...
@@ -660,19 +523,6 @@ class TestLayer(LayerTest):
feed
=
{
'x'
:
inp_np_x
,
'y'
:
inp_np_y
},
fetch_list
=
[
out
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
btp
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
,
bias_attr
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
1
),
)
dy_eager_rlt
=
btp
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_eager_rlt
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_eager_rlt
)
dy_eager_rlt_value
=
dy_eager_rlt
.
numpy
()
btp
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
...
...
@@ -684,14 +534,6 @@ class TestLayer(LayerTest):
dy_rlt_value
=
dy_rlt
.
numpy
()
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
btp2
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
)
dy_eager_rlt2
=
btp2
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_eager_rlt2
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_eager_rlt2
)
dy_eager_rlt2_value
=
dy_eager_rlt2
.
numpy
()
btp2
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
)
dy_rlt2
=
btp2
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
...
...
@@ -715,51 +557,10 @@ class TestLayer(LayerTest):
)[
0
]
np
.
testing
.
assert_array_equal
(
dy_rlt2_value
,
static_rlt3
)
np
.
testing
.
assert_array_equal
(
dy_eager_rlt2_value
,
static_rlt3
)
np
.
testing
.
assert_array_equal
(
static_rlt2
,
static_rlt
)
np
.
testing
.
assert_array_equal
(
dy_rlt_value
,
static_rlt
)
np
.
testing
.
assert_array_equal
(
dy_eager_rlt_value
,
static_rlt
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
custom_weight
=
np
.
random
.
randn
(
6
,
3
,
3
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
btp1
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
)
btp2
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
,
weight_attr
=
weight_attr
)
dy_rlt1
=
btp1
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_rlt1
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_rlt1
)
dy_rlt2
=
btp2
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_rlt2
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_rlt2
)
self
.
assertFalse
(
np
.
array_equal
(
dy_rlt1
.
numpy
(),
dy_rlt2
.
numpy
())
)
btp2
.
weight
.
set_value
(
btp1
.
weight
.
numpy
())
btp2
.
bias
.
set_value
(
btp1
.
bias
)
dy_rlt1
=
btp1
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_rlt2
=
btp2
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
np
.
testing
.
assert_array_equal
(
dy_rlt1
.
numpy
(),
dy_rlt2
.
numpy
())
btp2
.
weight
=
btp1
.
weight
btp2
.
bias
=
btp1
.
bias
np
.
testing
.
assert_array_equal
(
btp1
.
weight
.
numpy
(),
btp2
.
weight
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
btp1
.
bias
.
numpy
(),
btp2
.
bias
.
numpy
()
)
custom_weight
=
np
.
random
.
randn
(
6
,
3
,
3
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
...
...
@@ -818,15 +619,6 @@ class TestLayer(LayerTest):
feed
=
{
'word'
:
inp_word
},
fetch_list
=
[
emb_rlt
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
emb2
=
paddle
.
nn
.
Embedding
(
dict_size
,
32
,
weight_attr
=
'eager_emb.w'
,
sparse
=
False
,
)
dy_eager_rlt
=
emb2
(
base
.
to_variable
(
inp_word
))
dy_eager_rlt_value
=
dy_eager_rlt
.
numpy
()
emb2
=
paddle
.
nn
.
Embedding
(
dict_size
,
32
,
weight_attr
=
'emb.w'
,
sparse
=
False
...
...
@@ -836,41 +628,8 @@ class TestLayer(LayerTest):
self
.
assertTrue
(
np
.
allclose
(
static_rlt2
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
dy_rlt_value
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
dy_eager_rlt_value
,
static_rlt
))
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
custom_weight
=
np
.
random
.
randn
(
dict_size
,
32
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
emb1
=
paddle
.
nn
.
Embedding
(
dict_size
,
32
,
sparse
=
False
)
emb2
=
paddle
.
nn
.
Embedding
(
dict_size
,
32
,
weight_attr
=
weight_attr
,
sparse
=
False
,
)
rep1
=
emb1
(
base
.
to_variable
(
inp_word
))
rep2
=
emb2
(
base
.
to_variable
(
inp_word
))
self
.
assertFalse
(
np
.
array_equal
(
emb1
.
weight
.
numpy
(),
custom_weight
)
)
np
.
testing
.
assert_array_equal
(
emb2
.
weight
.
numpy
(),
custom_weight
)
self
.
assertFalse
(
np
.
array_equal
(
rep1
.
numpy
(),
rep2
.
numpy
()))
emb2
.
weight
.
set_value
(
emb1
.
weight
.
numpy
())
rep2
=
emb2
(
base
.
to_variable
(
inp_word
))
np
.
testing
.
assert_array_equal
(
rep1
.
numpy
(),
rep2
.
numpy
())
emb2
.
weight
=
emb1
.
weight
np
.
testing
.
assert_array_equal
(
emb1
.
weight
.
numpy
(),
emb2
.
weight
.
numpy
()
)
custom_weight
=
np
.
random
.
randn
(
dict_size
,
32
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
...
