diff --git a/python/paddle/fluid/contrib/tests/test_quantize_transpiler.py b/python/paddle/fluid/contrib/tests/test_quantize_transpiler.py index 1c7f933dbdb652c8eca80ba645a4381b4d37af09..5bb6c4e47d8c1663447ebd25d93cccaf142faee1 100644 --- a/python/paddle/fluid/contrib/tests/test_quantize_transpiler.py +++ b/python/paddle/fluid/contrib/tests/test_quantize_transpiler.py @@ -177,21 +177,30 @@ class TestQuantizeTranspiler(unittest.TestCase): self.residual_block_quant('range_abs_max') def freeze_program(self, use_cuda): + def build_program(main, startup, is_test): + with fluid.unique_name.guard(): + with fluid.program_guard(main, startup): + img = fluid.layers.data( + name='image', shape=[1, 28, 28], dtype='float32') + label = fluid.layers.data( + name='label', shape=[1], dtype='int64') + loss = conv_net(img, label) + if not is_test: + opt = fluid.optimizer.Adam(learning_rate=0.001) + opt.minimize(loss) + return [img, label], loss + main = fluid.Program() startup = fluid.Program() - quant_transpiler = QuantizeTranspiler() - with fluid.program_guard(main, startup): - img = fluid.layers.data( - name='image', shape=[1, 28, 28], dtype='float32') - label = fluid.layers.data(name='label', shape=[1], dtype='int64') - loss = conv_net(img, label) - opt = fluid.optimizer.Adam(learning_rate=0.001) - opt.minimize(loss) - quant_transpiler.training_transpile(main) + test_program = fluid.Program() - test_program = main.clone() - with fluid.program_guard(test_program): - test_program = fluid.io.get_inference_program(loss) + feeds, loss = build_program(main, startup, True) + build_program(test_program, startup, True) + test_program = test_program.clone(for_test=True) + + quant_transpiler = QuantizeTranspiler() + quant_transpiler.training_transpile(main) + quant_transpiler.training_transpile(test_program) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) @@ -206,7 +215,7 @@ class TestQuantizeTranspiler(unittest.TestCase): batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) - feeder = fluid.DataFeeder(feed_list=[img, label], place=place) + feeder = fluid.DataFeeder(feed_list=feeds, place=place) with fluid.program_guard(main): for _ in range(iter):