...
@@ -897,18 +656,6 @@ class TestLayer(LayerTest):
def
test_one_hot
(
self
):
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
label
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([[
1
],
[
1
],
[
3
],
[
0
]])
)
one_hot_label1
=
fluid
.
layers
.
one_hot
(
input
=
label
,
depth
=
4
)
one_hot_label2
=
fluid
.
layers
.
one_hot
(
input
=
label
,
depth
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
4
]))
)
np
.
testing
.
assert_array_equal
(
one_hot_label1
.
numpy
(),
one_hot_label2
.
numpy
()
)
label
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([[
1
],
[
1
],
[
3
],
[
0
]]))
one_hot_label1
=
fluid
.
layers
.
one_hot
(
input
=
label
,
depth
=
4
)
one_hot_label2
=
fluid
.
layers
.
one_hot
(
...
...
@@ -920,17 +667,6 @@ class TestLayer(LayerTest):
def
test_split
(
self
):
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
3
,
8
,
5
)))
x0
,
x1
=
paddle
.
split
(
input
,
num_or_sections
=
2
,
axis
=
1
)
x00
,
x11
=
paddle
.
split
(
input
,
num_or_sections
=
2
,
axis
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
1
])),
)
np
.
testing
.
assert_array_equal
(
x0
.
numpy
(),
x00
.
numpy
())
np
.
testing
.
assert_array_equal
(
x1
.
numpy
(),
x11
.
numpy
())
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
3
,
8
,
5
)))
x0
,
x1
=
paddle
.
split
(
input
,
num_or_sections
=
2
,
axis
=
1
)
x00
,
x11
=
paddle
.
split
(
...
...
@@ -943,19 +679,6 @@ class TestLayer(LayerTest):
def
test_topk
(
self
):
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
13
,
11
)))
top5_values1
,
top5_indices1
=
paddle
.
topk
(
input
,
k
=
5
)
top5_values2
,
top5_indices2
=
paddle
.
topk
(
input
,
k
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
5
]))
)
np
.
testing
.
assert_array_equal
(
top5_values1
.
numpy
(),
top5_values2
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
top5_indices1
.
numpy
(),
top5_indices2
.
numpy
()
)
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
13
,
11
)))
top5_values1
,
top5_indices1
=
paddle
.
topk
(
input
,
k
=
5
)
top5_values2
,
top5_indices2
=
paddle
.
topk
(
...
...
@@ -995,14 +718,6 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
paddle
.
nn
.
Conv3D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
)
dy_eager_ret
=
conv3d
(
base
.
to_variable
(
images
))
dy_eager_rlt_value
=
dy_eager_ret
.
numpy
()
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
paddle
.
nn
.
Conv3D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
...
...
@@ -1011,56 +726,9 @@ class TestLayer(LayerTest):
dy_rlt_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
static_ret2
,
rtol
=
1e-05
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
conv3d1
=
paddle
.
nn
.
Conv3D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
)
conv3d2
=
paddle
.
nn
.
Conv3D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
,
weight_attr
=
weight_attr
,
)
dy_ret1
=
conv3d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv3d2
(
base
.
to_variable
(
images
))
self
.
assertFalse
(
np
.
array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
)
conv3d1_weight_np
=
conv3d1
.
weight
.
numpy
()
conv3d1_bias
=
conv3d1
.
bias
self
.
assertFalse
(
np
.
array_equal
(
conv3d1_weight_np
,
conv3d2
.
weight
.
numpy
())
)
conv3d2
.
weight
.
set_value
(
conv3d1_weight_np
)
np
.
testing
.
assert_array_equal
(
conv3d1_weight_np
,
conv3d2
.
weight
.
numpy
()
)
conv3d1
.
bias
.
set_value
(
conv3d1_bias
)
dy_ret1
=
conv3d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv3d2
(
base
.
to_variable
(
images
))
np
.
testing
.
assert_array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
conv3d2
.
weight
=
conv3d1
.
weight
conv3d2
.
bias
=
conv3d1
.
bias
np
.
testing
.
assert_array_equal
(
conv3d1
.
weight
.
numpy
(),
conv3d2
.
weight
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
conv3d1
.
bias
.
numpy
(),
conv3d2
.
bias
.
numpy
()
)
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
...
...
@@ -1104,7 +772,7 @@ class TestLayer(LayerTest):
conv3d1
.
bias
.
numpy
(),
conv3d2
.
bias
.
numpy
()
)
def
func
_group_norm
(
self
):
def
test
_group_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
...
...
@@ -1176,11 +844,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
static_ret2
,
rtol
=
1e-05
)
def
test_group_norm
(
self
):
with
_test_eager_guard
():
self
.
func_group_norm
()
self
.
func_group_norm
()
def
test_instance_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
...
...
@@ -1211,29 +874,17 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
instanceNorm
=
paddle
.
nn
.
InstanceNorm2D
(
num_features
=
shape
[
1
])
dy_eager_ret
=
instanceNorm
(
base
.
to_variable
(
input
))
dy_eager_rlt_value
=
dy_eager_ret
.
numpy
()
instanceNorm
=
paddle
.
nn
.
InstanceNorm2D
(
num_features
=
shape
[
1
])
dy_ret
=
instanceNorm
(
base
.
to_variable
(
input
))
dy_rlt_value
=
dy_ret
.
numpy
()
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
instanceNorm
=
paddle
.
nn
.
InstanceNorm2D
(
num_features
=
shape
[
1
])
dy_eager_ret
=
instanceNorm
(
base
.
to_variable
(
input
))
dy_eager_rlt_value2
=
dy_eager_ret
.
numpy
()
instanceNorm
=
paddle
.
nn
.
InstanceNorm2D
(
num_features
=
shape
[
1
])
dy_ret
=
instanceNorm
(
base
.
to_variable
(
input
))
dy_rlt_value2
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_rlt_value2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
static_ret2
,
rtol
=
1e-05
)
with
self
.
static_graph
():
...
...
@@ -1302,19 +953,11 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
spectralNorm
=
paddle
.
nn
.
SpectralNorm
(
shape
,
axis
=
1
,
power_iters
=
2
)
dy_eager_ret
=
spectralNorm
(
base
.
to_variable
(
input
))
dy_eager_rlt_value
=
dy_eager_ret
.
numpy
()
spectralNorm
=
paddle
.
nn
.
SpectralNorm
(
shape
,
axis
=
1
,
power_iters
=
2
)
dy_ret
=
spectralNorm
(
base
.
to_variable
(
input
))
dy_rlt_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
static_ret2
,
rtol
=
1e-05
)
def
test_conv3d_transpose
(
self
):
...
...
@@ -1340,15 +983,6 @@ class TestLayer(LayerTest):
feed
=
{
'pixel'
:
input_array
},
fetch_list
=
[
out
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
conv3d_transpose
=
paddle
.
nn
.
Conv3DTranspose
(
in_channels
=
3
,
out_channels
=
12
,
kernel_size
=
12
,
)
dy_eager_rlt
=
conv3d_transpose
(
base
.
to_variable
(
input_array
))
dy_eager_rlt_value
=
dy_eager_rlt
.
numpy
()
conv3d_transpose
=
paddle
.
nn
.
Conv3DTranspose
(
in_channels
=
3
,
out_channels
=
12
,
kernel_size
=
12
)
...
...
@@ -1356,59 +990,8 @@ class TestLayer(LayerTest):
dy_rlt_value
=
dy_rlt
.
numpy
()
np
.
testing
.
assert_allclose
(
static_rlt2
,
static_rlt
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
dy_rlt_value
,
static_rlt
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
dy_eager_rlt_value
,
static_rlt
,
rtol
=
1e-05
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
conv3d1
=
paddle
.
nn
.
Conv3DTranspose
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
,
bias_attr
=
'eager_conv3d1_b'
,
)
conv3d2
=
paddle
.
nn
.
Conv3DTranspose
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
,
weight_attr
=
weight_attr
,
bias_attr
=
'eager_conv3d2_b'
,
)
dy_ret1
=
conv3d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv3d2
(
base
.
to_variable
(
images
))
self
.
assertFalse
(
np
.
array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
)
conv3d1_weight_np
=
conv3d1
.
weight
.
numpy
()
conv3d1_bias
=
conv3d1
.
bias
self
.
assertFalse
(
np
.
array_equal
(
conv3d1_weight_np
,
conv3d2
.
weight
.
numpy
())
)
conv3d2
.
weight
.
set_value
(
conv3d1_weight_np
)
np
.
testing
.
assert_array_equal
(
conv3d1_weight_np
,
conv3d2
.
weight
.
numpy
()
)
conv3d1
.
bias
.
set_value
(
conv3d1_bias
)
dy_ret1
=
conv3d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv3d2
(
base
.
to_variable
(
images
))
np
.
testing
.
assert_array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
conv3d2
.
weight
=
conv3d1
.
weight
conv3d2
.
bias
=
conv3d1
.
bias
np
.
testing
.
assert_array_equal
(
conv3d1
.
weight
.
numpy
(),
conv3d2
.
weight
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
conv3d1
.
bias
.
numpy
(),
conv3d2
.
bias
.
numpy
()
)
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
...
...
@@ -1456,7 +1039,7 @@ class TestLayer(LayerTest):
conv3d1
.
bias
.
numpy
(),
conv3d2
.
bias
.
numpy
()
)
def
func
_while_loop
(
self
):
def
test
_while_loop
(
self
):
with
self
.
static_graph
():
i
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
0
)
ten
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
10
)
...
...
@@ -1491,11 +1074,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_array_equal
(
static_ret
[
0
],
dy_ret
[
0
].
numpy
())
def
test_while_loop
(
self
):
with
_test_eager_guard
():
self
.
func_while_loop
()
self
.
func_while_loop
()
def
test_compare
(
self
):
value_a
=
np
.
arange
(
3
)
value_b
=
np
.
arange
(
3
)
...
...
@@ -1508,14 +1086,6 @@ class TestLayer(LayerTest):
feed
=
{
"a"
:
value_a
,
"b"
:
value_b
},
fetch_list
=
[
cond
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da
=
base
.
to_variable
(
value_a
)
db
=
base
.
to_variable
(
value_b
)
dcond
=
paddle
.
less_than
(
x
=
da
,
y
=
db
)
for
i
in
range
(
len
(
static_ret
)):
self
.
assertTrue
(
dcond
.
numpy
()[
i
]
==
static_ret
[
i
])
da
=
base
.
to_variable
(
value_a
)
db
=
base
.
to_variable
(
value_b
)
dcond
=
paddle
.
less_than
(
x
=
da
,
y
=
db
)
...
...
@@ -1532,14 +1102,6 @@ class TestLayer(LayerTest):
feed
=
{
"a1"
:
value_a
,
"b1"
:
value_b
},
fetch_list
=
[
cond1
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da1
=
base
.
to_variable
(
value_a
)
db1
=
base
.
to_variable
(
value_b
)
dcond1
=
paddle
.
less_equal
(
x
=
da1
,
y
=
db1
)
for
i
in
range
(
len
(
static_ret1
)):
self
.
assertTrue
(
dcond1
.
numpy
()[
i
]
==
static_ret1
[
i
])
da1
=
base
.
to_variable
(
value_a
)
db1
=
base
.
to_variable
(
value_b
)
dcond1
=
paddle
.
less_equal
(
x
=
da1
,
y
=
db1
)
...
...
@@ -1556,14 +1118,6 @@ class TestLayer(LayerTest):
feed
=
{
"a2"
:
value_a
,
"b2"
:
value_b
},
fetch_list
=
[
cond2
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da2
=
base
.
to_variable
(
value_a
)
db2
=
base
.
to_variable
(
value_b
)
dcond2
=
paddle
.
greater_than
(
x
=
da2
,
y
=
db2
)
for
i
in
range
(
len
(
static_ret2
)):
self
.
assertTrue
(
dcond2
.
numpy
()[
i
]
==
static_ret2
[
i
])
da2
=
base
.
to_variable
(
value_a
)
db2
=
base
.
to_variable
(
value_b
)
dcond2
=
paddle
.
greater_than
(
x
=
da2
,
y
=
db2
)
...
...
@@ -1580,14 +1134,6 @@ class TestLayer(LayerTest):
feed
=
{
"a3"
:
value_a
,
"b3"
:
value_b
},
fetch_list
=
[
cond3
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da3
=
base
.
to_variable
(
value_a
)
db3
=
base
.
to_variable
(
value_b
)
dcond3
=
paddle
.
greater_equal
(
x
=
da3
,
y
=
db3
)
for
i
in
range
(
len
(
static_ret3
)):
self
.
assertTrue
(
dcond3
.
numpy
()[
i
]
==
static_ret3
[
i
])
da3
=
base
.
to_variable
(
value_a
)
db3
=
base
.
to_variable
(
value_b
)
dcond3
=
paddle
.
greater_equal
(
x
=
da3
,
y
=
db3
)
...
...
@@ -1604,14 +1150,6 @@ class TestLayer(LayerTest):
feed
=
{
"a4"
:
value_a
,
"b4"
:
value_b
},
fetch_list
=
[
cond4
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da4
=
base
.
to_variable
(
value_a
)
db4
=
base
.
to_variable
(
value_b
)
dcond4
=
paddle
.
equal
(
x
=
da4
,
y
=
db4
)
for
i
in
range
(
len
(
static_ret4
)):
self
.
assertTrue
(
dcond4
.
numpy
()[
i
]
==
static_ret4
[
i
])
da4
=
base
.
to_variable
(
value_a
)
db4
=
base
.
to_variable
(
value_b
)
dcond4
=
paddle
.
equal
(
x
=
da4
,
y
=
db4
)
...
...
@@ -1628,14 +1166,6 @@ class TestLayer(LayerTest):
feed
=
{
"a5"
:
value_a
,
"b5"
:
value_b
},
fetch_list
=
[
cond5
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da5
=
base
.
to_variable
(
value_a
)
db5
=
base
.
to_variable
(
value_b
)
dcond5
=
paddle
.
equal
(
x
=
da5
,
y
=
db5
)
for
i
in
range
(
len
(
static_ret5
)):
self
.
assertTrue
(
dcond5
.
numpy
()[
i
]
==
static_ret5
[
i
])
da5
=
base
.
to_variable
(
value_a
)
db5
=
base
.
to_variable
(
value_b
)
dcond5
=
paddle
.
equal
(
x
=
da5
,
y
=
db5
)
...
...
@@ -1672,31 +1202,6 @@ class TestLayer(LayerTest):
static_res
=
ret
[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
a
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
0.1
]).
astype
(
'float32'
))
b
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
0.23
]).
astype
(
'float32'
)
)
out
=
paddle
.
static
.
nn
.
cond
(
a
<
b
,
lambda
:
less_than_branch
(
a
,
b
),
lambda
:
greater_equal_branch
(
a
,
b
),
)
out2
=
paddle
.
static
.
nn
.
cond
(
a
>=
b
,
lambda
:
greater_equal_branch
(
a
,
b
),
lambda
:
less_than_branch
(
a
,
b
),
)
eager_dynamic_res
=
out
.
numpy
()
eager_dynamic_res2
=
out2
.
numpy
()
np
.
testing
.
assert_array_equal
(
eager_dynamic_res
,
eager_dynamic_res2
)
with
self
.
assertRaises
(
TypeError
):
paddle
.
static
.
nn
.
cond
(
a
<
b
,
'str'
,
'str'
)
with
self
.
assertRaises
(
TypeError
):
paddle
.
static
.
nn
.
cond
(
a
>=
b
,
'str'
,
'str'
)
a
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
0.1
]).
astype
(
'float32'
))
b
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
0.23
]).
astype
(
'float32'
))
out
=
paddle
.
static
.
nn
.
cond
(
...
...
@@ -1718,7 +1223,6 @@ class TestLayer(LayerTest):
paddle
.
static
.
nn
.
cond
(
a
>=
b
,
'str'
,
'str'
)
np
.
testing
.
assert_array_equal
(
static_res
,
dynamic_res
)
np
.
testing
.
assert_array_equal
(
static_res
,
eager_dynamic_res
)
def
test_case
(
self
):
def
fn_1
():
...
...
@@ -1755,24 +1259,6 @@ class TestLayer(LayerTest):
static_res1
,
static_res2
=
exe
.
run
(
fetch_list
=
[
out_1
,
out_2
])
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
x
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.3
)
y
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.1
)
z
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.2
)
pred_1
=
paddle
.
less_than
(
z
,
x
)
# true: 0.2 < 0.3
pred_2
=
paddle
.
less_than
(
x
,
y
)
# false: 0.3 < 0.1
pred_3
=
paddle
.
equal
(
x
,
y
)
# false: 0.3 == 0.1
out_1
=
paddle
.
static
.
nn
.
case
(
pred_fn_pairs
=
[(
pred_1
,
fn_1
),
(
pred_2
,
fn_2
)],
default
=
fn_3
)
out_2
=
paddle
.
static
.
nn
.
case
(
pred_fn_pairs
=
[(
pred_2
,
fn_2
),
(
pred_3
,
fn_3
)]
)
eager_dynamic_res1
=
out_1
.
numpy
()
eager_dynamic_res2
=
out_2
.
numpy
()
x
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.3
)
y
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.1
)
z
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.2
)
...
...
@@ -1792,8 +1278,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_array_equal
(
static_res1
,
dynamic_res1
)
np
.
testing
.
assert_array_equal
(
static_res2
,
dynamic_res2
)
np
.
testing
.
assert_array_equal
(
static_res1
,
eager_dynamic_res1
)
np
.
testing
.
assert_array_equal
(
static_res2
,
eager_dynamic_res2
)
def
test_switch_case
(
self
):
def
fn_1
():
...
...
@@ -1835,33 +1319,6 @@ class TestLayer(LayerTest):
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
index_1
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
1
)
index_2
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
2
)
out_1
=
paddle
.
static
.
nn
.
switch_case
(
branch_index
=
index_1
,
branch_fns
=
{
1
:
fn_1
,
2
:
fn_2
},
default
=
fn_3
,
)
out_2
=
paddle
.
static
.
nn
.
switch_case
(
branch_index
=
index_2
,
branch_fns
=
[(
1
,
fn_1
),
(
2
,
fn_2
)],
default
=
fn_3
,
)
out_3
=
paddle
.
static
.
nn
.
switch_case
(
branch_index
=
index_2
,
branch_fns
=
[(
0
,
fn_1
),
(
4
,
fn_2
),
(
7
,
fn_3
)],
)
eager_dynamic_res1
=
out_1
.
numpy
()
eager_dynamic_res2
=
out_2
.
numpy
()
eager_dynamic_res3
=
out_3
.
numpy
()
index_1
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
1
)
index_2
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
2
)
...
...
@@ -1887,9 +1344,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_array_equal
(
static_res1
,
dynamic_res1
)
np
.
testing
.
assert_array_equal
(
static_res2
,
dynamic_res2
)
np
.
testing
.
assert_array_equal
(
static_res3
,
dynamic_res3
)
np
.
testing
.
assert_array_equal
(
static_res1
,
eager_dynamic_res1
)
np
.
testing
.
assert_array_equal
(
static_res2
,
eager_dynamic_res2
)
np
.
testing
.
assert_array_equal
(
static_res3
,
eager_dynamic_res3
)
def
test_crop_tensor
(
self
):
with
self
.
static_graph
():
...
...
@@ -1972,7 +1426,7 @@ class TestBook(LayerTest):
)
self
.
all_close_compare
=
set
({
"make_spectral_norm"
})
def
func
_all_layers
(
self
):
def
test
_all_layers
(
self
):
attrs
=
(
getattr
(
self
,
name
)
for
name
in
dir
(
self
))
methods
=
filter
(
inspect
.
ismethod
,
attrs
)
for
method
in
methods
:
...
...
@@ -2028,11 +1482,6 @@ class TestBook(LayerTest):
),
)
def
test_all_layers
(
self
):
with
_test_eager_guard
():
self
.
func_all_layers
()
self
.
func_all_layers
()
def
_get_np_data
(
self
,
shape
,
dtype
,
append_batch_size
=
True
):
np
.
random
.
seed
(
self
.
seed
)
if
append_batch_size
:
...
...
python/paddle/fluid/tests/unittests/test_limit_by_capacity_op.py
浏览文件 @
3900d562
...
...
@@ -19,7 +19,6 @@ import numpy as np
import
paddle
from
paddle.distributed.models.moe
import
utils
from
paddle.fluid
import
core
from
paddle.fluid.framework
import
_test_eager_guard
def
limit_by_capacity
(
expert_count
,
_capacity
,
n_worker
):
...
...
@@ -88,7 +87,7 @@ class TestLimitByCapacityInt64API(unittest.TestCase):
assert
all_close
(
self
.
out
,
res
[
0
],
self
.
n_worker
)
def
func
_dygraph_api
(
self
):
def
test
_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
capacity
=
paddle
.
to_tensor
(
self
.
capacity
)
expert_count_tensor
=
paddle
.
to_tensor
(
self
.
expert_count
)
...
...
@@ -97,11 +96,6 @@ class TestLimitByCapacityInt64API(unittest.TestCase):
)
assert
all_close
(
self
.
out
,
out
.
numpy
(),
self
.
n_worker
)
def
test_dygraph_api
(
self
):
with
_test_eager_guard
():
self
.
func_dygraph_api
()
self
.
func_dygraph_api
()
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
...
...
python/paddle/fluid/tests/unittests/test_linalg_cond.py
浏览文件 @
3900d562
...
...
@@ -18,7 +18,6 @@ import numpy as np
import
paddle
import
paddle.static
as
static
from
paddle.fluid.framework
import
_test_eager_guard
p_list_n_n
=
(
"fro"
,
"nuc"
,
1
,
-
1
,
np
.
inf
,
-
np
.
inf
)
p_list_m_n
=
(
None
,
2
,
-
2
)
...
...
@@ -92,21 +91,16 @@ class API_TestStaticCond(unittest.TestCase):
class
API_TestDygraphCond
(
unittest
.
TestCase
):
def
func
_out
(
self
):
def
test
_out
(
self
):
paddle
.
disable_static
()
# test calling results of 'cond' in dynamic mode
x_list_n_n
,
x_list_m_n
=
gen_input
()
test_dygraph_assert_true
(
self
,
x_list_n_n
,
p_list_n_n
+
p_list_m_n
)
test_dygraph_assert_true
(
self
,
x_list_m_n
,
p_list_m_n
)
def
test_out
(
self
):
with
_test_eager_guard
():
self
.
func_out
()
self
.
func_out
()
class
TestCondAPIError
(
unittest
.
TestCase
):
def
func
_dygraph_api_error
(
self
):
def
test
_dygraph_api_error
(
self
):
paddle
.
disable_static
()
# test raising errors when 'cond' is called in dygraph mode
p_list_error
=
(
'fro_'
,
'_nuc'
,
-
0.7
,
0
,
1.5
,
3
)
...
...
@@ -121,11 +115,6 @@ class TestCondAPIError(unittest.TestCase):
x_tensor
=
paddle
.
to_tensor
(
x
)
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
cond
,
x_tensor
,
p
)
def
test_dygraph_api_error
(
self
):
with
_test_eager_guard
():
self
.
func_dygraph_api_error
()
self
.
func_dygraph_api_error
()
def
test_static_api_error
(
self
):
paddle
.
enable_static
()
# test raising errors when 'cond' is called in static mode
...
...
@@ -162,18 +151,13 @@ class TestCondAPIError(unittest.TestCase):
class
TestCondEmptyTensorInput
(
unittest
.
TestCase
):
def
func
_dygraph_empty_tensor_input
(
self
):
def
test
_dygraph_empty_tensor_input
(
self
):
paddle
.
disable_static
()
# test calling results of 'cond' when input is an empty tensor in dynamic mode
x_list_n_n
,
x_list_m_n
=
gen_empty_input
()
test_dygraph_assert_true
(
self
,
x_list_n_n
,
p_list_n_n
+
p_list_m_n
)
test_dygraph_assert_true
(
self
,
x_list_m_n
,
p_list_m_n
)
def
test_dygraph_empty_tensor_input
(
self
):
with
_test_eager_guard
():
self
.
func_dygraph_empty_tensor_input
()
self
.
func_dygraph_empty_tensor_input
()
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
...
...
python/paddle/fluid/tests/unittests/test_linspace.py
浏览文件 @
3900d562
...
...
@@ -20,7 +20,6 @@ from op_test import OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
core
,
program_guard
from
paddle.fluid.framework
import
_test_eager_guard
class
TestLinspaceOpCommonCase
(
OpTest
):
...
...
@@ -128,11 +127,6 @@ class TestLinspaceAPI(unittest.TestCase):
self
.
assertEqual
((
out2
.
numpy
()
==
np_out2
).
all
(),
True
)
self
.
assertEqual
((
out3
.
numpy
()
==
np_out3
).
all
(),
True
)
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_variable_input2
()
self
.
test_imperative
()
class
TestLinspaceOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_logical_op.py
浏览文件 @
3900d562
...
...
@@ -17,7 +17,6 @@ import unittest
import
numpy
as
np
import
paddle
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.framework
import
_non_static_mode
from
paddle.static
import
Executor
,
Program
,
program_guard
...
...
@@ -106,15 +105,14 @@ def run_eager(x_np, y_np, op_str, use_gpu=False, binary_op=True):
if
use_gpu
and
paddle
.
is_compiled_with_cuda
():
place
=
paddle
.
CUDAPlace
(
0
)
paddle
.
disable_static
(
place
)
with
_test_eager_guard
():
op
=
getattr
(
paddle
,
op_str
)
x
=
paddle
.
to_tensor
(
x_np
,
dtype
=
x_np
.
dtype
)
if
not
binary_op
:
dygraph_result
=
op
(
x
)
else
:
y
=
paddle
.
to_tensor
(
y_np
,
dtype
=
y_np
.
dtype
)
dygraph_result
=
op
(
x
,
y
)
return
dygraph_result
op
=
getattr
(
paddle
,
op_str
)
x
=
paddle
.
to_tensor
(
x_np
,
dtype
=
x_np
.
dtype
)
if
not
binary_op
:
dygraph_result
=
op
(
x
)
else
:
y
=
paddle
.
to_tensor
(
y_np
,
dtype
=
y_np
.
dtype
)
dygraph_result
=
op
(
x
,
y
)
return
dygraph_result
def
np_data_generator
(
np_shape
,
dtype
,
*
args
,
**
kwargs
):
...
...
python/paddle/fluid/tests/unittests/test_logit_op.py
浏览文件 @
3900d562
...
...
@@ -18,7 +18,6 @@ import numpy as np
from
op_test
import
OpTest
import
paddle
from
paddle.fluid.framework
import
_test_eager_guard
np
.
random
.
seed
(
10
)
...
...
@@ -117,11 +116,6 @@ class TestLogitAPI(unittest.TestCase):
x
=
paddle
.
fluid
.
data
(
name
=
'X2'
,
shape
=
[
100
],
dtype
=
'float32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
logit
,
x
,
dtype
=
'int32'
)
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_check_api
()
self
.
test_errors
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_lookahead.py
浏览文件 @
3900d562
...
...
@@ -19,7 +19,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn
as
nn
from
paddle.fluid.framework
import
_test_eager_guard
LOOKAHEAD_K
=
5
LOOKAHEAD_ALPHA
=
0.2
...
...
@@ -71,7 +70,7 @@ class TestLookAhead(unittest.TestCase):
)
fast_param
=
latest_b
-
SGD_LR
*
b_grad
def
func_
test_look_ahead_dygraph
(
self
):
def
test_look_ahead_dygraph
(
self
):
BATCH_SIZE
=
16
BATCH_NUM
=
4
EPOCH_NUM
=
4
...
...
@@ -152,11 +151,6 @@ class TestLookAhead(unittest.TestCase):
train
(
layer
,
loader
,
loss_fn
,
lookahead
)
def
test_look_ahead_dygraph
(
self
):
with
_test_eager_guard
():
self
.
func_test_look_ahead_dygraph
()
self
.
func_test_look_ahead_dygraph
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
浏览文件 @
3900d562
...
...
@@ -20,7 +20,6 @@ from op_test import OpTest, convert_float_to_uint16, get_numeric_gradient
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.fluid.tests.unittests.testsuite
import
create_op
...
...
@@ -559,11 +558,6 @@ class TestMatMulV2API(unittest.TestCase):
{
'FLAGS_gemm_use_half_precision_compute_type'
:
False
}
)
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_dygraph
()
self
.
test_dygraph_fp16
()
class
TestComplexMatMulOp
(
OpTest
):
def
setUp
(
self
):
...
...
@@ -732,10 +726,6 @@ class TestMatmulop(unittest.TestCase):
paddle
.
enable_static
()
def
func_dygraph_matmul
(
self
):
# noqa: F811
with
_test_eager_guard
():
self
.
func_dygraph_matmul
()
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
...
...
python/paddle/fluid/tests/unittests/test_max_op.py
浏览文件 @
3900d562
...
...
@@ -20,7 +20,6 @@ from test_sum_op import TestReduceOPTensorAxisBase
import
paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
_test_eager_guard
class
ApiMaxTest
(
unittest
.
TestCase
):
...
...
@@ -83,10 +82,6 @@ class ApiMaxTest(unittest.TestCase):
z_expected
=
np
.
array
(
np
.
max
(
np_x
,
axis
=
0
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
def
test_eager_api
(
self
):
with
_test_eager_guard
():
self
.
test_imperative_api
()
def
test_big_dimension
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
rand
(
shape
=
[
2
,
2
,
2
,
2
,
2
,
2
,
2
])
...
...
python/paddle/fluid/tests/unittests/test_maxout_op.py
浏览文件 @
3900d562
...
...
@@ -20,7 +20,6 @@ from op_test import OpTest
import
paddle
import
paddle.fluid.core
as
core
import
paddle.nn.functional
as
F
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
enable_static
()
np
.
random
.
seed
(
1
)
...
...
@@ -108,7 +107,7 @@ class TestMaxoutAPI(unittest.TestCase):
for
r
in
res
:
np
.
testing
.
assert_allclose
(
out_ref
,
r
,
rtol
=
1e-05
)
def
func_
test_dygraph_api
(
self
):
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
maxout
(
x
,
self
.
groups
,
self
.
axis
)
...
...
@@ -136,11 +135,6 @@ class TestMaxoutAPI(unittest.TestCase):
x_float32
=
paddle
.
fluid
.
data
(
name
=
'x_float32'
,
shape
=
[
2
,
4
,
6
,
8
])
self
.
assertRaises
(
ValueError
,
F
.
maxout
,
x_float32
,
2
,
2
)
def
test_dygraph_api
(
self
):
with
_test_eager_guard
():
self
.
func_test_dygraph_api
()
self
.
func_test_dygraph_api
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录